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The classical theory of paramagnetism, which is the limit of quantum theory when J — o,
was worked out in 1905 by Paul Langevin. Colloidal ferromagnetic minerals, usually magnetite,
dispersed in a rock are examples of the systems where the classical theory is expected to apply.

Each atom or particle has a macroscopic magnetic moment z , which can take any orientation

relative to the field applied in the direction (the z axis).

We consider a magnetic moment (vector u# ) whose direction is arbitrary. When the angle

between the direction of # and the z axis is an angle @, the Zeeman energy is obtained as
H =—puBcosf

The one-particle partition Z, is given by

Zl — eﬁ,uBcosE‘dQ
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where Q is the solid angle. The N-particle partition function is expressed by

Z,=2"
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Fig. Solid angle. dQQ =27sin0d6

We note that the total magnetization is given by
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where x = fuB and N is the total number of atoms,
L(x) = coth(x) - 1 (Langevin function).
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In the limit of x — 0, we have
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In the limit of x — o, we have L(xo)=1
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Fig. Langevin function L(x) as a function of x = SuB.
((Note)) Derivation of magnetization using the partition function

Z=Tr[e""]

9Z _ ryr—p) O s
aB—Tr[( ﬂ)aBe ]

= BTr[Me "]

10z TriMe"™] _
ZoB U Trle’™] =p(M)

or

olnZz

(M) =k,T 5

2. Another method
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where dQ =2xsinfd@ . Note that the probability P(6) is expressed by
P(0)d0 = Ae"***’ 2z sin 0d O

where A is constant,

TP(@)d@ =1

((Mathematica))



Clear["Global *"];
f1 = Exp[B 1 BCos[6]] 2x Sin[6];
Z1 = Integrate[f1l, {6, 0, 7}]
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L1[x ] := Coth[x] - —; Series[L1[x], {x, O, 10}]
X
3 5 7 9
K_X_JFZX _ X + 2 X +O[X}11
3 45 945 4725 93555



hl =Plot[{L1[x], x/3}, {x, 0, 20},
PlotStyle -» { {Red, Thick}, {Blue, Thin}},
PlotRange » {{0, 20}, {0, 1.1}}];

h2 = Graphics[{Line[{{0, 1}, {20, 1}}],
Text[Style["x/3", Black, 12, Italic], {3, 0.8}],
Text[Style["x", Black, 15, Italic], {15, 0.05}] ,
Text[Style["L(x)", Black, 12, Italic],

{10, ©0.85}]11}1;
Show[hl, h2]
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Limit[L1[x], x> o]

1

f11 = Exp[B 1 BCos[6]] 27 Sin[6];

12 = Exp[B 1 BCos[6]] 27t Sin[6] Cos[6O] ;

Integrate[fl12, {6, 0, 7}]

// Simplify
Integrate[fl1l1l, {6, 0, 7}]
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