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Auguste Bravais; 23 August 1811, Annonay, Ardèche – 30 March 1863, Le Chesnay, 
France) was a French physicist, well known for his work in crystallography (the Bravais 
lattices, and the Bravais laws). Bravais also studied magnetism, the northern lights, 
meteorology, geobotany or phyllotaxis, astronomy, and hydrography. 
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of the US Department of Energy's Ames Laboratory, and Professor of Materials Science at 
Iowa State University. On April 8, 1982, while on sabbatical at the U.S. National Bureau of 
Standards in Washington, D.C., Shechtman discovered the icosahedral phase, which opened 
the new field of quasiperiodic crystals. He was awarded the 2011 Nobel Prize in Chemistry 
for "the discovery of quasicrystals". 
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Graphene lattice 
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Fig. Formulation of graphite intercalation compounds. 

 

________________________________________________________________________ 

((Note)) Avogadro number, cm, and lattice constant 

 

A volume of typical sample is V = 1 cm3. Suppose that the system has a simple cubic 

lattice with a lattice constant a. Each unit cell has a volume of a3. The system consists of the 

Avogadro number of unit cells. So we get 

 
33 LaNV A   

 

where L is side of the typical sample. L is evaluated as 

 

aNL A

3/1
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Noting that 

 
3/1

AN  = 8.44469 x 107 = 0.844469 x 108. 

 

we have 

 

acmL 844469.0)(  (Å) 

 

In other words, when L = 1 cm, a is evaluated as 

 

a = 1.18418 Å. 

 

1. Introduction 

An ideal crystal is constructed by the infinite repetition of identical structural units in 

space. 

 

 
 

The structures of all crystals can be described in terms of a lattice (A), with a group of atoms 

(B) attached to every lattice point (basis). 

 

2. Lattice point 

There are many choices of lattice points. We show two examples. 

 

A

B
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Fig. 2D square lattice. r and r' are lattice points. 

 

or 

 

 
 

Fig. 2D square lattice. Another choice of lattice points. r and r' are lattice points. 

 

The atomic arrangement in the crystal looks exactly the same to an observer at r' as to an 

observer at r. 

 

2. Basis 

The group of atoms is called the basis; when repeated in space it forms the crystal 

structure. A basis of atoms is attached to every lattice point. 

 

r r'

r r'
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Fig. Crystal structure with lattice point (A) and basis (A-B). 

 

The crystal structures are formed when a basis of atoms is attached identically to every lattice 

point. 

 

Lattice + basis = crystal structure 

 

3. The three dimensional (3D) structures 

A

B
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Fig. 3D lattice. a1, a2, and a3 are primitive lattice vectors. Lattice points (red circles). T is 

the translation vector; T = 2a1+a2+a3. 

 

The lattice is defined by three primitive translation vectors, a1, a2, and a3, 

 

1 1 2 2 3 3u u u  T a a a ,  (lattice point) 

 

where u1, u2, u3 are integers. The lattice is defined by three primitive translation vectors, a1, 

a2, and a3. A lattice translation operation is defined as the displacement of a crystal by a 

crystal translation vector. 

The number of atoms in the basis may be one or it may be more than one. 

 

1 2 3j j j jx y z  r a a a   (basis) 

 

where  1,,0  jjj zyx . 

 

a1a1

a2

a3
T
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Fig. 3D lattice. Lattice point + basis. 

 

4. Primitive lattice cell 

The parallel-piped defined by primitive axes a1, a2, a3 is called a primitive cell. A 

primitive cell is a minimum-volume cell. 

 

 

a1a1

a2

a3

basis
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There is always one lattice point per primitive cell (definition). If the primitive cell is a 

parallel-piped with lattice points at each of eight corners, each lattice point is shared among 

eight corners, so that the total number of lattice points in the cell is one, 

 

1
8

1
8  . 

 

The volume of a parallel-piped with primitive axes a1, a2, a3 is 

 

1 2 3 2 3 1 3 1 2( ) ( ) ( )
c

V         a a a a a a a a a . 

 

The basis associated with a primitive lattice cell is called a primitive basis. 

