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Wolfgang Ernst Pauli (25 April 1900 – 15 December 1958) was an Austrian-born Swiss and 

American theoretical physicist and one of the pioneers of quantum physics. In 1945, after having 

been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics for his "decisive 

contribution through his discovery of a new law of Nature, the exclusion principle or Pauli 

principle". The discovery involved spin theory, which is the basis of a theory of the structure of 

matter. 

 

 
 

https://en.wikipedia.org/wiki/Wolfgang_Pauli 

 

The magnetic susceptibility of conduction electrons in metal consists of two contributions; 

Pauli paramagnetism due to the spin magnetic moment under the magnetic field, ans the Landau 

diamagnetism due to the orbital motion of conduction electrons. The susceptibility of the 

conduction electron is given by 

 

3/23/ PPPLP   , 



 

where L is the Landau diamagnetic susceptibility due to the orbital motion of conduction electrons. 

The Pauli paramagnetism can be explained using the Fermi Dirac statistics and quantum mechanics. 

Using the Sommerfeld formula, we discuss the temperature dependence of the Pauli 

paramagnetism. The degeneracy between the electrons of opposite spins is resolved by a magnetic 

field. In a metal this causes a redistribution of electrons between the two spin orientations, and 

hence gives rise to a magnetic moment. 

 

 

1. Pauli paramagnetism 

The magnetic moment of spin is given by  

 

  

 ̂z  
2B

 ̂S z

ℏ
 B

 ̂z   (quantum mechanical operator).  

 

Then the spin Hamiltonian (Zeeman energy) is described by 
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in the presence of a magnetic field, where the Bohr magneton µB is given by  
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2mc
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with 

 

B 9.27400915(23) x 10-24 J/T  (S.I. unit) 

 

B 9.27400915(23) x 10-21 erg/Oe  (cgs unit) 

 

erg/Oe = emu 

 



 
 

Fig. The magnetic field is applied along the z axis. (a) Spin–up state z . The spin 

magnetic moment is antiparallel to the magnetic field. The Zeeman energy is +BB. (b) Spin-down 

state z . The spin magnetic moment is parallel to the magnetic field. The Zeeman energy 

is -BB. 

 

(i) The magnetic moment antiparallel to B. Note that the spin state is given by an up-state, 

 

z . 

 

The energy of electron is given by 

 

BBk   , 

 

with 22 )2/( kmk ℏ . The density of state for the spin-up state (the down-state of the magnetic 

moment) is 
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The factor 1/2 comes from the fact that )(D  is the density of states per spin. Then we have 
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(ii) The magnetic moment parallel to B. Note that the spin state is given by 

 

z . 

 

The energy of electron is given by 

 

BBk   , 

 

The density of state for the spin down-state (the up-sate of the magnetic moment) is 
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Then we have 
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Fig. Density of states for the Pauli paramagnetism of free electron. Left: (D+() for the 

z , the direction of the spin magnetic moment is parallel to that of magnetic 

field). Right: (D-() for z ; the direction of the spin magnetic moment is 

antiparallel to that of magnetic field).  

 



 
 

Fig. Spin 1/2 Fermi-Dirac gas at T = 0 K. The right-hand half of the figure gives the density of 

states for the spin up state (magnetic moment down state), whereas the right-hand half is 

for spin down state (magnetic moment up state). The dotted curve shows the density of 

states at B = 0, and the blue full curve when the field B is applied. Only a small number of 

the spins close to the Fermi energy (indicated by the green region) are able to realign when 

B is applied. So that the Fermi energy of the right side region becomes equal to that of the 

left-side region. Most of the spins are unable to align because there are no available empty 

states. The only spins which realign in the field are those in the green shaded states, 
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Each of these electrons has its spin reversed (i.e., changed by B2 ), giving a total 

magnetization of )()(
2

1
2

2

FBFBB BDDBM   . This is independent of T in the 

degenerate region. 

 

 

The magnetic moment M is expressed by 
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Here we use the relation;  
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The susceptibility (M/B) thus obtained is called the Pauli paramagnetism. 
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((Sommerfeld formula)) 
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where 
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The magnetization is 
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The Pauli susceptibility is 
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For the free electron Fermi gas model, we have 
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Experimentally we measure the susceptibility per mol, p (emu/mol) 
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whereB
2NA = 3.23278×10-5 (emu eV/mol) and DA(F) [1/(eV atom)] is the density of states per 

unit energy per atom. Since 
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we have the following relation between P (emu/mol) and  (mJ/mol K2), 
 

 51037148.1 P . 

 
((Exampl-1)) Rb atom has one conduction electron. 

 

 = 2.41 mJ/mol K2, 

P = (1.37x10-5)×2.41 (emu/mol) 

1 mol = 85.468 g 

P =0.386×10-6 emu/g (calculation) 
 

((Exampl-2)) K atom has one conduction electron. 
 

 = 2.08 mJ/mol K2, 

P = (1.37x10-5)×2.08 (emu/mol) 
1 mol = 39.098 g 

P =0.72x10-6 emu/g (calculation) 
 

((Exampl-3)) Na atom has one conduction electron. 
 

 = 1.38 mJ/mol K2, 

P = (1.37x10-5)×1.38 (emu/mol) 
1 mol = 29.98977 g 

P =0.8224x10-6 emu/g (calculation) 
 

The susceptibility of the conduction electron is given by 

 

3/23/ PPPLP   , 

 

where L is the Landau diamagnetic susceptibility due to the orbital motion of conduction electrons. 



Using the calculated Pauli susceptibility we can calculate the total susceptibility: 
 

Rb:  = 0.386×(2/3)×10-6 = 0.26×10-6 emu/g 

K:  = 0.72×(2/3)×10-6 = 0.48×10-6 emu/g 

Na:  = 0.822×(2/3)×10-6 = 0.55×10-6 emu/g 
 

These values of  are in good agreement with the experimental results.6 
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