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Abstract 

In studying the magnetic properties of any ionic solid, it is important to know what 
kind of magnetic ions are present and how they are situated in the lattice. The magnetic 
properties of a given ion are usually profoundly influenced by the electric fields of 
neighboring ions. In general, the energy level diagram of the ion consists of a low-lying 
group, with an overall spacing of probably less than typically 1 cm-1, and a large gap to the 
next set of levels. From general perturbation theory considerations, considerable mixing of 
the low-lying states must be expected, but admixture of the higher excited states are likely 
to be small and can be neglected. Then it is a good approximation to assume that the ion 
only has the low-lying states. This is the spin Hamiltonian approximation- to replace the 
Hamiltonian of the ion, with all its states, by another Hamiltonian which accurately 
describes only the low-lying states. It is valuable to recognize that the spin Hamiltonian 
does two distinct things. It first provides a means of setting down in a compact way, the 
results of many measurements, all of which can be retrieved by suitable manipulations. It 
also provides a starting (or end) point for a detailed theoretical discussion of the ion in its 
environment. 

In this note, a spin Hamiltonian, which first appears in the work of Van Vleck,1 is 
introduced. A mass of experimental information can be summed up succinctly in a spin 
Hamiltonian in just the way that the theoretician finds most acceptable, and the 
experimentalists reasonably comprehensible. If there are n states, the matrix representation 
of the spin Hamiltonian, using any axis of quantization, will be a finite Hermitian (n x n) 
matrix. Its matrix elements will depends on the magnitude and direction of the magnetic 
field and on the axis of quantization.  

In this note, we use the Mathematica to obtain the calculations of expansion of the 
crystal field, 2p and 3d wavefunctions, the matrix elements over the wavefunctions, 
eigenvalue problems based on the quantum mechanics. These procedures make it much 
easier for students (who are not familiar with quantum mechanics) to understand the 
essential point of magnetism. We show how to derive the eigenvalue problems for the spin 
Hamiltonian of the magnetic ions in the crystal field. It is sometime complicated for the 
system having many electrons. We note that there are many excellent textbooks on the 
magnetism, including White2 (Quantum Theory of Magnetism), Kittel3 (Introduction to 
Solid State Physics), and Yosida4 (Theory of Magnetism). Students in Japan study 
magnetism using famous textbook of Kanamori5 (Magnetism), and Date6 (Electron Spin 
Resonance). These books are written in Japanese. 

One of the authors (MS) has been studying the magnetic properties of quasi two-
dimensional magnetic systems such as Rb2CoF4, stage-2 CoCl2-, NiCl2-, CrCl3-, MnCl2-, 
FeCl3-, and CuCl2- graphite intercalation compounds (GIC’s) using SQUID magnetometer 
and magnetic neutron scattering since 1977. This note is written from a view point of 
experimentalist, rather than theorists. 
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Note: 1 meV = 11.6045 K = 8.06548 cm-1 = 0.241797 THz 
 
1. Introduction: a brief history on the modern magnetism 

Magnetism is inseparable from quantum mechanics, for a strictly classical system in 
thermal equilibrium can display no magnetic moment, even in a magnetic field (Kittel3). 
The magnetism is essentially the quantum phenomenon and is a property, reflecting the 
feature of quantum mechanics. In his talk titled the quantum mechanics, key to 
understanding magnetism (the Nobel lecture, December 8, 1977), Van Vleck1 pointed out 
that modern theories of magnetism have roots in two distinct traditions of theoretical 
developments. The first outstanding early attempt to understand magnetism at the atomic 
level was provided by the semi-empirical theories of Langevin and Weiss. These theories 
were able to explain experimental results on the magnetic properties of materials. Langevin 
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assumed that an atomic or molecular magnet carries a permanent magnetic moment. He 
was quantizing the system without realizing it. If one applies classical dynamics and 
statistical mechanics consistently, one finds that the diamagnetic and paramagnetic 
contributions to the magnetic susceptibility exactly cancel. Thus there should be no 
magnetism. The break-through in understanding of magnetic phenomena at the atomic 
level occurred in 1913, when Niels Bohr introduced the significant concept of the 
quantization of the orbital angular momentum, as a part of his remarkable theory of the 
hydrogen spectrum. The quantization of electron orbits implied the existence of an 
elementary magnetic moment, the Bohr magneton. In 1922, Stern and Gerlach 
experimentally verified the quantized orbital angular momentum and hence the orbital 
magnetic moment. 

The advent of quantum mechanics in 1926 furnished at last the key to the quantitative 
understanding of magnetism, (i) the discovery of the matrix form of quantum mechanics 
by Heisenberg and Born, (ii) the alternative but equivalent wave mechanical form by de 
Broglie and Schrödinger, and (iii) the introduction of electron spin by Uhlenbeck and 
Goulsmit. A quantum mechanics without spin and the Pauli’s exclusion principle would 
not  have been able to understand even the structure of the periodic table or most magnetic 
phenomena. Originally spin was a sort of the appendage to the mathematical framework, 
but in 1928, Dirac synthesized everything in his remarkable four first order simultaneous 
equations which is relativistically invariant under the Lorentz transformation. The electron 
spin and the factor of two came naturally out of the calculation. In 1928, Heisenberg has 
shown how the previously obscure Weiss molecular field could be attributed to a quantum 
mechanical exchange effect, arising from the Pauli’s exclusion principle that no two 
electrons occupy the same state. The forces of interaction between neighboring atoms give 
rise to a exchange coupling between unpaired spinning electron. This leads to a scalar 
isotropic interaction of two spins with an exchange interaction constant (see the book 
written by Hoddeson et al.7, “Out of the Crystal Maze” for more detail of the above review). 

In the early 1930’s there appeared two major textbooks devoted to the topics of 
magnetism, Van Vleck’s Theory of Electric and Magnetic Susceptibilities (1932)8 and 
Stoner’s Magnetism and Matter (1934).9 These are considered to be the best classic texts 
in modern magnetism.  
 
John H. Van Vleck (born March 13, 1899, Middletown, Connecticut, died Oct. 27, 1980, 
Cambridge, Massachusetts.) American physicist and mathematician who shared the Nobel 
Prize for Physics in 1977 with Philip W. Anderson and Nevill F. Mott. The prize honoured 
Van Vleck's contributions to the understanding of the behavior of electrons in magnetic, 
non-crystalline solid materials. Educated at the University of Wisconsin, Madison, and at 
Harvard University, where he received his Ph.D. in 1922, He developed during the early 
1930s the first fully articulated quantum mechanical theory of magnetism. Later he was a 
chief architect of the ligand field theory of molecular bonding.  
 
2. Fundamentals 

A. Angular momentum and magnetic momentum of one electron 
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Fig.1 Orbital (circular) motion of electron with mass m and a charge –e. The 

direction of orbital angular momentum L is perpendicular to the plane of 
the motion (x-y plane). 

 
The orbital angular momentum of an electron (charge –e and mass m) L is defined by 

 
)( vrprL m , or mvrLz  . (2.1) 

 
According to the de Broglie relation, we have 
 

nhr
h

rp  


 2)2( , (2.2) 

 

where p (= mv) is the momentum (

h

p  ), n is integer, h is the Planck constant, and  is 

the wavelength.  
 

 
Fig.2 Acceptable wave on the ring (circular orbit). The circumference should 

be equal to the integer n (=1, 2, 3,…) times the de Broglie wavelength . 
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The picture of fitting the de Broglie waves onto a circle makes clear the 
reason why the orbital angular momentum is quantized. Only integral 
numbers of wavelengths can be fitted. Otherwise, there would be 
destructive interference between waves on successive cycles of the ring. 

 
Then the angular momentum Lz is described by 
 

ℏn
nh

mvrprLz 
2

. (2.3) 

 
The magnetic moment of the electron is given by 
 

AI
c

z 
1

 , (2.4) 

 
where c is the velocity of light, A = r2 is the are of the electron orbit, and I is the current 
due to the circular motion of the electron. Note that the direction of the current is opposite 
to that of the velocity because of the negative charge of the electron. The current I is given 
by 
 

r

ev

vr

e

T

e
I

 2)/2(
 , (2.5) 

 
where T is the period of the circular motion. Then the magnetic moment is derived as 
 

z
Bz

zz L
L

mc

e
L

mc

e

c

evr
AI

c ℏℏ

ℏ 
  

222

1
 (e > 0), (2.6) 

 

where B (=
mc

e

2

ℏ
) is the Bohr magneton. B = 9.27400915 x 10-21 emu. emu=erg/Oe. Since 

ℏnL z , the magnitude of orbital magnetic moment is nB. 

The spin magnetic moment is given by 
 

Sμ
ℏ

B
S

2
 , (2.7) 

 
where S is the spin angular momentum. 
In quantum mechanics, the above equation is described by 
 

SB ˆ2
ˆ

ℏ


  , (2.8) 
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using operators (Dirac). When ̂
2

ˆ ℏ
S , we have  ˆˆ

B . The spin angular momentum 

is described by the Pauli matrices (operators) 
 

xxS ̂
2

ˆ ℏ
 , yyS ̂

2
ˆ ℏ

 zzS ̂
2

ˆ ℏ
 . (2.9) 

 
Using the basis, 
 











0

1
, 










1

0
. (2.10) 

 
we have 
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10
ˆ

x , 






 


0

0
ˆ

i

i
y , 












10

01
ˆ

z . (2.11) 

 
The commutation relations are valid; 
 

zyx i ˆ2]ˆ,ˆ[  , xzy i ˆ2]ˆ,ˆ[  , yxz i ˆ2]ˆ,ˆ[  . (2.12) 

 
The resultant magnetic moment of an electron is given by 
 

)2( SLμ 
ℏ

B
. (2.13) 

 
B. Periodic table of iron group elements 

The Pauli principle produces any two electrons being in the same state (i.e., having the 
set of (n, l, ml, ms). 
 
For fixed n, l = n-1, n-2, …, 2, 1 

ml = l, l-1, …., -l (2l +1). 
Therefore there are n2 states for a given n. 
 

 

  
 
There are two values for ms (= ±1/2). 
Thus, corresponding to any value of n, there are 2n2 states. 
 