 

5. Example 

(1) 1D system (linear chain) 

 

 
 

a1

a2

a3

a
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The primitive cell: a. Basis: the position of the blue point is denoted by a/2, as well as the 

red atom at the origin. 

 

 
The primitive cell: a. Basis: red atoms at u1a and u2a, as well as blue atom at the origin. 

The primitive basis consists of two identical atoms, one at u1a and the other at u2a.  

 

 
 

The primitive cell: a. Basis: red atoms at u1a, green atom at u2a, as well as blue atom at the 

origin. 

 

(2) 2D systems 

(a) Graphene 

a
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Fig. Graphite. Primitive unit cell. Basis (two identical C atoms). hexagonal lattice.  

a1

a2

O
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(b) Example 

 

 
 

1, 2, 3: Primitive cell (there is one lattice point) 

4: Conventional cell (there are 2 lattice points) 

 

((Definition)) Conventional cell 

If there are more than one lattice point in the cell, the cell is called the conventional cell. 

Later we discuss the conventional cell for the 3D systems.  

 

(c) Example 

 
 

a1 and a2 are primitive translation vector. 

a1 and a2 are primitive axes. 
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(d) Example 

 

 
 

Fig. Conventional cell (a1 x a2). There are two lattice points in this cell.  

 

 
 

Fig. Primitive cell (a1 x a2). There is one lattice point per this cell. a1 and a2 are the 

primitive translation vectors 

 

basis

a1

a2

a1a2
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((Summary)) 

1. Crystal has a primitive cell. 

2. Lattice point is defined in association with primitive cell. 

3. There is one lattice point per primitive cell. 

4. Conventional cell (or nonprimitive cell) contains more than one lattice points. 

 

________________________________________________________________________ 

6. Wigner-Seitz cell 

A Wigner–Seitz cell is an example of another kind of primitive cell which has only one 

lattice point. This Wigner-Seitz cell can be constructed as follows. 

(i) Draw lines to connect a given lattice point to all nearby lattice points. 

(ii) At the midpoint and normal to these lines, draw new lines or planes. 
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Fig. Typical example of the Wigner-Seitz cell (one of the primitive cells). The dotted line 

denotes the perpendicular bisector. 

 

((Example-I)) 
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Fig. Example of 2D-construction of a Wigner-Seitz cell (shaded by Green) for the square 

lattice. Note that such construction in the real space is similar to that of the Brillouin 

zone in the reciprocal lattice (see the construction of Brillouin zone in later chapter). 

 

((Example-II)) 
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https://www.physics-in-a-nutshell.com/article/5/unit-cell-primitive-cell-and-wigner-seitz-

cell#wigner-seitz-cell 

 

Fig. Example of 2D-construction of a Wigner-Seitz cell: One chooses any lattice point 

and draws connecting lines to its closest neighbors. In a second step one constructs 

the perpendicular bisectors of the connecting lines. The enclosed area is the Wigner-

Seitz cell. It forms a primitive unit cell. There is only one lattice point in this unit cell. 

 

7. Two dimensional lattice type 

Bravais lattice (common phrase for a distinct lattice type) 

 

(a) Square lattice (4mm) 

The square lattice is invariant under rotation of 2/4 about any lattice point (point 

operation 4) 
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_________________________________________________________________________ 

(b) Hexagonal lattice (6mm) 

The hexagonal lattice is invariant under rotation of 2/6 about lattice point (point 

rotation 3 and 6). 

 

 
 

_________________________________________________________________________ 

(c) Rectangular lattice (2mm) 

The rectangular lattice has mirror-symmetry line. 

 

 
 

______________________________________________________________________ 

(d) Oblique lattice 

The oblique lattice is invariant only under rotation of  and 2 about any lattice 

point. 
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_________________________________________________________________________ 

(e) Centered rectangular lattice (2mm) 

Conventional lattice: there are two lattice points per the cell.  

Primitive lattice: there is one lattice point. (a1 x a2) 

 

 
 

((Note)) Crystallographic plane point groups 



22 

 

 
 

*: Second “m” in the symbol refers to the second type of mirror line. In other words, there 

are two types of mirror lines. 

