Langevin function
 Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton

(Date: April 17, 2018)
The classical theory of paramagnetism, which is the limit of quantum theory when $J \rightarrow \infty$, was worked out in 1905 by Paul Langevin. Colloidal ferromagnetic minerals, usually magnetite, dispersed in a rock are examples of the systems where the classical theory is expected to apply.

Each atom or particle has a macroscopic magnetic moment $\boldsymbol{\mu}$, which can take any orientation relative to the field applied in the direction (the z axis).

We consider a magnetic moment (vector $\boldsymbol{\mu}$) whose direction is arbitrary. When the angle between the direction of $\boldsymbol{\mu}$ and the z axis is an angle θ, the Zeeman energy is obtained as

$$
H=-\mu B \cos \theta
$$

The one-particle partition Z_{1} is given by

$$
\begin{aligned}
Z_{1} & =\int_{0}^{\pi} e^{\beta \mu B \cos \theta} d \Omega \\
& =\int_{0}^{\pi} e^{\beta \mu B \cos \theta} 2 \pi \sin \theta d \theta \\
& =4 \pi \frac{\sinh (\beta \mu B)}{\beta \mu B}
\end{aligned}
$$

where Ω is the solid angle. The N-particle partition function is expressed by

$$
Z_{N}=Z_{1}^{N}
$$

Fig. Solid angle. $d \Omega=2 \pi \sin \theta d \theta$

We note that the total magnetization is given by

$$
\begin{aligned}
\langle M\rangle & =k_{B} T \frac{\partial \ln Z^{N}}{\partial B} \\
& =N k_{B} T \frac{\partial \ln Z_{1}}{\partial B} \\
& =N \mu L(x)
\end{aligned}
$$

where $x=\beta \mu B$ and N is the total number of atoms,

$$
L(x)=\operatorname{coth}(x)-\frac{1}{x} \quad \quad \text { (Langevin function). }
$$

In the limit of $x \rightarrow 0$, we have

$$
L(x) \approx \frac{x}{3}-\frac{x^{3}}{45}+\frac{2 x^{5}}{945}+O\left(x^{9}\right) .
$$

In the limit of $x \rightarrow \infty$, we have $\quad L(\infty)=1$

Fig. Langevin function $L(x)$ as a function of $x=\beta \mu B$.
((Note)) Derivation of magnetization using the partition function

$$
\begin{aligned}
& Z=\operatorname{Tr}\left[e^{-\beta H}\right] \\
& \begin{aligned}
& \frac{\partial Z}{\partial B}=\operatorname{Tr}\left[(-\beta) \frac{\partial H}{\partial B} e^{-\beta H}\right] \\
&=\beta \operatorname{Tr}\left[M e^{-\beta H}\right] \\
& \frac{1}{Z} \frac{\partial Z}{\partial B}=\beta \frac{\operatorname{Tr}\left[M e^{-\beta H}\right]}{\operatorname{Tr}\left[e^{-\beta H}\right]}=\beta\langle M\rangle
\end{aligned}
\end{aligned}
$$

or

$$
\langle M\rangle=k_{B} T \frac{\partial \ln Z}{\partial B}
$$

2. Another method

$$
\begin{aligned}
\langle\cos \theta\rangle & =\frac{\int_{0}^{\pi} e^{\beta \mu \cos \theta} \cos \theta d \Omega}{\int_{0}^{\pi} e^{\beta \mu \beta \cos \theta} d \Omega}=\frac{\int_{0}^{\pi} e^{\beta u \cos \theta} 2 \pi \sin \theta \cos \theta d \theta}{\int_{0}^{\pi} e^{\beta \mu \beta \cos \theta} 2 \pi \sin \theta d \theta} \\
& =L(x)
\end{aligned}
$$

where $d \Omega=2 \pi \sin \theta d \theta$. Note that the probability $P(\theta)$ is expressed by

$$
P(\theta) d \theta=A e^{\beta \mu B \cos \theta} 2 \pi \sin \theta d \theta
$$

where A is constant,

$$
\int_{0}^{\pi} P(\theta) d \theta=1
$$

((Mathematica))

Clear["Global`*"];
$\mathbf{f 1}=\operatorname{Exp}[\beta \mu \mathrm{B} \operatorname{Cos}[\theta]] 2 \pi \operatorname{Sin}[\theta] ;$
Z1 = Integrate[f1, $\{\theta, 0, \pi\}]$
$\frac{4 \pi \operatorname{Sinh}[\mathrm{~B} \beta \mu]}{\mathrm{B} \beta \mu}$

N1
$\underset{\beta}{-D}[\log [Z 1], B] / /$ FullSimplify
$-\frac{\mathbf{N} 1}{\mathbf{B} \beta}+\mathbf{N} 1 \mu \operatorname{Coth}[\mathbf{B} \beta \mu]$
$\operatorname{L1}\left[x_{-}\right]:=\operatorname{Coth}[x]-\frac{1}{x}$; Series [L1[x], $\left.\{x, 0,10\}\right]$
$\frac{x}{3}-\frac{x^{3}}{45}+\frac{2 x^{5}}{945}-\frac{x^{7}}{4725}+\frac{2 x^{9}}{93555}+0[x]^{11}$
h1 = Plot [\{L1[x], $x / 3\},\{x, 0,20\}$,
PlotStyle \rightarrow \{\{Red, Thick\}, \{Blue, Thin\}\},
PlotRange $\rightarrow\{\{0,20\},\{0,1.1\}\}] ;$
h2 = Graphics [\{Line[\{\{0, 1\}, \{20, 1\}\}],
Text[Style["x/3", Black, 12, Italic], \{3, 0.8\}], Text[Style["x", Black, 15, Italic], \{15, 0.05\}], Text[Style["L(x)", Black, 12, Italic], $\{10,0.85\}]\}$]
Show[h1, h2]

Limit[L1[x], $x \rightarrow \infty$]
1
f11 $=\operatorname{Exp}[\beta \mu \operatorname{BCos}[\theta]] 2 \pi \operatorname{Sin}[\theta] ;$
$\mathbf{f 1 2}=\operatorname{Exp}[\beta \mu \mathrm{B} \operatorname{Cos}[\theta]] 2 \pi \operatorname{Sin}[\theta] \operatorname{Cos}[\theta] ;$
Integrate[f12, $\{\theta, 0, \pi\}]$
] // Simplify
Integrate[f11, $\{\theta, 0, \pi\}]$
$-\frac{1}{\mathbf{B} \beta \mu}+\operatorname{Coth}[\mathbf{B} \beta \mu]$

