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1. Diamagnetism and Paramagnetism 

 

Magnetism is inseparable from quantum mechanics. A strictly classical system in thermal 

equilibrium can display no magnetic moment, even in a magnetic field. 

 

Langevin paramagnetism  

Van Vleck paramagnetism 

Pauli paramagnetism Spin magnetic moment of the conduction 

electrons in metals 

Diamagnetism (Landau diamagnetism) Orbital magnetic moment of the conduction 

electrons in metals 

 

2. Magnetic susceptibilty 

 

B

M
 ; Magnetic susceptibility per unit volume 

 

where M is defined as the magnetization per unit volume and B is the macroscopic magnetic field 

intensity. 

 

  (emu/cm3) 

 

  (emu/g) 

 

  (emu/mol) 

 

3. Magnetic moment and angular momentum 

 

Angular momentum: 

 

prL   

 

or 

 

mvrLz   
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The magnetic moment: 
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where T is the period.  

 

The ratio of angular momentum to the magnetic moment   
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The orbital magnetic moment is defined as 
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4. Langevin diamagnetism 

Next we consider the effect of external magnetic field B 
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with 

 

AB  . 

 

Then the orbital magnetic moment is described as 
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The vector potential: 
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Then we get 
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The magnetic moment is given by 
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The latter term is the magnetic moment induced by magnetic field (based on the Lentz law) 

 

When B is directed along the z axis, the interaction energy is calculated as 
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5. Evaluation of Langevin diamagnetism (core diamagnetism) 

In the presence of magnetic field, the current for each electron due to its angular frequency 

change (Larmor theorem, see the Appendix).  
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where   is the Larmor angular frequency, 
2

eB

mc
  . The magnetic moment is defined by 
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The core-diamagnetism (in the presence of external magnetic field) 
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)( 22 yx   is the mean square of the perpendicular distance of the electron from an axis through 

the atom. The mean square distance of the electrons from the nucleus is 
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For a spherically symmetrical distribution of charge, we have 
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If NA is the number of atoms per mole 
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where Z is the atomic number. Note that 

 

emu=erg/G = G2 cm3/G = G cm3. 

 

Then the units of M  is  

 

emu/(G.mol) = cm3/mol 

 

___________________________________________________________ 
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He  -1.9 

Ne  -7.2 

Ar  -19.4 

Kr  -28.0 
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Xe  -43.0 

 

 
 

_____________________________________________________________________ 

6. Lenz's law (Feynman)  

 

 
 

Maxwell's equation: 
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with the magnetic flux, 

 

Br 2  

 

Note that E is the electric field along the orbit, 
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Then we get 
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or 
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In other words, we have 

 

For  0
dt

dB
, 0E ; the current flows in a clock-wise direction. 

 

For  0
dt

dB
, 0E ; the current flows in a counter clock-wise direction. 

 

The induced electric field acting on an electron in the atoms produces a torque equal to 
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Newton’s second law for rotation; 
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Integrating with respect to time from zero field, 
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The magnetic moment is given by 
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5. Method using the quantum mechanics 

We consider the Hamiltonian H of non-relativistic electron in the presence of an external 

magnetic field, 
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with the charge of electron 

 

q = -e. 

 

The vector potential is given by 
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Then we get 
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where 
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where 

 

prL  . 

 

The third term is the Zeeman energy for the orbital magnetic moment 
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in the presence of an external magnetic field. This term gives rise only to paramagnetism. 

 

((Mathematica)) 
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APPENDIX  Larmor frequency 
2

eB

mc
  

(L.D. Landau and E.M. Lifshitz; The Classical Theory of Fields) 

We determine the angular frequency of vibration of a charged spatial oscillator, placed in a 

constant uniform magnetic field; proper frequency of vibration of the oscillator (in the absence of 

the field) is 0  

The equations of forced vibration of the oscillator in a magnetic field (directed along the z axis) 

are 
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Multiplying the second equation by a purely imaginary (i) and combining with the first equation, 

we have 
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where x iy   . We assume that   has a form of 0

i te   . Thus we have 
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The  sign on 0  means that those electrons whose orbital moments were parallel to the field are 

slowed down and those whose moments were antiparallel are speeded up, by an amount 
2

eB

mc
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The result is called the Larmor theorem. 

 

APPENDIX-II 

Lagrangian L of a charged particle in in the presence of electronmagnetic fields, 

 

The action for a charge in an electromagnetic field has the form 
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where ( , )A  A , and ( , )dx d cdt  r . A is the vector potential and   is the scalar potential. 

The integrand is the Lagrangian for a charge q in the electromagnetic field; 

 

2
2

2

2
2 1/ 2

2

1

(1 )

v q
L mc q

c c

v q
mc q

c c





     

     

A v

A v

 

 

For v c≪ , L is approximated by 
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The canonical momentum p is  
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The Hamiltonian H  is obtained as 
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When q e   for electron (e>0), we find the Hamiltonian 
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