_________________________________________________________________________ 

8. Mirror reflection 

We note that the square and hexagonal lattices possess in addition two sets of mirror 

planes, but oblique lattices in general do not have reflection symmetry. When they do, two 

additional lattice types result. 

Suppose that mirror reflection m is present for the system. The primitive translation 

vectors are given by 

 

yyxx aa eea  , yyxx bb eeb   
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If the lattice is invariant under the reflection (along the x axis), a' and b' must be lattice vectors, 

 

yyxx aa eea ' , yyxx bb eeb '  

 

a + a', a - a', b + b', b - b' must be also lattice vectors. 

 

xxa eaa 2' ,  xxb ebb 2'  

 

yya eaa 2' ,  yyb ebb 2'  

 

Here we choose the two cases 

 

(1) ay = 0, and bx = 0 (rectangular lattice), 

 

xxeaa ,  yyebb  

 

aea  xxa' ,  beb  yyb'  

Mirror
O x

y

a

b

a'

b'
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(2) ay = 0 and bx = xa
2

1
 (centered rectangular lattice) 

Suppose that 

 

xxa ea  , yyxx bb eeb   

 

leading to 

 

xxa ea '  yyxx bb eeb '  

 

We note that 'b  must be a translation vector. Thus we set 

 

yyxx

yyxxx

yyxxxx

bb

bnbnan

bbnan

nn

ee

ee

eee

bab









221

21

21

)(

)(

'

 

 

or 

 

xxx bbnan  21  and  12 n 

 

Mirror

O x

y

a

b

a'

b'
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Thus we have 

 

xx anb 12

1
  

 

When 11 n  

 

yyxx ba eeb 
2

1
 

 

Such a structure is called rhombus 

 
 

9. Three dimensional (3D) Bravais lattice 

The point symmetry groups in 3D requires the 14 different lattice types. 

 

Mirror
O x

y

a

b

a'

b'
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Fig. Definition of sides a (a1), b (a2), c (a3), and angles , , and . 

 

_____________________________________________________________________ 

Triclinic 

 

a1 ≠ a2 ≠ a3 

 ≠  ≠ 
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1. Triclinic, simple  

 

______________________________________________________________________ 

Monoclinic 

a1 ≠ a2 ≠ a3 

 =  =90 ≠ 

 

 
 

2. Monoclinic, simple 

3. Monoclinic, base centered 

 

_________________________________________________________________________ 

Orthorhombic 
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a1 ≠ a2 ≠ a3 

 =  =  = 90.

 

 
 

4. Orthorhombic, simple 

5. Orthorhombic, base centered 

6. Orthorhombic, body-centered (b.c.) 

7. Orthorhombic, face-centered (f.c.) 

 

Hexagonal 

 

a1 = a2 ≠ a3 

 =  = 90. = 120. 

 

 

 
 

8. Hexagonal 

 

______________________________________________________________________ 
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Trigonal 

a1 = a2 = a3 

 =  =  < 120, ≠ 90.

 

 
 

9. Trigonal 

 

_________________________________________________________________________ 

Tetragonal 

a1 = a2 ≠ a3 

 =  =  = 90.

 

 

 
 

10. Tetragonal , simple 

11. Tetragonal, body-centered (b.c.) 

 

______________________________________________________________________ 

Cubic 
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a1 = a2 = a3 

 =  =  = 90.

 

 

 
 

12. simple cubic (sc) 

13. body-centered cubic (bcc) 

14. face-centered cubic (fcc) 

_________________________________________________________________________ 

10. Simple cubic (sc) 

The primitive cell is defined by the primitive translation vectors, ax, ay, and az. There is 

only one lattice point. 
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Fig. Structure of simple cubic (sc) lattice. 

 

O

ax

a y

a z
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Fig. Building up of the 3D structure with sc lattice. 

 

11. Face centered cubic (fcc) lattice 

The crystal structure of the fcc is given below.  
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Fig. Primitive cell (a1, a 2, a 3) and conventional cell (ax, ay, az) for the fcc lattice. 

 

Conventional cell 

There are four lattice points in this cell, 

 

431
2

1
6

8

1
8  . 