K shell 

n l m   s  ms 
1 0 0   1/2  ±1/2  (1s)2 

‚
l=0

n−1H2 l+1L êêSimplify
n
2
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L shell 
n l m   s  ms 
2 0 0   1/2  ±1/2  (2s)2 
2 1 1,0,-1   1/2  ±1/2  (2p)6 

M shell 
n l m   s  ms 
3 0 0   1/2  ±1/2  (3s)2 
3 1 1,0,-1   1/2  ±1/2  (3p)6 
3 2 2,1,0,-1,-2  1/2  ±1/2  (3d)10 

N shell 
n l m   s  ms 
4 0 0   1/2  ±1/2  (4s)2 
4 1 1,0,-1   1/2  ±1/2  (4p)6 
4 2 2,1,0,-1,-2  1/2  ±1/2  (4d)10 
4 3 3,2,1,0,-1,-2,-3 1/2  ±1/2  (4f)14 

 
(1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)10|(4s)2(4p)6(4d)10(4f)14|(5s)2(5p)6 ((5d)10…. 
 
Iron-group elements: 
 

Ti3+, V4+ (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)1 
V3+  (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)2 
Cr3+, V2+ (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)3 
Cr2+, Mn3+ (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)4 
Mn2+, Fe3+ (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)5 
Fe2+  (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)6 
Co2+  (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)7 
Ni2+  (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)8 
Cu2+  (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)9 

 
Atoms with filled n shells have a total angular momentum and a total spin of zero. 
Electrons exterior these closed shells are called valence electrons. 
 
C. Magnetic moment of atom 

We consider an isolated atom with incomplete shell of electrons. The orbital angular 
momentum L and spin angular momentum S are given by 
 

...321  LLLL , ...321  SSSS  (2.14) 

 
The total angular momentum J is defined by 
 

SLJ  . (2.15) 
 
The total magnetic moment  is given by 
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)2( SLμ 
ℏ

B
. (2.16) 

 
The Landé g-factor is defined by 
 

Jμ
ℏ

BJ
J

g 
 , (2.17) 

 
where  

 
Fig.3 Basic classical vector model of orbital angular momentum (L), spin 

angular momentum (S), orbital magnetic moment (L), and spin magnetic 
moment (S). J (= L + S) is the total angular momentum. J is the 
component of the total magnetic moment (L + S) along the direction (-
J).  

 
Suppose that 
 

 LJL a  (2.18a) 

 

 SJS b   (2.19b) 

 
where a and b are constants, and the vectors S  and L  are perpendicular to J. 

Here we have the relation 1 ba , and 0  SL . The values of a and b are determined 

as follows. 
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2
J

LJ 
a , 

2
J

SJ 
b . (2.19) 

 
Here we note that 
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, (2.20) 

 
or 
 

)]1()1()1([
22

2222




 SSLLJJ
ℏSLJ

SJ , (2.21) 

 
using the average in quantum mechanics. The total magnetic moment  is 
 

)]2()2[()2(   SLbaBB JSLμ
ℏℏ


. (2.22) 

 
Thus we have 
 

JJJμ
ℏℏℏ

BJBB
J

g
bba


 )1()2( , (2.23) 

 
with 
 

)1(2

)1()1(

2

3
11

2 






JJ

LLSS
bg J

J

SJ
. (2.24) 

 

((Note)) 

The spin component is given by 
 

  SJSJS )1( Jgb , (2.25) 

 
with 1 Jgb . The de Gennes factor is defined by 

 

)1()1(
)1( 2

2

22




JJg
g

J
J

ℏ

J
. (2.26) 
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In ions with strong spin-orbit coupling the spin is not a good quantum number, but rather 
the total angular momentum , J = L+S. The spin operator is described by 
 

JS )1(  Jg . (2.27) 

 
D. Spin-orbit interaction in an electron around the nucleus 

The electron has an orbital motion around the nucleus. This also implies that the 
nucleus has an orbital motion around the electron. The motion of nucleus produces an 
orbital current. From the Biot-Savart’s law, it generates a magnetic field on the electron. 
 

 
 

Fig.4 Simple model for the spin-orbit interaction. The orbital current due to the 
circular motion of the nucleus (with velocity vN and charge Ze) produces 
an magnetic field at the center where the electron is located. 

 
The current I due to the movement of nucleus (charge Ze, e>0) is given by 
 

NZeId vl  , (2.28) 

 

where Nv is the velocity of the nucleus and N
dt

d
v

l
 . Note that 

 

NZe
dt

d
qd

t

q
Id v

l
ll 




 . (2.29) 

 
The effective magnetic field at the electron at the origin is 
 

3

1

1

r

d

c

I
eff

rl
B


 , ev vN  , (2.30) 

 
where v is the velocity of the electron. Then we have 
 

3

1

1
3

1

1

r

v

c

Ze

rc

Ze N
eff

rerv
B





  . (2.31) 
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Since rr 1 , effB can be rewritten as 

 

3

1

1
3

1

1

r

v

c

Ze

rc

Ze N
eff

rerv
B





  , (2.32) 

 
or 
 

z
zz

eff
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rc

Zev
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rc
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B
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  . (2.33) 

 
The Coulomb potential energy is given by 
 

Vc(r)  
Ze2

r
, 

dVc(r)

dr


Ze2

r
2 . (2.34) 

 
Thus we have 
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or 
 

zz
c

eff L
dr

rdV

rmce
eB

)(11
 , (2.36) 

 
where Lz is the z-component of the orbital angular momentum, mvrLz  . 

The spin magnetic moment is given by 
 

Sμ
ℏ

B
s




2
. (2.37) 

 
The Zeeman energy is given by 
 

)(
)(1

2

1

)(112

2

1

2

1

22
LSLS

LS

Bμ

















 





dr

rdV

rcm

dr

rdV

rmce

H

c

cB

effsLS

ℏ
 

 (2.38) 



13 
 

 
((Thomas correction)) 

Thomas factor 1/2, which represents an additional relativistic effect due to the acceleration 
of the electron. The electron spin, magnetic moment, and spin-orbit interaction can be 
derived directly from the Dirac relativistic electron theory. The Thomas factor is built in 
the expression. 
 

LS  LSH , (2.39) 

 
with 
 

av

c

rmc

e
Z

dr

rdV

rcm 3

2

22

1

2

1)(1

2

1







 . (2.40) 

 
When we use the formula 
 

)1)(2/1(3
0

4

3
3




lllan

Z
r , (2.41) 

 
the spin-orbit interaction constant  is described by 
 

)1)(2/1(2)1)(2/1(2 642

48

3
0

422
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lllnc

Zme

lllancm

Ze

ℏ
 , (2.42) 

 
where 
 

2

2

0
me

a
ℏ

  = 0.52917720859 Å. (2.43) 

 
(Bohr radius, from NIST physics constants) 

 
The energy level (negative) is given by 
 

0
2

22

2
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2

2

22
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eZme
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Z
En 

ℏ
. (2.44) 

 

The ratio nE/2ℏ  is 

 

)1)(2/1(

1)(
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ℏ
, (2.45) 

 
with 
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e2

ℏc


1

137.037
. (2.46) 

 

((Note)) For l = 0 the spin-orbit interaction vanishes and therefore  = 0 in this case. 
 
3. Hund’s rule 

3.1.  Electron states in the atom 

For a given l, the number m takes 2l +1 values. The number s is restricted to only two 
values ±1/2. Hence there are altogether 2(2l+1) different states with the same n and l. There 
states are said to be equivalent.  

According to Pauli’s principle, there can be only one electron in each such state. Thus 
at most 2(2l+1) electrons in an atom can simultaneously have the same n and l. 
Hund’s rule is known concerning the relative position of levels with the same configuration 
but different L and S. 
 
Hund’first law 

(1) The maximum values of the total spin S allowed by the exclusion principle. 
Hund’s second law 

(2) The maximum values of the total orbital angular momentum L consistent with this 
value of S. 

Huns’s third law 

(i) SLJ   for less than half full (spin-orbit interaction, the discussion will be made 

later) 
(ii) SLJ   for more than half full (spin-orbit interaction). 

 
3.2. The electron configuration (3d)n (l = 2, n = 1 - 10) 

A d shell corresponds to l = 2, with five values of ml. Multiplying this by 2 for the spin 
states gives a total of 10. Then the configuration (3d)10 represents a full shell. It is non-
degenerate, and the state is 1S0. This is a general rule for a full shell. It follows because 
each of electrons must have a different pair of ml and ms values. 
 
(3d)1: Ti3+, V4+ 

2D3/2 (ground state) 

 L =2, S = 1/2, J = 3/2, 
 

Fig.5(a) Hund’s law for the (3d)1 electron configuration. 
 
 
(3d)2: V3+ 

3F2 
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 L =3, S = 1, J = 2, 
 

Fig.5(b) Hund’s law for the (3d)2 electron configuration. 
 
 
(3d)3: Cr3+, V2+ 

4F3/2 

 L =3, S = 3/2, J = 3/2, 
 
Fig.5(c) Hund’s law for the (3d)3 electron configuration. 
 
 
(3d)4: Cr2+, Mn3+ 

5D0 

 L = 2, S = 2, J = 0 
 

Fig.5(d) Hund’s law for the (3d)4 electron configuration. 
 
 
(3d)5: Fe3+, Mn2+ 

6S5/2 

 L = 0, S = 5/2, J = 5/2 
 

Fig.5(e) Hund’s law for the (3d)5 electron configuration. 
 
 
(3d)6: Fe2+ 

5D4 



16 
 

 L = 2, S = 2, J = 4 
 

Fig.5(f) Hund’s law for the (3d)6 electron configuration. 
 
 
(3d)7: Co2+ 

4F9/2 

 L = 3, S = 3/2, J = 9/2 
 
Fig.5(g) Hund’s law for the (3d)7 electron configuration. 
 
 
(3d)8: Ni2+ 

3F4 

 L = 3, S = 1, J = 4 
 
Fig.5(h) Hund’s law for the (3d)8 electron configuration. 
 
