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Here we discuss the magnetization, entropy and heat capacity of the spin 1/2 system in the 

presence of an external magnetic field.  

 

1. Ground state and excited state in the presence of magnetic field 

The spin magnetic moment of spin 1/2 is 
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where 
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The Zeeman energy is given by 

 

BH zBBs   BσBμ )ˆ(ˆˆ , 

 

in the presence of an external magnetic field B. 

 

(i) For BE B   (ground state) 

 

1z , Bs    

 

The direction of the magnetic moment is opposite to the direction of B 

 

(ii) For BE B   (excited state) 

 

1z , Bs    

 

The direction of the magnetic moment is parallel to the direction of B 
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The energy gap is defined by 

 

Bk BB 2  

 

where  is in the units of K. 

 

The partition function 
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where N is the number of spins and Z is the partition function and is given by 
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2. Helmholtz energy 

The Helmholtz free energy is 

 

ZTNkZTkSTEF BNB lnln   

 

where E is the internal energy of the system and S is the entropy. 
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In the magnetic system, 
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Intensive variable: MP   

 

Extensive variable: HV   (or BV  ) 

 

Then we get 
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3. Magnetization M 

The total magnetization of N spins (spin 1/2) is 
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This expression of M can be also derived as 
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In the limit of 0
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showing the Curie law. 
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Fig. Scaling plot of the magnetization. The saturation magnetization is NB; y = 1. 

 

4. Entropy S 
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We introduce the characteristic temperature T0 and magnetic field B0 as 

 

00 TkB BB   

 

Then we have 
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where 
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We make a plot of 
Nk

S

B

 as function of t, where b is changed as a parameter. In the limit of 

t , the entropy reached 
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0.693147. 

 

 
 

Fig. Plot of 
Nk

S

B

 as a function of a reduced temperature t (= T/T0), where the reduced 

magnetic field b (= B/B0) is changed as a parameter. Note that 00 TkB BB  . The highest 

value of y is ln2 = 0.693147 

 

5. Isentropic demagnetizion 

The principle of magnetically cooling a sample is as follows. The paramagnet is first cooled 

toa low starting temperature. The magnetic cooling then proceeds via two steps.  

Suppose that the spin system is kept at temperature T1 in the presence of magnetic field B1. 

The system is insulated (S = 0) and the field removed, the system follows the constant entropy 

path AB, ending up at the temperature T2 (isentropic process). If B is the effective field that 

corresponds to the local interactions, the final temperature T2 reached in an isentropic 

demagnetization process is 
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since the entropy is a function of only B/T.  

 

 
 

Fig. Point A (tA = 4.29726, yA = 0.3) on the line with 1
0


B

BA . Point B (tB= 0.859452, , yA = 

0.3) on the line with 5
0


B

BB . The path AB is the isentropic process (y = 0.3). Note that  
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6. Specific heat 

The heat capacity is given by 
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Using the energy gap parameter 

 

Bk BB 2  
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Fig. Plot of the heat capacity C/kB as a function of T/. It show a peak at T/ = 0.416778. 

 

The heat capacity as a function of temperature, has a peak at 

 

416778.0


T
. 

 

((Schottky anomaly)) 

The Schottky anomaly is an observed effect in solid state physics where the specific heat 

capacity of a solid at low temperature has a peak. It is called anomalous because the heat 

capacity usually increases with temperature, or stays constant. It occurs in systems with a limited 

number of energy levels so that E(T) increases with sharp steps, one for each energy level that 

becomes available. Since Cv =(dE/dT), it will experience a large peak as the temperature crosses 

over from one step to the next. 
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