 

ax, ay, and az are the translation vectors of this cell. 

 

Primitive cell: 

There is only one lattice point of this cell. a1, a2, and a3 are the primitive translation 

vectors. 

 

)0,1,1(
21

a
a ,  )1,1,0(

22

a
a ,  )1,0,1(

23

a
a  

 

a2a3

a1
ax ay

az
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Fig. Building up of 3D structure with the bcc lattice. 

 

3 3 3

1 2 3

1 1 0

( ) 0 1 1 2
8 8 4

1 0 1

a a a
     a a a  

 

3 3 3

1 0 0

( ) 0 1 0 1

0 0 1
x y z a a a     a a a  

 

12. Body-centered cubic (bcc) lattice 

 

a2
a3

a1
x

y

z
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Fig. bcc lattice. Conventional cell. There are two lattice points. ax, ay and az are the 

translation vectors. 

 

This is a conventional cell since there are two lattice points in the cell,  

 

21
8

1
8  . 

 

The conventional cell consists of a lattice point plus a basis. The vector ax, ay and az are the 

translation vectors of the conventional cell. 

The primitive cell consists of the primitive translation vectors a1, a2, and a3. There is only 

one lattice point in this cell. 

 

)1 ,1 ,1(
21 
a

a , )1 ,1 ,1(
22 
a

a , )1 ,1 ,1(
23 
a

a . 

 

ax

a y

az
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Fig. Primitive cell. There is only one lattice point at the body center. a1, a2, and a3 are the 

primitive translation vectors. 

 

3 3 3

1 2 3

1 1 1

( ) 1 1 1 4
8 8 2

1 1 1

a a a


      



a a a  

 

3 3 3

1 0 0

( ) 0 1 0 1

0 0 1
x y z a a a     a a a  

 

13. Hexagonal lattice 

A hexagonal lattice is shown below. This structure does not occur among the elements, 

except as the starting point of the hexagonal close-packed structure. Its primitive vectors are 

a1, a2, and a3. 

 

a2
a3

a1

ax

ay

az
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Fig. Hexagonal lattice. a1 = a2 = a.  120, 21 aa . a3 = c. 

a1

a2

a3
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Fig. Building up of the 3D structure with the hexagonal lattice. 

 

14. Fundamental types of lattices 

The symmetry operations of a crystal carry the crystal structure into itself. 

Lattice translation operator 

Rotation reflection = point operation 

 

((Rotation)) 

A typical symmetry rotation is that of rotation about an axis that passes through a lattice point. 

 

1    one     2  
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2 (diad axis)   two fold rotation    2/2  

3 (triad axis)  three fold rotation  3/2   

4 (tetrad axis)  four fold rotation  2/4/2    

6 (hexad axis)  six fold rotation  6/2   

 

We can not find a lattice that goes into itself under other rotation such as by 7/2   or 

5/2  . 

 

((Example)) 
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((Quasi crystal)) Five-fold symmetry ? 

 

 
 

Fig. A five-fold axis of symmetry cannot exist in a lattice because it is not impossible to 

fill all space with a connected array of pentagons. As shown in this figure we give an 

example of regular pentagonal packing which does not have the translational 

invariance of a lattice. (C. Kittel, ISSP 4th edition, Chapter 1, p.13, Fig.9a) 
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The pentagons do not fit together to fill all space, showing that we cannot combine fivefold 

point symmetry with the required translational periodicity 

 

((Note)) 

On April 8, 1982, while on sabbatical at the U.S. National Bureau of Standards in 

Washington, D.C., Shechtman discovered the icosahedral phase, which opened the new field 

of quasiperiodic crystals. He was awarded the 2011 Nobel Prize in Chemistry for "the 

discovery of quasicrystals" 
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Fig. The electron diffraction pattern from an icosahedral quasi crystal contains perfect 

pentagons. (from Nobel lecture by Prof. D. Shechtman). 

http://www.rsc.org/images/Nobel%20Prize%20-%20Quasicrystals%20Scoop%20Pr

ize_tcm18-209332.pdf 

 

 

(i) Mirror symmetry 

We can have mirror reflection (m) about a plane through a lattice point (reflection plane). 
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(ii) Inversion 

The Inversion operation is composed of a rotation of p followed by reflection in a plane 

normal to the rotation axis. The total effect is to replace  

 

r  → -r. 