 
(3d)9: Cu2+ 

2D5/2 

 

 L = 2, S = 1/2, J = 5/2 
 
Fig.5(i) Hund’s law for the (3d)9 electron configuration. 
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(3d)9 
This configuration represents a set of electrons one short of a full shell. Since a full shell 
has zero angular momentum (both orbital and spin), it follows that if one electron is 
removed from a full shell, the spin angular momentum of the remainder are minus those of 
the one that was removed. So the L, S, and J values of remainder are the same as if there 
were only one electron in the shell. 
 
(3d)10 
A d shell corresponds to l = 2, with five values of ml. Multiplying this by two for the spin 
states gives 10. Thus the configuration (3d)10 represents a full shell. L = 0. S = 0. J = 0. 
 
3.3. Spin orbit interaction of isolated atom 

The total spin-orbit interaction is given by 
 

SLLS   
i

iiLSH , (3.1) 

 
where Si and Li are the spin and orbital angular momenta, respectively (Wigner-Eckart 
theorem). We take an average of both sides. 
 

SL

i

L

i

S

i MMmm   , (3.2) 

 
where ML = L, MS = S which are determined from the Hund rules (1) and (2). 
For simplicity, we now consider the ground state of the (3d)n electron configuration. 
 

    
L = 3, S = 3/2    L = 3, S = 3/2 

 

 
Fig.6  Hund’s law for (3d)3 and (3d)7 electron configurations. 
 
The value of J can have J = L+S, L+S-1,….., |L-S|. 
When > 0, the energy becomes low for the smallest value of J (= |L-S|) (antiparallel). 
When 0, the energy becomes low for the largest value of J (= L+S) (parallel). 
 
(1) Less than half case (n.< 2l+1) 
 

SLL  
2

1
, (3.3) 
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where S = n/2. Then we have 0
2


nS


 , which favors J = |L-S|. 

(2) More than half case (n.>2l+1) 
 

SLL   )
2

1
0

2

1
( ,or 0

)12(2





nl


 , (3.4) 

 
where 
 

2
)12(]12([

2

1
)12(

2

1 n
llnlS  .  

 
This condition favors J = L+S. The third Hund’ rule is a consequence of the sign of the 
spin-orbit interaction. 
 
4. Crystal field 

4.1 Overview 

Rare-earth: The 4f shell responsible for paramagnetism lies deep inside the ions, within 
the 5s and 5p shells. J is a good quantum number. (L-S coupling>> crystal field). 

Iron group: The 3d shell responsible for paramagnetism is the outermost shell. The 3d 
shell experiences the intense inhomogeneous electric field produced by neighboring ions. 
The inhomogeneous electric field is called the crystal field. (Crystal fiel>>L-S coupling). 

Two major effect of the crystal field 
(i) The coupling of L and S is largely broken up. So that the states are no longer specified 

by their J values. 
(2L+1)(2S+1) degeneracy→orbital splitting due to the crystal field (degeneracy 
2S+1)→L-S coupling 

(ii) 2L+1 sublevels belonging to a given L, which are degenerate in the free ion may now 
be split by the crystal field. The quenching of the orbital angular momentum. 

(2J+1) degeneracy (Hund’s rules)→L-S coupling→crystal field. 
 

We note that there are many excellent textbooks,10,14 review articles,15 and original 
papers16,17 on the ligand field theory, including Griffiths (The Theory of Transition-Metal 
Ions),10 Abraham and Bleaney (Electron Paramagnetic Resonance of Transition Ions),11 
Sugano et al. (Multiplets of Transition-Metal Ions in Crystals),12 Inui et al. (Group Theory 
and Its Applications in Physics),13 and Ballhausen (Introduction to Ligand Field Theory).14 
 
4.2 Series expansion of the crystal field 

Ions M at the origin (0, 0, 0) are surrounded by six negative ions X with charge –Ze (e > 
0), which are located on the x-, y-, and z-axes at the coordinates (±a, 0, 0), (0, ±b, 0), and 
(0, 0, ±c), where a, b, and c are distances.  
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Fig.7 Crystal structure of octahedral and tetragonal structures. A magnetic ion 
(red solid circle) with one electron (a charge –e) is located at the origin. 
Six ions (open circles, each ion has a –Ze charges) are located on the x-, 
y-, and z-axes at the coordinates (± a, 0, 0), (0, ± b, 0), and (0, 0, ± c), 
where a, b, and c are distances. a = b = c for the octahedral structure. a = 
b ≠ c for the tetragonal structure. 

 
We consider an electrostatic potential energy of an electron (a charge –e, typically 2p, 3d, 
or 4f electrons) of the M ion, due to the Coulomb field (ligand), defined by 
 































222222222

222222222

2

)(

1

)(

1

)(

1

)(

1

)(

1

)(

1
)(

czyxczyxzbyx

zbyxzyaxzyax
ZeV r

 

 (4.1) 
 
where a = b = c for the orthorhombic (cubic) field and a = b (≠ c) for the tetragonal field.  
 
4.3 Mathematica program 

We use the Mathematica to expand V(r) around the origin in terms of the powers xpyqzr 
with the maximum of p + q + r = n 
 

(i) n = 2 for the 2p electrons. 
 

(ii) n = 4 for the 3d electrons,  
 

(iii) n = 6 for the 4f electrons. 
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Expansion of the Crystal field 

Orthorhombic, orthogonal, tetragonal

Clear @"Global` ∗"D;
Vc =

1

Hx − aL2 + y2 + z2
+

1

Hx + aL2 + y2 + z2
+

1

Hy − bL2 + x2 + z2
+

1

Hy + bL2 +x2 + z2
+

1

Hz − cL2 + y2 + x2
+

1

Hz +cL2 + y2 + x2

1

H−a + xL2 + y2 + z2
+

1

Ha + xL2 +y2 + z2
+

1

x2 + H−b + yL2 + z2
+

1

x2 + Hb + yL2 + z2
+

1

x2 +y2 + H−c + zL2

+
1

x2 + y2 + Hc +zL2

h@α_, β_D := If@0 ≤ α ≤ β, 1, 0D;
General case (the highest order=4)

eq1 =

Series @Vc, 8x, 0, 4<, 8y, 0, 4<, 8z, 0, 4<D êê
FullSimplify @	, 8a > 0, b > 0, c > 0<D & êê Normal êê Expand ;

eq12 = Sum Axp yq zr Coefficient Ax y z eq1, xp+1 yq+1 zr+1 E
h@p + q + r, 4D , 8p, 0, 4<, 8q, 0, 4<, 8r, 0, 4<E

2

a
+
2

b
+
2

c
+
1

2
K 4

a3
−
2

b3
−

2

c3
O x2 +

1

24
K48
a5

+
18

b5
+
18

c5
O x4 +

1

2
K−

2

a3
+

4

b3
−

2

c3
O y2 +

1

4
K−

24

a5
−
24

b5
+
6

c5
O x2 y2 +

1

24
K18
a5

+
48

b5
+
18

c5
O y4 +

1

2
K−

2

a3
−
2

b3
+
4

c3
O z2 +

1

4
K−

24

a5
+

6

b5
−
24

c5
O x2 z2 +

1

4
K 6

a5
−
24

b5
−
24

c5
Oy2 z2 +

1

24
K18
a5

+
18

b5
+
48

c5
O z4

The crystal field of the d electrons

The case of  a = b = c (orthorhombic (cubic))

eq2 = eq12 ê. 8b → a, c → a< êê Expand

6

a
+
7 x4

2 a5
−
21 x2 y2

2 a5
+
7 y4

2 a5
−
21 x2 z2

2 a5
−
21 y2 z2

2 a5
+
7 z4

2 a5
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This can be written as

eq3 =
6

a
+

35

4 a5
Kx4 + y4 + z4 −

3

5
Ix2 + y2 + z2M2O êê Expand

6

a
+
7 x4

2 a5
−
21 x2 y2

2 a5
+
7 y4

2 a5
−
21 x2 z2

2 a5
−
21 y2 z2

2 a5
+
7 z4

2 a5

eq2 − eq3 êê Simplify

0

The case of a = b but not equal to c (tetragonal)

eq4 = eq12 ê. 8b → a< êê Expand
4

a
+
2

c
+
x2

a3
−
x2

c3
+
11 x4

4 a5
+
3 x4

4 c5
+
y2

a3
−
y2

c3
−
12 x2 y2

a5
+
3 x2 y2

2 c5
+
11 y4

4 a5
+

3 y4

4 c5
−
2 z2

a3
+
2 z2

c3
−
9 x2 z2

2 a5
−
6 x2 z2

c5
−
9 y2 z2

2 a5
−
6 y2 z2

c5
+
3 z4

2 a5
+
2 z4

c5

This  can be written as 

eq5 =
4

a
+
2

c
+K 1

a3
−
1

c3
OIx2 + y2 − 2 z2M +

20

4 a5
+

15

4 c5
O Ix4 + y4 + z4M −

5

4 a5
−

5

4 c5
O Iz4 + 6 x2 y2M −

9

4 a5
+

12

4 c5
OIx2 + y2 + z2M2 êê Expand

4

a
+
2

c
+
x2

a3
−
x2

c3
+
11 x4

4 a5
+
3 x4

4 c5
+
y2

a3
−
y2

c3
−
12 x2 y2

a5
+
3 x2 y2

2 c5
+
11 y4

4 a5
+

3 y4

4 c5
−
2 z2

a3
+
2 z2

c3
−
9 x2 z2

2 a5
−
6 x2 z2

c5
−
9 y2 z2

2 a5
−
6 y2 z2

c5
+
3 z4

2 a5
+
2 z4

c5

eq4 − eq5 êê Simplify

0

Crystal field for the p electrobns (the highest order = 2)

a, b and c are different.

eq13 = Sum Axp yq zr Coefficient Ax y z eq1, xp+1 yq+1 zr+1 E
h@p + q + r, 2D , 8p, 0, 4<, 8q, 0, 4<, 8r, 0, 4<E

2

a
+
2

b
+
2

c
+
1

2
K 4

a3
−
2

b3
−

2

c3
O x2 +

1

2
K−

2

a3
+

4

b3
−

2

c3
O y2 +

1

2
K−

2

a3
−

2

b3
+

4

c3
O z2

A1 = Coefficient Aeq13 , x2E; B1 = Coefficient Aeq13 , y2E;
C1 = Coefficient Aeq13 , z2E;
A1 + B1 + C1 êê Simplify

0
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Then we have the expansion of the crystal field with n = 4 for 3d electron.  
 
