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1. Diamagnetism and Paramagnetism

Magnetism is inseparable from quantum mechanics. A strictly classical system in thermal
equilibrium can display no magnetic moment, even in a magnetic field.

Langevin paramagnetism
Van Vleck paramagnetism
Pauli paramagnetism

Diamagnetism (Landau diamagnetism)

2. Magnetic susceptibilty
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Spin magnetic moment of the conduction
electrons in metals
Orbital magnetic moment of the conduction
electrons in metals

Magnetic susceptibility per unit volume

where M is defined as the magnetization per unit volume and B is the macroscopic magnetic field

intensity.
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3. Magnetic moment and angular momentum

Angular momentum:
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The magnetic moment:
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where 7 is the period.
The ratio of angular momentum to the magnetic moment
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The orbital magnetic moment is defined as
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4. Langevin diamagnetism

Next we consider the effect of external magnetic field B
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with
B=VxA.

Then the orbital magnetic moment is described as

_Hs

po=—F2(rxmy)=—E2rx(prlA)=—E2[rx p+ & (rxa)]
/] /] c /] c

The vector potential:
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Then we get
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The magnetic moment is given by

2

Hp € 2
=—"2(rxp)— B—(r-B)r
IuO h ( p) 4mcz[r ( ) ]

2
Hp € 2
=—2L———[r'B-—(r-B)r

/] 4mcz[ ( ]

The latter term is the magnetic moment induced by magnetic field (based on the Lentz law)

When B is directed along the z axis, the interaction energy is calculated as
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S. Evaluation of Langevin diamagnetism (core diamagnetism)
In the presence of magnetic field, the current for each electron due to its angular frequency
change (Larmor theorem, see the Appendix).
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where @ is the Larmor angular frequency, o = 26— . The magnetic moment is defined by
mc
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The core-diamagnetism (in the presence of external magnetic field)
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(<x2 > + < v’ >) is the mean square of the perpendicular distance of the electron from an axis through

the atom. The mean square distance of the electrons from the nucleus is
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If Na is the number of atoms per mole

2
7y =N E=-5 ZN;‘ <r?>=-2.82839x 10" <1’ >Z
B 6mce

where Z is the atomic number. Note that
emu=erg/G = G* cm*/G = G cn?’.
Then the units of y,, is

emu/(G.mol) = cm*/mol

7,10 emu/ mol)

He -1.9
Ne -7.2
Ar -19.4
Kr -28.0
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6. Lenz's law (Feynman)
r

Maxwell's equation:
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with the magnetic flux,
O =B

Note that E is the electric field along the orbit,

E=Epe,

B = Be,
Then we get
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or

E,= _rdB . (Lentz law)
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In other words, we have

dB . e
For " >0, E,<0;the current flows in a clock-wise direction.
t

dB . e
For — <0, E, >0; the current flows in a counter clock-wise direction.

dt
The induced electric field acting on an electron in the atoms produces a torque equal to

t=rxF =re x(—eEe,)=—erE e,

Newton’s second law for rotation;
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Integrating with respect to time from zero field,
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The magnetic moment is given by

2 2.2
LV Ay Yy
h 2mc 2mce 2c 4mc
S. Method using the quantum mechanics

We consider the Hamiltonian A of non-relativistic electron in the presence of an external

magnetic field,
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with the charge of electron

q = -e.

The vector potential is given by

A:ler.
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Then we get
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where
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where
L=rxp.

The third term is the Zeeman energy for the orbital magnetic moment
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in the presence of an external magnetic field. This term gives rise only to paramagnetism.

((Mathematica))
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APPENDIX Larmor frequency 26—56

(L.D. Landau and E.M. Lifshitz; The Classical Theory of Fields)
We determine the angular frequency of vibration of a charged spatial oscillator, placed in a

constant uniform magnetic field; proper frequency of vibration of the oscillator (in the absence of
the field) is @,

The equations of forced vibration of the oscillator in a magnetic field (directed along the z axis)
are
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Multiplying the second equation by a purely imaginary (i) and combining with the first equation,
we have
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where ¢ = x+iy. We assume that ¢ has a form of ¢ = ¢, . Thus we have
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The +sign on @, means that those electrons whose orbital moments were parallel to the field are

. B
slowed down and those whose moments were antiparallel are speeded up, by an amount 26—.
mc

The result is called the Larmor theorem.

APPENDIX-II
Lagrangian L of a charged particle in in the presence of electronmagnetic fields,

The action for a charge in an electromagnetic field has the form
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S = .[(—mcds +%A”dxﬂ)
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where 4" =(A4,¢), and dx, = (dr,—cdt). A is the vector potential and ¢ is the scalar potential.

The integrand is the Lagrangian for a charge ¢ in the electromagnetic field;
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For v« ¢, L is approximated by
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The canonical momentum p is
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The Hamiltonian H is obtained as
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H=p-v-L
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When g =—e for electron (e>0), we find the Hamiltonian
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