 

(iii) Point group 

(a) 1-fold axis: rotation of 2   
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(b) Mirror plane    "1m" 

 

 
 

(c) Two fold axis; rotation of   "2" 

 

 
 

 

(d) A two-fold axis. One mirror plane  "2mm" 
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There is automatically a second mirror plane normal to the first mirror plane. 

 

15. Fundamental types of lattices 

((Mathematical interest)) 

We can find a lattice that goes into itself under the rotation of 2/n with only n = 1, 2, 3, 

4, and 6. 

 

((Proof)) 

Suppose that the axis of rotation is perpendicular to the primitive translation vector T. 

We will prove later that the axis of the rotation should be the primitive translation vector.  
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Fig. T: primitive translation vector. O is the axis of rotation. The axis of rotation is also 

assumed to be one of the primitive translation vector (this will be proved later). The 

direction of the axis of rotation is out of the page. 

 

Cn is the rotation of 2/n around the axis and Cn
-1 is the rotation of -2/n around the axis, 

respectively. A lattice goes into itself under the rotation of 2/n with only n. This means that 

CnT and Cn
-1

T are also primitive translation vectors. Then the vector sum given by 

 

)
2

cos(2)
2

cos(21

nn
TCC nn


TnTT 

 , 

 

must be a translation vector and be integer times T. So the value of n can be obtained as  

 

n = 1, 2, 3, 4, and 6. 

 

since 2)
2

cos(2 
n


 for n = 1, 0)

2
cos(2 

n


 for n = 2, 1)

2
cos(2 

n


 for n = 3, 

0)
2

cos(2 
n


 for n = 4, and 2)

2
cos(2 

n


. 

 

O

T

2pên

2pên

Cn
-1T

CnT
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We now assume that the primitive translation vector T1 is not perpendicular to the axis 

of rotation. Suppose that this vector T1 is rotated around the axis of rotation by the angle 2/n 

(Cn is the rotation of 2/n around the axis). After the repetition of this process by n times, we 

get new primitive translation vectors, T2, T3, ..., Tn = T1, in order, where n is an integer. The 

figure shows the case for n = 6. 

  
 

Fig. Rotation of the primitive translation vector around the axis of rotation (Cn=6). T1, T2, ..., 

and T6 are the primitive translation vectors. The vector (Tn - Tn+1) (n = 1, 2, ...6) are 

also the primitive translation vector.  

 

1 2 3 ...
n

   T T T T . 

 

T1
T2

T3

T4T5

T6

Axis of rotation
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Note that T1 + T2 + T3 ..... + Tn is also translation vectors and is parallel to the axis of rotation. 

T12 = T1 - T2, T23 = T2 - T3, T34 =T3 - T4, ..., are the primitive translation vectors and are 

perpendicular to the axis of rotation. Then the axis of the rotation is the primitive translation 

vector. There always exists the primitive translation vectors which is perpendicular to the 

axis of rotation (which is also the primitive translation vector).  

In conclusion, the rotation of 2/n with only n = 5 does not exist in the crystals. 

 

((Note)) In spite of the above theorem, a quasi-crystal shows the n = 5 symmetry. 

 

16. NaCl structure 

The space lattice is fcc. Na+ and Cl- ions are al; ternately arranged at the lattice points of 

a sc lattice. Each ion is surrounded by 6 nearest neighbors of the opposite charge. 

 

Conventional cell: 

Cl-:  4
2

1
61   

Na+:  41
4

1
12   

 

There are four units of NaCl in each unit cube, with atoms in the positions, 

 

Cl-: 

 

(0,0,0),   (1/2,1/2,0), (1/2,0, 1/2), (0, 1/2, 1/2) 

 

Na+: 

 

(1/2,1/2,1/2),  (0,0,1/2) (0,1/2,0), (1/2,0,0) 

 

The basis has one Cl- ion at (0,0,0) and one Na+ ion at (1/2, 1/2, 1/2). 
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Fig. NaCl structure. Cl- (red circles) and Na+ (blue circles). a = 5.63 Å. 