(i) Potential in the case of different a, b, and c 
 

Crystal field for the f electrobns (the highest order = 6)

eq6 =

Series @Vc, 8x, 0, 6<, 8y, 0, 6<, 8z, 0, 6<D êê
FullSimplify @	, 8a > 0, b > 0, c > 0<D & êê Normal êê Expand ;

eq61 = Sum Axp yq zr Coefficient Ax y z eq6, xp+1 yq+1 zr+1 E
h@p + q + r, 6D , 8p, 0, 6<, 8q, 0, 6<, 8r, 0, 6<E

2

a
+
2

b
+
2

c
+
1

2
K 4

a3
−

2

b3
−

2

c3
O x2 +

1

24
K48
a5

+
18

b5
+
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c5
O x4 +

1

720
K1440

a7
−
450

b7
−
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c7
O x6 +

1

2
K−

2

a3
+
4

b3
−

2

c3
O y2 +

1

4
K−

24

a5
−
24

b5
+
6
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O x2 y2 +

1

48
K−

720

a7
+
540

b7
−
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c7
O x4 y2 +

1

24
K18
a5

+
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b5
+
18
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O y4 +

1
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K540
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−
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−
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O x2 y4 +

1
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K−

450

a7
+
1440

b7
−
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O y6 +

1

2
K−

2

a3
−
2

b3
+

4
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O z2 +

1

4
K−

24

a5
+
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b5
−
24
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O x2 z2 +

1

48
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720

a7
−
90

b7
+
540

c7
O x4 z2 +

1

4
K 6
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−
24

b5
−
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c5
O y2 z2 +

1

8
K180
a7

+
180

b7
+
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c7
O x2 y2 z2 +

1

48
K−

90
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−
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b7
+
540

c7
O y4 z2 +

1

24
K18
a5

+
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b5
+
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c5
O z4 +

1

48
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−
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−
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K−
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+
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−
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c7
O y2 z4 +

1

720
K−

450

a7
−
450

b7
+
1440

c7
O z6

Octahedral case (a=b=c)

eq7 = eq61 ê. 8b → a, c → a<
6

a
+
7 x4

2 a5
+
3 x6

4 a7
−
21 x2 y2

2 a5
−
45 x4 y2

8 a7
+
7 y4

2 a5
−

45 x2 y4

8 a7
+
3 y6

4 a7
−
21 x2 z2

2 a5
−
45 x4 z2

8 a7
−
21 y2 z2

2 a5
+

135 x2 y2 z2

2 a7
−
45 y4 z2

8 a7
+
7 z4

2 a5
−
45 x2 z4

8 a7
−
45 y2 z4

8 a7
+
3 z6

4 a7
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 (4.2) 
 
(ii) Potential in the case of a = b, but c being different from a and b (tetragonal field) 
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(
4
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222
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 . (4.3) 

 
where 
 

2222 zyxr  . 

 
(iii) Potential in the case of a = b = c (orthorhombic field) 
 

)](
2

21
)(

2

76
[)( 222222

5
444

5
2 xzzyyx

a
zyx

aa
ZeV r , (4.4) 

 
or 
 

)]
5

3
(

4

356
[)( 4444

5
2 rzyx

aa
ZeV r . (4.5) 

 
5. p-electrons: quenching of the orbital angular momentum 

5.1. 2p-electron wave functions 

Frequently, the lowest orbital level, when split by a crystal field, is a singlet. Because 
of the large splitting, this is usually the only level populated. The orbital momentum is then 
said to be quenched, since it will make no contribution to the magnetic moment when a 
field is applied. 

We now a simple model of quenching of the orbital angular momentum due to the 
crystal field. The electron configuration is given by 1s22s22p1 (1s22s2 has a closed shell). 
According to the Hund’s law, we have L = 1 (degeneracy = 2 L+1 = 3), S = 1/2 (degeneracy 
= 2S + 1 = 2). Then the total degeneracy is (2L+1)(2S+1) = 2 x 3=6. There is one p-electron. 
Suppose that this ion is surrounded by 6 negative ions located at )0,0,( a , )0,,0( b , and 

),0,0( c  with a>b>c>. There are three wave functions: xp , yp , and zp  given by 
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)(     ,)(     ,)( rzfpryfprxfp zyx  rrr , (5.1) 

 
with 
 

0 xzzyyx pppppp . (5.2) 

 

        
 

Fig.8 Angular parts of the wavefunctions for (1) 2px, (2) 2py, and (3) 2pz 
 
 
n = 2, l = 1 (2p electron) 
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with the radial wave function given by 
 

2/5

0

021

)
2

exp(

24

1)(3

2

1
)(

a

a

r

r

rR
rf





. (5.6) 

 
The energy is split because of the crystal field due to negative ions. 123 WWW  , because 

of Coulomb repulsion. Since c<a<b, one can find the longest Coulomb repulsion between 
negative ions and electron, for the z-axis, for y-axis, and for the x axis, in order. 
 
5.2 2p electron in the octahedral field 

The effect of negative ions is expressed by a static potential )(rV  satisfying the 

Laplace equation; 0)(2  rV . This )(rV is called the crystal field. Since )()( rr VV  , 

)(rV for the 2p electrons (n = 2) can be approximated as 

 
222 )()( zBAByAxV r , (5.7) 

 
where A>B>0 (see the above discussion for the derivation).  
 

BA
cba

Ze
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 (5.8) 

 

V(r) satisfies the Laplace equation; 0)(222)(2  BABAV r  

The matrix elements are calculated as (see the Mathematica) 
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. (5.9) 

 
Note that 
 

... ,0ˆ     ,0ˆ     ,0ˆ  zyzxyx pVppVppVp , (5.10) 

 
The perturbation theory (quantum mechanics) can be applied to the ground states which 
are orbital-triplet states. As a result of the perturbation, these states are split into non-

degenerate orbital-singlet states. Then the matrix of V̂  under the basis of{ },,{ zyx ppp  

is diagonal,  such that 
 


































3

2

1

00

00

00

ˆˆˆ

ˆˆˆ

ˆˆˆ

W

W

W

pVppVppVp

pVppVppVp

pVppVppVp

zzxzxz

zyyyxy

zxyxxx

. 

 
In other words, 
 

xx pWpV 1
ˆ  , yy pWpV 2

ˆ  , zz pWpV 2
ˆ   

 

where the eigenkets are xp  with eigenvalue W2, yp  with eigenvalue W2, and zp  with 

eigenvalue W3. If BA  , then 21 WW  . As we expect, the degenerate ground state is 

separated into three orbital-singlet states; eigenstate xp  with the energy W1, eigenstate 

yp  with the energy W2, and eigenstate zp  with the energy W3. 
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Fig.9  Schematic diagram of the energy splitting of 2p orbital under the tetragonal 
crystal field. 

 
5.3. Quenching of orbital angular momentum 

A. Orbital angular momentum (quantum mechanics) 

The matrix element of the orbital angular momentum can be calculated as follows, 
 

prL ˆˆˆ  . (5.13) 
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Then we have 
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Note that 
 

zzzyx

yyzyx
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. (5.17) 

 
The orbital angular momentum is zero (quenching of the orbital angular momentum). 
 
B. Calculation of orbital angular momentum by Mathematica 
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C. Theorem 

If the state   is not degenerate, then the wave function r  should be real. 

Suppose that 
 

)()()( rrrr igf  , (5.18) 

 
where f and g are real. 
 

)]()([)]()([)( rrrrr igfEigfHH  , (5.19) 

 
or 
 

)]()(

)()(

rr

rr

EgHg

EfHf




. (5.20) 

Orbital angular momentum of 2p electron

Lz :=
—

�
Hx D@	, yD − y D@	, xDL &;

Lx :=
—

�
Hy D@	, zD − z D@	, yDL &;

Ly :=
—

�
Hz D@	, xD − x D@	, zDL &

ψx = x fB x2 + y2 + z2 F; ψy = y fB x2 + y2 + z2 F;
ψz = z fB x2 + y2 + z2 F;
8Lz@ψxD, Lz@ψyD, Lz@ψzD< êê Simplify

:� y — fB x
2 + y

2 + z
2 F, −� x — fB x

2 + y
2 + z

2 F, 0>

8Lx@ψxD, Lx@ψyD, Lx@ψzD< êê Simplify

:0, � z — fB x
2 + y

2 + z
2 F, −� y — fB x

2 + y
2 + z

2 F>

8Ly@ψxD, Ly@ψyD, Ly@ψzD< êê Simplify

:−� z — fB x
2 + y

2 + z
2 F, 0, � x — fB x

2 + y
2 + z

2 F>
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In other words, f(r) and g(r) are the eigenfunctions. This is inconsistent with the above 
assumption. Then )(r  is real. 

 
)()(* rr   . (5.21) 

 
We consider the expectation  
 

)()(ˆ **
rLrrrLrrL    dd . (5.22) 

 

LrL
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i

i

ℏ

ℏ

*

 (5.23) 

 

 LrLrrrLrrL ˆ)]()([)()(ˆ **
  dd . (5.24) 

 
Since L is a physical quantity (observable), we have 
 

 LL ˆˆ *
 . (5.25) 

 
Then we have 
 

0ˆ  L  (the quenching of L). (5.26) 

 
For the orbital singlet 
 

0ˆ  L . (5.27) 

 
5.4. Zeeman splitting of the orbital energy levels 

The orbital magnetic moment is given by 
 

ℏ

L
μ

ˆ
ˆ

BL  . (5.28) 

 
The perturbation due to the Zeeman effect is described by 
 

z
B

BLZeeman L
H

H ˆ)
ˆ

(ˆˆ
ℏℏ


  H

L
Hμ . (5.29) 

 
The total perturbation is 
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z
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Zeemanldcrysralfie

L
H

zBAyBxA

HHH
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222
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. (5.30) 

 
where the potential energy is defined by 
 

222 ˆ)(ˆˆˆˆ zBAyBxAVH ldcrysralfie   

 
 
((Zeeman energy)) 
 
We assume that the new state is given by   with the energy eigenvalue E. 