 

17. CsCl structure 
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Fig. CsCl structure. simple cubic (primitive cell). a = 4.11 Å. Cs+ ion (red). Cl- ion (blue). 

 

Each atom may be viewed as at the center of a cube of atoms of the opposite kind. The 

number of the nearest neighbor (n. n.) or co-ordination number is z = 8. The space lattice is 

simple cubic (primitive cell). The basis has one Cs+ ion at (0,0,0) and one Cl- ion at (1/2, 1/2, 

1/2). 

 

 
 

18. Hexagonal close-packed (hcp) structure 
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The in-plane structure is hexagonal symmetry. There are several types of stacking 

sequences along the plane. 

 

(1) AAAAA...  stacking 

(2) ABABAB... stacking 

(3) ABCABC    stacking  fcc (111) plane. 

 

The hcp structure has the primitive cell of the hexagonal lattice, but with a basis of two atoms. 

 

a1 = a2 = a.    120, 21 aa  

 

A basis of two atoms at 

 

r =0,  
23

2 321 aaa
r 


  

 

 

 
 

Fig. Hcp structure with c/a = 1.633. 

 

The ratio c/a for the hcp of spheres has the value  
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633.1
3

8


a

c
. 

 

It is usual to refer to crystals as hcp even if the actual c/a ratio departs somewhat from this 

theoretical value. The number of the nearest-neighbor atoms is 12 for both hcp and fcc.  

 

 
Fig. Hexagonal close-packed lattice. Primitive cell has a1 = a2 = a, with an 

included angle 120º. The c-axis (a3) is normal to a1 and a2. The ideal hcp 

structure has c = 1.633 a. 
3

2 21 aa 
OP . 

2

aaa
3




3

2 21OQ  

 

 
 

O
P

Q

a1

a2

Ha1+a2L

H2a1+a2L

c

2
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Fig. Top view of an hcp lattice. The ABAB…. stacking. This figure made from 

the Graphics3D of the Mathematica, leading to incomplete superposition of 

points. 

 

((Structure of graphite)) 

The graphite has a AB stacking sequence along the c axis. The lattice constants of 

graphite are given by a1 = a2 = a = 2.46 Å, c = 6.70 Å. 

 

 
 

Fig. The in-plane structure of the A and B layers in the AB stacking sequence for the 

graphite. The lattice point of the B layer is at the point P, while the lattice point of the 

A layer is at the point O. 1 22

3
OP




a a����

  

 

 

a1

a1+a2a2

O

P

Q H2a1+a2L
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Fig. Graphite lattice, which has ABAB stacking sequence along the c axis. 

________________________________________________________________________ 
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Fig. (111) plane of the fcc structure. The close-packed layers of the fcc structure has the 

stacking sequence ABCABC….. 
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Fig. Top view of the fcc lattice viewed from (111) direction. This figure made 

from the Graphics3D of the Mathematica, leading to incomplete superposition 

of points. 
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Fig. Ideal case. Top view of the fcc lattice viewed from (111) direction.  

 

19. Diamond structure 

 

A

B

C
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Fig. Crystal structure of diamond showing the tetrahedral bond arrangement. 
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Fig. Diamond structure 
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20. ZnS structure 
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Fig. Crystal structure of ZnS. Zn (red circles). S (blue circles). 

 

The conventional cell a cubic. 

 

Zn: (0, 0, 0), (0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 0):   red circles. 

 

S: (1/4, 1/4, 1/4), (1/4, 3/4, 3/4); (3/4, 1/4, 3/4), (3/4, 3/4, 1/4)  black circles 

 

The lattice is fcc. There are four molecules of ZnS per conventional cell. 
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21. Definition of Miller indices 

We often find it necessary to describe a particular crystallographic plane or, a particular 
direction within a real 3D crystal. Crystal planes are usually described by their Miller indices. 