 
Eigenvalue problem 
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or 
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. (5.32) 

 
The eigenvalues are obtained as 
 

3W , ]4)()[(
2

1 222
2121 HWWWW B  

 
 
5.5 Mathematica program: eigenvalue problem 

 

We calculate the above eigenvalue problem using the Mathematica. 
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Effect of the crystal field on the energy level  of the 2p electrons (n = 2, l = 1) wave functions

Clear@"Global`∗"D;
rwave@n_, �_, r_D :=

1

Hn + � L!

21+� a0−� −
3
2 �

−
r

a0 n n−� −2 r� Hn − � − 1L!

LaguerreLB−1 + n − � , 1 + 2 � ,
2 r

a0 n
F ;

ψpx =

rwave@2, 1, rD
−

1

2
SphericalHarmonicY@1, 1, θ, φD +

1

2
SphericalHarmonicY@1, −1, θ, φD êê

FullSimplify@	, φεRealsD &;

ψpy =

rwave@2, 1, rD
�

1

2
HSphericalHarmonicY@1, 1, θ, φD +

SphericalHarmonicY@1, −1, θ, φDL êê FullSimplify@	, φεRealsD &;

ψpz = rwave@2, 1, rD SphericalHarmonicY@1, 0, θ, φD êê Simplify;

rule1 = 8x → r Sin@θD Cos@φD, y → r Sin@θD Sin@φD, z → r Cos@θD<;
V = −A x2 − B y2 + HA + BL z2 ê. rule1 êê Simplify;
J@1, 1D = ψpx V ψpx; J@1, 2D = ψpx V ψpy; J@1, 3D = ψpx V ψpz;

J@2, 1D = ψpy V ψpx; J@2, 2D = ψpy V ψpy; J@2, 3D = ψpy V ψpz;

J@3, 1D = ψpz V ψpx; J@3, 2D = ψpz V ψpy;

J@3, 3D = ψpz V ψpz;

H1@p_, q_D :=

IntegrateAIntegrateAIntegrateA2 π r2 Sin@θD J@p, qD, 8φ, 0, 2 π<E,
8θ, 0, π<E, 8r, 0, ∞<E êê Simplify@	, Re@a0D > 0D &

H12 = Table@H1@p, qD, 8p, 1, 3<, 8q, 1, 3<D
99−24 A a0

2 π, 0, 0=, 90, −24 a02 B π, 0=, 90, 0, 24 a0
2 HA + BL π==

H12 êê TableForm

−24 A a02 π 0 0

0 −24 a02 B π 0

0 0 24 a0
2 HA + BL π

H13 = Eigensystem@H12D
99−24 A a0

2 π, −24 a02 B π, 24 a0
2 HA + BL π=,

881, 0, 0<, 80, 1, 0<, 80, 0, 1<<=
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Fig.10 Zeeman splitting of the energy level W1 and W2. We assume that a0 = 1, 

B = 1, A = 2 and B = 1. 

E1 = H13@@1, 2DD; E2 = H13@@1, 1DD; E3 = H13@@1, 3DD;
8E1, E2, E3< ê. 8A → 2, B → 1< êê N

9−75.3982 a02, −150.796 a02, 226.195 a0
2=

Zeeman effect

We consider the eigen value problem

A={{W1,-Â mB H,0},{Â mB H, W2,0},{0,0,W3}}

HH = 88W1, −� µB H, 0<, 8� µB H, W2, 0<, 80, 0, W3<<
88W1, −� H µB, 0<, 8� H µB, W2, 0<, 80, 0, W3<<
HH êê MatrixForm

W1 −� H µB 0

� H µB W2 0

0 0 W3

eq1 = Eigenvalues@HHD
:W3, 1

2
KW1 + W2 − W1

2 − 2 W1 W2 + W2
2 + 4 H

2 µB2 O,
1

2
KW1 + W2 + W1

2 − 2 W1 W2 + W2
2 + 4 H

2 µB2 O>
rule2 = 8W1 → E1, W2 → E2, W3 → E3<;
rule3 = 8µB → 1, A → 2, B → 1 , a0 → 1<;
W11 = eq1@@2DD ê. rule2 ê. rule3 êê N;

W22 = eq1@@3DD ê. rule2 ê. rule3 êê N;

W33 = eq1@@1DD ê. rule2 ê. rule3 êê N;

Plot@Evaluate@8W11, W22, W33< ê. a0 → 1D, 8H, 0, 100<,
PlotStyle → 88Hue@0D, Thick<, 8Hue@0.4D, Thick<, 8Hue@0.8D, Thick<<,
Prolog → AbsoluteThickness@1.5D, PlotPoints → 100,

Background → GrayLevel@0.7D, AxesLabel → 8"H", "Energy"<D

20 40 60 80 100
H

-200

-100

100

200

Energy
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6. 3d-electrons in the crystal field 

6.1. 3d-electron wave functions 

We now consider the origin of the splitting of the orbital levels by the crystal field. 
Suppose that an ion with only one 3d electron (n = 3 and l = 2). It forms wave functions 
made up of certain combinations of the 3d hydrogen wave functions. The linear 
combinations we choose are 
 

),(

)],(),([
2

1

)],(),([
2

1

)],(),([
2

1

)],(),([
2

1

0
23

2
2

2
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, (6.1) 

 
or 

0,2

]2,22,2[
2

1

]1,21,2[
2

1

]1,21,2[
2

1

]2,22,2[
2

1

22

22

35
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i

mlmli











. (6.2) 

 
Note that the notation of the spherical harmonics used here is the same as that used in the 
Mathematica.  
 

((Mathematica)) Spherical harmonics ),( m

lY  
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Table 1 Spherical harmonics {l, m, ),( m

lY }. l = 2. m = 2, 1, 0, -1, -2. 

 
The radial part of the wave function (n = 3 and l = 2) is given by 
 

)
3

exp(
81

1

15

2
2)(

0

2
2/7

0

2,3
a

r
r

a
rR  . (6.3) 

 
There are two types of orbital states: the d orbits dxy, dyz, dzx, the d orbits: dx2-y2 and 

223 rz
d


. The complete wavefunctions are 

given as follows. 
 

)( 2gtd  
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1
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)

3
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1
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3

exp(
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1

6

2

2

2
)

3
exp(
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1

3)
3

exp(
81

1

6
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3
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1

0
2/7

00
2/7

0

0
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0

0
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2/7
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r
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r

,  (6.4a) 

Clear@"Global`∗"D;
Table@82, m, SphericalHarmonicY@2, m, θ, φD<,8m, −2, 2, 1<D êê TableForm
2 −2 1

4
�−2 � φ 15

2 π
Sin@θD2

2 −1 1

2
�−� φ 15

2 π
Cos@θD Sin@θD

2 0
1

4

5

π
I−1 + 3 Cos@θD2M

2 1 − 1

2
�� φ 15

2 π
Cos@θD Sin@θD

2 2
1

4
�2 � φ 15

2 π
Sin@θD2
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 (6.4b) 

 

For convenience, we use the notations: 1xydr , 2yzdr , 3zxdr , 

422 
 yx

dr , 53 22 
rz

dr . The complete wavefunctions are given by 

 

           

       
 

Fig.11 Angular parts of the wavefunctions for (1) dxy, (2) dyz, (3) dxz, (4) 22
yx

d


, 

and (5) 223 rz
d


. 

 
6.2. Orthorhombic crystal field 
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We consider the octahedral field (cubic). There are 6 negative ions around one 3d 
electron at (0,0,0). The negative ions are located at )0,0,( a , )0,,0( a , and ),0,0( a . The 

Coulomb repulsion energy (positive) is large for the d orbitals [for example, 22
yx

d


]. 

Suppose that six negative ions X with charge -e are located on the x-, y-, and z- axes at 
a distance a from the origin. When r<a, the electrostatic potential energy due to the ligand 
field is given by 
 

)
5

3
()( 4444

0 rzyxDVrV  . (6.5) 

 
with 
 

a

Ze
V

2

0

6
  and 

5

2

4

35

a

Ze
D   

 
This is an explicit expression for the cubic ligand field in the point charge approximation. 
The symmetry of the Hamiltonian for the 3d electron is now lowered from spherical to 
cubic because of the presence of the ligand field. 

The electron charge cloud distributions of the orbitals are sketched in Fig.7. It is easier 
for a 3d electron cloud to avoid the charge cloud of the neighboring negative ions. The 
orbitals (d) will then have a lower energy than for the orbitals (d). 
 
(i) Charge distribution of dxy in the x-y plane 
 

 
 
Fig.12(a) Representation of dxy orbit in the x-y plane. 
 
The Coulomb repulsion energy is small for the dxy because of the existence of the 
neighboring negative charges located at (± a, 0, 0) and (0, ± a, 0). 
 
(ii) Charge distribution of d(yz) in the y-z plane 
 

-0.2 -0.1 0.1 0.2
x

-0.2

-0.1

0.1

0.2

y81<
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Fig.12(b) Representation of dyz orbit in the y-z plane. 
 
The Coulomb repulsion energy is small for the dyz because of the existence of the 
neighboring negative charges located at (0,± a, 0) and (0, 0, ± a). 
 
(iii) Charge distribution for dzx in the z-x plane 
 

 
 
Fig.12(c) Representation of dzx orbit in the x-x plane. 
 
The Coulomb repulsion energy is small for the dzx because of the existence of the 
neighboring negative charges located at (0, 0, ± a, 0) and (± a, 0,0). 
 
(iv) Charge distribution of 22

yx
d


 in the x-y plane 

 
 

Fig.12(d) Representation of 22
yx

d


 orbit in the x-y plane. 
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The Coulomb repulsion energy is large for the 22
yx

d


 because of the existence of the 

neighboring negative charges located at (± a, 0, 0) and (0, ± a, 0). 
 
(v) Charge distribution of 223 rz

d


 in the z-x plane 

 

 
 
Fig.12(e) Representation of 223 rz

d


 orbit in the z-x plane. 

 
The Coulomb repulsion energy is large for the 223 rz

d


, because of the existence of the 

neighboring negative charges located at (0,0,± a). 
 
6.3. Wave function of (3d)1 electron in the orthorhombic field 

Matrix element is defined by 
 

 )()()(ˆ *
jdVidjVi rrr  (6.6) 

 





























Dq

Dq

Dq

Dq

Dq

60000

06000

00400

00040

00004

. (6.7) 

 
We have eigenvalues and eigenfunctions 
 

DqE 4  for zxyzxy ddd ,, , (6.8) 

 
and 
 

DqE 6  for 2222 3
,

rzyx
dd


. (6.9) 
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Fig.13 Splitting of the energy level (2D) of ground state of free (3d)1 under the 

octahedral field. 
 
where the energy difference between two levels is called 10 Dq, 
 

4

0
4 486

105

2
arq  , (6.10) 
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244 105515.2)( arRdrrrr . (6.11) 

 
((Note)) 

We have some comment on the independence of the d-orbital wave function (there are 
only two independent states). 
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or 
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There are two independent states since 
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0222222 
 xzzyyx

ddd rrr , (6.15) 
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6.4. Wave function of (3d)1 electron in the tetragonal field  

A. Eigenvalue problem 

We now consider the case where a = b ≠ c. The static potential energy is given by 
 

].)
43

(
4

3
)6(

)()2(
24

[)(

4

55

224

4442222

r
ca

yxzQ

zyxDzyxA
ca

ZeV



r

 (6.17) 

 
where 
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The sign of A and Q changes depending on the ratio of c/a. On the other hand, D and  are 
always positive. Here the matrix element is defined by 
 























 

55

44

33

22

11

*

0000

0000

0000

0000

0000

)()()(ˆ

W

W

W

W

W

jdVidjVi rrr . (6.19) 

 

))]211911(1215722(4[ 4
0

2
0

2

11  QDcaAcaac
ca

Ze
W  

))]21)(11(1354(92(4[ 2
0

2
0

2

22  QDaAcaac
ca

Ze
W  

))]21)(11(1354(92(4[ 2
0

2
0

2

33  QDaAcaac
ca

Ze
W  

))]21715(1215722(4[ 4
0

2
0

2

44  QDcaAcaac
ca

Ze
W  

))]7)(5(4058(92(4[ 2
0

2
0

2

55  QDaAcaac
ca

Ze
W  



41 
 

 
Here we use the perturbation theory (degenerate case) (see the Mathematica program 
below). 
 
B. Eigenvalue problem 

The eigenvalues 
 

111 WE   for dxy, 

222 WE   for dyz, 

333 WE   for dzx, 

444 WE   for 22
yx

d


,  

 
and 
 

555 WE   for 223 rz
d


. 

 
We note that 
 

DqEEE 10154  , 

321 EEE   

 
in the limit of A→0, Q→0, and →0. In the general case, 
 

D
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EE 30
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EE 20
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Dq

EE
 (E2 and E3 are degenerate). 

D
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EE 20

27

8
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45 


 

 
We now make a plot of the energy levels (normalized by Dq) as a function of c/a0, where 
a/a0 is fixed as a parameter and a0 is the Bohr radius. For convenience we choose a/a0 = 
10 (a = 10 a0 = 5.3 Å). 
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Fig.14 Energy levels for the tetragonal case, as a function of c/a0. a/a0 = 10. [dxy 

(green), dyz (red), dzx (red), 22
yx

d


 (blue), and 223 rz
d


 (purple). The 

energy level of dyz and dzx (degenerate) is higher than that of dxy for c<a, 
while the energy level of dyz and dzx (degenerate) is lower than that of dxy 
for c>a. The energy level of 223 rz

d


 is higher than that of 22
yx

d


 for c<a, 

while the energy level of 223 rz
d


 is lower than that of 22

yx
d


 for c>a.  

 

      
 
Fig.15 Energy diagram for (3d)1 ion in the octahedral and tetragonal cases for (i) 

c > a = b. (ii) c < a = b. 
 
C. Mathematica program: Eigenvalue problem 

Using the Mathematica program we solve the eigenvalue problems. The result obtained 
is shown in Fig.14. 
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Wavefunctions for one 3d electron in the tetragonal case

Clear@"Gobal`"D;
Needs@"VectorAnalysis`"D;
SetCoordinates@Cartesian@x, y, zDD;
V =

Z e02
4

a
+
2

c
+ A1 Ix2 + y2 − 2 z2M + D1 Ix4 + y4 + z4M +

Q1 Iz4 + 6 x2 y2M − ε1 Ix2 + y2 + z2M2 ;

rule1 = :A1 →
1

a3
−

1

c3
, D1 →

20

4 a5
+

15

4 c5
, Q1 → −

5

4 a5
−

5

4 c5
,

ε1 →
9

4 a5
+

12

4 c5
>;

rule2 = 8x → r Sin@θD Cos@φD, y → r Sin@θD Sin@φD, z → r Cos@θD<;
V1 = V ê. rule2 êê TrigFactor;
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wave functions of d-orbitals

ψ@1D =
�

−
r

3 a0 r2 Sin@θD2 Sin@2 φD
81 a07ê2 2 π

;

ψ@2D =
�

−
r

3 a0 r2 Sin@2 θD Sin@φD
81 a07ê2 2 π

; ψ@3D =
�

−
r

3 a0 r2 Cos@φD Sin@2 θD
81 a07ê2 2 π

;

ψ@4D =
�

−
r

3 a0 r2 Cos@2 φD Sin@θD2
81 a07ê2 2 π

;

ψ@5D =
�

−
r

3 a0 r2 H1 + 3 Cos@2 θDL
162 a07ê2 6 π

�
− r
3 a0 r

2 H1 + 3 Cos@2 θDL
162 a0

7ê2
6 π

Rnl(r): radial part of wave function; n = 3, l = 2.

rwave@3, 2, rD =

2 2

15
�

−
r

3 a0 r2

81 a07ê2 ;
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Average of r
4

r4av = IntegrateA r4 r2 rwave@3, 2, rD2, 8r, 0, ∞<E êê
FullSimplify@	, Re@a0D > 0D &

25515 a0
4

q1=
2

105
<r4>

q4 =
2

105
r4av êê Simplify

486 a0
4

Average of r
2

r2av = IntegrateA r2 r2 rwave@3, 2, rD2, 8r, 0, ∞<E êê
FullSimplify@	, Re@a0D > 0D &

126 a0
2

Matrix element calculations

J@p_, q_D := ψ@pD V1 ψ@qD;
Norm1@p_, q_D := ψ@pD ψ@qD
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Average of r
4

r4av = IntegrateA r4 r2 rwave@3, 2, rD2, 8r, 0, ∞<E êê
FullSimplify@	, Re@a0D > 0D &

25515 a0
4

q1=
2

105
<r4>

q4 =
2

105
r4av êê Simplify

486 a0
4

Average of r
2

r2av = IntegrateA r2 r2 rwave@3, 2, rD2, 8r, 0, ∞<E êê
FullSimplify@	, Re@a0D > 0D &

126 a0
2

Matrix element calculations

J@p_, q_D := ψ@pD V1 ψ@qD;
Norm1@p_, q_D := ψ@pD ψ@qD
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:10 −
30 Q1

D1
, 10 −

8 A1

27 a0
2
D1

−
10 Q1

D1
,

−
2 A1

9 a02 D1
−
20 Q1

D1
, 0, −

8 A1

27 a02 D1
+
20 Q1

D1
>

rule3 = 8a → a0 α, c → a0 β<;
E50 =

E5

D0 q4
ê. rule1 ê. rule3 êê Simplify;

E40 =
E4

D0 q4
ê. rule1 ê. rule3 êê Simplify;

E30 =
E3

D0 q4
ê. rule1 ê. rule3 êê Simplify;

E20 =
E2

D0 q4
ê. rule1 ê. rule3 êê Simplify;

E10 =
E1

D0 q4
ê. rule1 ê. rule3 êê Simplify;

Energy = 8E10, E20, E30, E40, E50<;
Energy diagram
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D. Quenching of orbital angular momentum 

For the orbital singlet, the average of the orbital angular momentum is equal to zero. 
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 (6.20) 
 

f1 = Plot@Evaluate@Energy ê. α → 10D, 8β, 9, 11<,
PlotStyle → Table@8Thick, Hue@0.2 iD<, 8i, 0, 5<D,
Background → GrayLevel@0.5D,
AxesLabel → 8"cêa0", "EnergyêDq"<D;

f2 = Graphics@8Text@Style@"E1", Black, 12D, 89.2, 7.8<D,
Text@Style@"E2,E3", Black, 12D, 89.2, 9<D,
Text@Style@"E4", Black, 12D, 89.2, 17<D,
Text@Style@"E5", Black, 12D, 89.2, 19<D<D;

Show@f1, f2D

E1

E2,E3

E4

E5

9.0 9.5 10.0 10.5 11.0
cêa0
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20

EnergyêDq
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, iizyx LLL  2222 6)ˆˆˆ( ℏ , (i = 1 – 5). (6.22) 

 
E. Mathematica program 

Using the Mathematica we show the formula of the orbital angular momentum in 
quantum mechanics. 
 