Suppose that a plane intercepts at  
 

111 aa
h

n
p  , 122 aa

k

n
p  , 333 aa

l

n
p  , 

 
on the axes of a1, a2, a3. The plane form by these three vectors is called a (hkl) plane, when 
 

1p

n
h  , 

2p

n
k  , 

3p

n
l  , 

 
where h, k, and l are integers, and n is integer chosen to get the smallest three integers: (hkl). 
These indices (hkl) may denote a single phase or a set of parallel planes with the index n. If 
a plane cuts an axis on the negative side of the origin, the corresponding index is negative, 

indicated by placing a minus sign above the index )( lkh . 
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Fig. Definition of (hkl) plane where h, k, and l are the smallest three integers. n is integer 

and denotes the family of the (hkl) planes. 
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Fig. The family of (hkl) planes with index n, where n is an integer. The (hkl) plane with 

the index n intercepts at na1/h, na2/k, na3/l. As will be described in the next chapter, 
G(h, k, l) (de noted by red line) is the reciprocal lattice vector. This vector G is normal 
to the (hkl) plane. 

 
22. Example-1 

We consider the plane intercepts the a1, a2, a3 axes at 3a1, 2a2, 2a3.  

 

3
h

n
,  2

k

n
,  2

l

n
 

 

or 

 

3

n
h  ,  

2

n
k  ,  

2

n
l   

 

Note that h, k, l and n are integers. When n = 6, we have a set of integers (hkl), 

 

h = 2,  k = 3,  l = 3. 

 

Then we can conclude that the plane is described by a miller indices (233) with n = 6. 
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Fig. Planes with the miller indices (233) with n = 1, 2, 3, 4, 5, and 6. The plane (233) 

with n = 6 intersects at 3a1, 2a2, 2a3.  

 

23. Example 

We consider the plane intercepts the a1, a2, a3 axes at 4a1, (-1a2), 2a3.  

 

4
h

n
,  1

k

n
,  2

l

n
 

 

or 

 

3a1

2a2

2a3

H2,3,3L plane
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4

n
h  ,  nk  ,  

2

n
l   

 

Note that h, k, l and n are integers. When n = 4, we have 

 

h = 1,  k = -4,  l = 2. 

 

Then we have the plane denoted by )241( with n = 4. 

 

 

Fig. Planes with the miller indices )241( with n = 1, 2, 3, 4. The plane )241( with n = 4 

intersects at 4a1, (-1a2), 2a3.  

 

24. (100) plane 

We consider the (100) plane. From the definition, we have 

 

4a1

-a2

2a3

H1,-4,2L plane
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(i) Intercept a1  1 x (a1/1)(100) plane with n = 1 

 

(ii) Intercept 2a1  2 x (a1/1) (100) plane with n = 2 

 

(iii) Intercept 3a3  3 x (a1/1) (100) plane with n = 3 

 

25. (200) plane 

We consider the (200) plane. 

 
 

Fig. The family of (100) plane and the family of (200) plane. 

 

(i) Intercept a1/2  1 x a1/2  

 

(200) plane with n = 1 

 

(ii) Intercept a12 x a1/2  [or 1 x a1/1] 

 

(200) plane with n = 2  [or (100) plane with n = 1] 

 

(iii) Intercept 3a1/23 x a1/2 

 

(200) plane with n = 3. 

 

x

y

z

-2a1-a1Oa12a13a1

-3
a1

2-
a1

2Oa1

23
a1

25
a1

2
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(iv) Intercept 2a14 x a1/2  [or 2 x a1/1] 

 

(200) plane with n = 4.  [or (100) plane with n = 2] 

 

(iv) Intercept 5a1/25 x a1/2 

 

(200) plane with n = 5. 

 

 

26. Link 

 

Miller indices (Cambridge University) 

http://www.doitpoms.ac.uk/tlplib/miller_indices/index.php 

 

Crystal lattice structures 

http://cst-www.nrl.navy.mil/lattice/ 

 

Crystal structures (Wikipedia) 

http://en.wikipedia.org/wiki/Crystal_structure 

 

Crystal structures, Rotable 3D models 

http://neubert.net/Crystals/CRYStruc.html 