((Mathematica-1)) 
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Orbital angular momentum of 3d electron

Clear@"Global`∗"D;
Lz :=

—

�
Hx D@	, yD − y D@	, xDL &;

Lx :=
—

�
Hy D@	, zD − z D@	, yDL &;

Ly :=
—

�
Hz D@	, xD − x D@	, zDL &;

ψ1 = 3 x y fB x2 + y2 + z2 F; ψ2 = 3 y z fB x2 + y2 + z2 F;
ψ3 = 3 z x fB x2 + y2 + z2 F;
ψ4 =

3

2
Ix2 − y2M fB x2 + y2 + z2 F;

ψ5 =
1

2
I3 z2 − Ix2 + y2 + z2MM fB x2 + y2 + z2 F;

8Lz@ψ1D, Lz@ψ2D, Lz@ψ3D, Lz@ψ4D, Lz@ψ5D< êê Simplify

:−� 3 Ix2 − y
2M — fB x

2 + y
2 + z

2 F,
−� 3 x z — fB x

2 + y
2 + z

2 F, � 3 y z — fB x
2 + y

2 + z
2 F,

2 � 3 x y — fB x
2 + y

2 + z
2 F, 0>

8Lx@ψ1D, Lx@ψ2D, Lx@ψ3D, Lx@ψ4D, Lx@ψ5D< êê Simplify

:� 3 x z — fB x
2 + y

2 + z
2 F, −� 3 Iy2 − z

2M — fB x
2 + y

2 + z
2 F,

−� 3 x y — fB x
2 + y

2 + z
2 F,

−� 3 y z — fB x
2 + y

2 + z
2 F, −3 � y z — fB x

2 + y
2 + z

2 F>

8Ly@ψ1D, Ly@ψ2D, Ly@ψ3D, Ly@ψ4D, Ly@ψ5D< êê Simplify

:−� 3 y z — fB x
2 + y

2 + z
2 F,

� 3 x y — fB x
2 + y

2 + z
2 F, � 3 Ix2 − z

2M — fB x
2 + y

2 + z
2 F,

−� 3 x z — fB x
2 + y

2 + z
2 F, 3 � x z — fB x

2 + y
2 + z

2 F>
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((Mathematica-2)) 
 

 

L = 2 matrix element in quantum mechanics

conjugateRule = 8Complex @re_, im_D � Complex @re, −imD<;
Unprotect @SuperStar D;
SuperStar ê: exp_ ∗ := exp ê. conjugateRule ;

Matrx element of orbital angular momentum L = 2

Jx@�_, n_, m_D :=
1

2
H� − mL H� + m + 1L KroneckerDelta @n, m + 1D+

1

2
H� + mLH� − m + 1L KroneckerDelta @n, m − 1D;

Jy@�_, n_, m_D :=

−
1

2
� H� − mLH� + m + 1L KroneckerDelta @n, m + 1D +

1

2
� H� + mL H� − m + 1L KroneckerDelta @n, m − 1D;

Jz@�_, n_, m_D := m KroneckerDelta @n, mD;
Lx = Table @Jx@2, n, mD, 8n, 2, −2, −1<, 8m, 2, −2, −1<D;
Ly = Table @Jy@2, n, mD, 8n, 2, −2, −1<, 8m, 2, −2, −1<D;
Lz = Table @Jz@2, n, mD, 8n, 2, −2, −1<, 8m, 2, −2, −1<D;
Lp = Lx + � Ly; Lm = Lx − � Ly;

I1 = IdentityMatrix @5D;



52 
 

 

Column matrix of y1, y2, y3, y4, y5

ψ@1D = −
�

2
81, 0, 0, 0, −1<; ψ@2D =

�

2
80, 1, 0, 1, 0<;

ψ@3D = −
1

2
80, 1, 0, −1, 0<; ψ@4D =

1

2
81, 0, 0, 0, 1<;

ψ@5D = 80, 0, 1, 0, 0<;
Table Aψ@iD∗.Lx.ψ@1D, 8i, 1, 5<E
80, 0, �, 0, 0<

Table Aψ@iD∗.Lx.ψ@2D, 8i, 1, 5<E
90, 0, 0, �, � 3 =

Table Aψ@iD∗.Lx.ψ@3D, 8i, 1, 5<E
8−�, 0, 0, 0, 0<

Table Aψ@iD∗.Lx.ψ@4D, 8i, 1, 5<E
80, −�, 0, 0, 0<

Table Aψ@iD∗.Lx.ψ@5D, 8i, 1, 5<E
90, −� 3 , 0, 0, 0=
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Calculation of Ly.y[i]

Table Aψ@iD∗.Ly.ψ@1D, 8i, 1, 5<E
80, −�, 0, 0, 0<

Table Aψ@iD∗.Ly.ψ@2D, 8i, 1, 5<E
8�, 0, 0, 0, 0<

Table Aψ@iD∗.Ly.ψ@3D, 8i, 1, 5<E
90, 0, 0, �, −� 3 =

Table Aψ@iD∗.Ly.ψ@4D, 8i, 1, 5<E
80, 0, −�, 0, 0<

Table Aψ@iD∗.Ly.ψ@5D, 8i, 1, 5<E
90, 0, � 3 , 0, 0=

Calculation of Lz.y[i]

Table Aψ@iD∗.Lz.ψ@1D, 8i, 1, 5<E
80, 0, 0, −2 �, 0<

Table Aψ@iD∗.Lz.ψ@2D, 8i, 1, 5<E
80, 0, −�, 0, 0<

Table Aψ@iD∗.Lz.ψ@3D, 8i, 1, 5<E
80, �, 0, 0, 0<
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7. The energy diagram of Cu2+ with (3d)9 electron configuration: Rule-1 

Table Aψ@iD∗.Lz.ψ@4D, 8i, 1, 5<E
82 �, 0, 0, 0, 0<

Table Aψ@iD∗.Lz.ψ@5D, 8i, 1, 5<E
80, 0, 0, 0, 0<

Calculation of L+.y[i]

Table Aψ@iD∗.Lp.ψ@1D, 8i, 1, 5<E
80, 1, �, 0, 0<

Table Aψ@iD∗.Lp.ψ@2D, 8i, 1, 5<E
9−1, 0, 0, �, � 3 =

Table Aψ@iD∗.Lp.ψ@3D, 8i, 1, 5<E
9−�, 0, 0, −1, 3 =

Table Aψ@iD∗.Lp.ψ@4D, 8i, 1, 5<E
80, −�, 1, 0, 0<

Table Aψ@iD∗.Lp.ψ@5D, 8i, 1, 5<E
90, −� 3 , − 3 , 0, 0=

Calculation of L-.y[i]

Table Aψ@iD∗.Lm.ψ@1D, 8i, 1, 5<E
80, −1, �, 0, 0<

Table Aψ@iD∗.Lm.ψ@2D, 8i, 1, 5<E
91, 0, 0, �, � 3 =

Table Aψ@iD∗.Lm.ψ@3D, 8i, 1, 5<E
9−�, 0, 0, 1, − 3 =

Table Aψ@iD∗.Lm.ψ@4D, 8i, 1, 5<E
80, −�, −1, 0, 0<

Table Aψ@iD∗.Lm.ψ@5D, 8i, 1, 5<E
90, −� 3 , 3 , 0, 0=
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Here we consider the energy level of (3d)9 for Cu2+. There are nine electrons, i.e., one 
short of filled 3d shell, where (3d)9 = (3d)10 + 1 hole (positive charge) 
 

      
 
Fig.16 Energy diagram for (3d)9 in the octahedral and tetragonal cases for (i) c > 

a = b. (ii) c < a = b. 
 

In the (3d)9 electron configuration, we have (3d)9: 2S+1 = 2, 2L+1 = 5 (L = 2). The 
ground state is a Kramers doublet. Since S = 1/2, there is no single ion anisotropy (see 12.1 
for detail). A full shell of electrons has a charge cloud which is spherically symmetric so 
that removal of one electron leaves a distributed charge deficiency coincident with the 
space charge of the electron moved. This gap or “hole” behaves like a single positively 
charged electron. 

For the (3d)9 ion in an octahedral crystal field, the argument therefore proceeds as for 
3d1 except the de and d levels will now be reversed in the energy level diagram because 
the ion has a lesser energy when the lobes of the positive hole’s wavefunction are directed 
towards neighboring negative ions rather than between the ions. In some cases the 
derivation from regularity might arise spontaneously from the crystal-field effect 
themselves because, if the ground-state in a regular field is orbitally degenerate, slight 
distortion of the environment can lower the ground-state energy and at the same time 
remove some degeneracy, pushing some levels up and other down. Both the doubly 
degenerate ground-state and the triply-degenerate level are split into two. If the distortion 
in the z direction, the d(yz) and d(zx) states of the triplet remain symmetrically disposed 
and, though displaced upwards in energy, they remain degenerate. The d(xy) state, on the 
other hand, is displaced downward, in energy, and the center of gravity of the triplet 
remains unchanged to the first order. The d(3z2-r2) and d(x2 – y2) states of the unperturbed 
ground-state are not symmetrical with respect to the z-axis and are separated by the 
distortion, d(3z2-r2) becoming an orbitally non-degenerate ground state. 

In conclusion, The energy diagram of (3d)9 and (3d)1 configuration are inverted in 
relation to each other because (3d)9 may be treated as a (3d)1 positive hole in a filled (3d)10 
shell. 
 
8. Energy diagram of (3d)n electron configuration 

8.1. Rule-2 

Using the Hund’s rule and the energy levels of (3d)1 electron configuration, we 
consider the ground state of the (3d)n (n≥2) electron configuration. 
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(3d)1  (3d)6 
The ground state of an ion with a half-filled shell has an orbital moment L = 0, since 

all the 3d orbital states are singly occupied. The additional electron in the 3d6 therefore 
leave the ion in a D state just as for a 3d1 configuration, and the crystal-field levels are the 
same as for 3d1. 

Splitting in the energy-level diagram of the ground state of 3dn ion due to octahedral 
fields and tetragonal fields. 
 

(3d)4  (3d)9 
(3d)3  (3d)8 
(3d)2  (3d)7 
(3d)1  (3d)6 

 
((Difference appears when spin-orbit perturbations are concerned.)) 
 
8.2. Ground state for (3d)n electron configuration (n>1) 

We assume that the Hund’rule is valid for n≥2: crH VV   (weak field case), where  

VH. is the electron-electron interaction and Vcr is the crystal field. 
(i) 
 

 
 
Fig.17(a) Ground state of (3d)1: orbital triplet, where the red circle denote electron 

up-spin state. d1 
 
(ii) 

 
 
 
Fig.17(b) Ground state of (3d)2: orbital triplet. d2 
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(iii) 

 
 
Fig.17(c) Ground state of (3d)3: orbital singlet. d3. The quenching of the orbital 

angular momentum 
 
(iv) 

 
 
Fig.17(d) Ground state of (3d)4: orbital doublet. The possibility of Jahn-Teller effect. 

d3d1 
 
(v) 

 
 
Fig.17(e) Ground state of (3d)5: orbital singlet. d3d2. The quenching of the orbital 

angular momentum 
 
(vi) 

 
 
Fig.17(f) Ground state of (3d)6: orbital triplet. d4d2. The red circle and blue circle 

denote electron up-state and down-state.  
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(vii) 

 
 
Fig.17(g) Ground state of (3d)7: orbital triplet. d5d2. 
 
(viii) 

 
 
Fig.17(h) Ground state of (3d)8: orbital singlet. d6d2. The quenching of the orbital 

angular momentum 
 
(ix) 

 
 
Fig.17(i) Ground state of (3d)9: orbital doublet. d6d3. The possibility of the Jahn-

Teller effect 
 
8.4. Excited states for (3d)2 electron configuration 

We consider the excited states of the (3d)2 electron configuration. We take into account 
of only the Hund’s first law (exchange interaction) (parallel spin electrons are occupies 
from lowest energy).  
 
(i) Ground state: orbital triplet. The degeneracy is 3C1 = 3 
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Fig.18(a) Ground state of (3d)2 electron configration (one-electron model). 
 
(ii) First excited state. The degeneracy is 2C1 3C1 = 2x3 = 6 
 

 
 
Fig.18(b) Excited state of (3d)2 electron configuration (one-electron model). 
 
(iii) Second excited state. the orbital singlet. 
 

 
 
Fig.18(c) Second excited state of (3d)2 electron configration (one-electron model). 
 

In Summary we have the following energy diagram for (3d)2. Note that when the 
Hund’s second law is also taken into account, the six degeneracy of the first excited state 
is split into the two triplet states. 
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Fig.18(d) Energy diagram of (3d)2 electron configuration (two-electrons system). 

4: the ground state (orbital triplet), 5: the first excited state (orbital 
triplet), 2: the second excited state (orbital singlet). 

 
8.5. Excited states for (3d)3 electron configuration 

 
Ground state  Orbital triplet: 3C1= 3 
First excited state 6 states (splitting into two orbital triplet due to the Hund’s 2nd law) 

3C1 x 2C1 = 6 
 
Second excited state Orbital triplet. 3C1 = 3. 
 

 
 
 
Fig.19 (a) Ground state, the first excited state, and the second excited state of (3d)3 

electron configuration (one-electron model). 
 
In summary we obtain the following energy diagram 
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Fig.19(b) Energy diagram of (3d)3 electron configuration (three-electrons system). 2 

(orbital singlet), 5 and 4 (orbital triplets) 
 
8.5. Excited states of (3d)1 electron configuration 

 

Ground state  Orbital triplet (3C1 = 3) 
Excited state  Orbital doublet (2C1 = 2). 

 

 
 

Fig.20(a) Ground state and excited states of (3d)1 electron configfuration (one 
electron model) 

 
In summary, we have 
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Fig.20(b) Ground state and excited states of (3d)1 electron configuration. The 

energy levels are the same as shown in Fig.20(a). 
 
8.6. Excited states of (3d)4 electron configuration 

 

Ground state  Orbital doublet. 2C1 = 2. 
Excited state  Orbital triplet  3C1 = 3. 

 

 
 
Fig.21(a) Ground state and excited states of (3d)4 electron configuration (one 

electron model) 
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Fig.21(b) Ground state and excited states of (3d)4 electron configuration (four 
electrons system). 

 
8.7. Energy diagram: application of rule-1 and rule-2 

Crystal field energy levels for orbital electrons in the octahedral (cubic) and tetragonal 
fields have five symmetry types called irreducible representations.  
 

Singlet  A1 (1),  
singlet  A2 (2),  
doublet  E (3),  
triplet  T1 (4),  
triplet  T2 (5). 

 
One often uses the notation A1g, T2g, 2g, and so on, where g stands for gerade and means 
that the wavefunction is asymmetric under inversion. 
 

 
Fig.22 Energy diagram of (3d)n (n = 1, 2, 3, 4) with the rule-1 and rule-2. 4 and 

5 triplets can be represented by a fictitious orbital angular momentum. 
 
9. Jahn-Teller effect 

We now consider the energy diagram of Cu2+ for the (3d)9 electron configuration. The 
energy level of Cu2+ consists of ground state (orbital doublet 3, d) and the excited state 
(orbital triplet 5, d) in the octahedral field (c = a = b). The ground state is split into the 
two orbital singlets [d(x2 – y2) and d(3z2 – r2)] in the tetragonal field, as a result of the 
lattice distortion (c>a = b). Here the energy level of d(x2 – y2) is lower than that of d(3z2 – 
r2). In this case, there are two contributions to the total energy. One is the energy loss due 
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to the lattice distortion (the increase of the distance c). The other is the energy gain due to 
the lowering of the energy level of the ground state. If the energy gain is larger than the 
energy loss, a spontaneous displacement occurs (Jahn-Teller effect). 
 
10. Low spin and high spin states 

We consider the case of Fe2+. Isolated Fe2+ has (3d)6 electron configuration. (3d)5 has 
five parallel spins (up). The remaining one electron for 3d has a down-spin, and takes l = 
2 according to the Hund rule (S = 2, L = 2). 
 

((Weak crystal field)) 

When Fe2+ is a part of FeO, the orbital of the remaining one 3d electron is influenced 
by 6 O2-, or one 3d electron is located in the octahedral crystal field. In this case, the energy 
level splits into the de and dg levels. 1(3d) electron occupies the energy level of d (down-
spin). In this case we have S = 2. We call this state as a high spin state. This is the case of 
weak crystal field that the Hund field VH is larger than Vc.  
 

((Strong crystal field)) 

What happens when the crystal field is strong (Vcr>VH). In this case all 6 states in the 
de are occupied by 3 up-spin states and 3-spin down states since Vcr>VH. Then we have the 
S = 0 (we call ths low spin state). 
 
11. Spin Hamiltonian of spin systems with the orbital singlet as a ground state 

11.1. Pryce spin Hamiltonian 

Now we apply the perturbation theory (degenerate case) where the orbital ground state 

is singlet.16 The Hamiltonian is described by 
 

HHH c
ˆˆˆ  , (11.1) 

 

where cĤ  is the unperturbed Hamiltonian of the system under the octahedral crystal field 

The perturbation Ĥ   is given by 
 

HSLSL  )ˆ2ˆ(ˆˆˆ
BH  , (11.2) 

 
where the first term is the spin-orbit interaction and the second term is the  Zeeman 

energy. L̂  and Ŝ  are the operators of the orbital and spin angular momentum in the 

quantum mechanics. We now transform Ĥ   into the so-called spin Hamiltonian by a 
method proposed by Pryce, where the orbital dependence is projected out. 

Let us evaluate the expectation value of Ĥ   for a nondegenerate ground state (orbital 
singlet 0 .3 To the second order perturbation for the non-degenerate case (see the 

Appendix for the perturbation theory) 
Here 
 

HSHSHSLSL  ˆ2)ˆ2()ˆ2ˆ(ˆˆ'ˆ
000000 BBBH   
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We use the quenching of the orbital angular momentum for the orbital singlet. 
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(11.3) 

 
We introduce the notation 
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EE

LL
. (11.4) 

 

 


 
,

22 )]ˆˆ(ˆˆ[ˆ2)ˆ( SHSHHHSSH BBB HSS , 

 (11.5) 
or 
 

 


 
,

22 )ˆˆˆ()ˆ( HHSSSHgH BBS , (11.6) 

 
where 0)','( EE    is the energy gap between the ground state and the excited states. 

 
)(2   g . (11.7) 

 
What is the physical meaning of the above spin Hamiltonian? 
(i) The g tensor which is different from 2, because of spin-orbit interaction. 
(ii) The second term represents the single-ion anisotropy. Note that   reflects the 

symmetry of the system. 
We neglect the last term which is related to the Van Vleck susceptibility. We also assume 
that 
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. (11.9) 

 
The spin Hamiltonian should reflect the symmetry of the crystal field. Then the spin 
Hamiltonian can be written as 
 

)ˆˆˆ(

)ˆˆ)((
2

1
)]1(

3

1ˆ)][(
2

1
[

)ˆˆˆ()ˆˆˆ()ˆ(ˆ

22222

2222

zzzzyyyyxxxxB

yxyyxxzyyxxzz

zzzzyyyyxxxxByyyxxxzzz

HSgHSgHSg

SSSSS

HSgHSgHSgSSSH











S

.

 (11.10) 
 
Note that for simplicity we use the unit of 1ℏ . We put 
 

)](
2

1
[2

yxz   , (11.11) 

 
2/)(2

yx   . (11.12) 

 

Then the effective spin Hamiltonian )ˆ(ˆ SH  is described as 

 

)ˆˆˆ()ˆˆ()]1(
3

1ˆ[)ˆ(ˆ 222
zzzzyyyyxxxxByxz HSgHSgHSgSSSSSH  S .

 (11.13) 
Note that an important experimental fact is that the crystal-field parameters (, , and g) do 
not change appreciably for the same types of the systems. 
 
11.2 g-factors and the single ion anisotropy D 

A. Definition of g-factors 

We define gx = gxx, gy = gyy, and gzz = gz. 
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. (11.14) 

 
The single ion anisotropy constant D is given by 
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. (11.15) 

 
We assume that gz = gc, gx = gy = ga for simplicity. The constant D is rewritten as 
 

)(
2 ac ggD 


. (11.16) 

 
Note that the sign of the spin-orbit interaction constant  is as follows, 
 









) 5)n (3d) half; than (more     0

5))n (3d) half; than (less       0
n

n




 

 
Then we have 
 

If  > 0, then gc > ga   D > 0. 
If  < 0, then gc > ga    D < 0. 

 
Note that the g-value of the free electron is not precisely 2. There are quantum 
electrodynamics corrections which leads to the value g = 2.0023193043622. 
 
B. g-factors in Cu2+ ion in the tetragonal field (c>a = b) 

For Cu2+ ion in the tetragonal field (c>a = b), the ground state is 4  (orbital singlet). 

In this case the tensor components (see Fig.16 for the energy diagram for Cu2+ ion ). 
 

42,1

42,24

42,1

41,14

43

4334

45

4554

ˆˆˆˆ

ˆˆˆˆ

EE

LL

EE

LL

EE

LL

EE

LL






















, (11.17) 

 
where  = x, y and z. Noting that 
 

24
ˆ  iLx  ,  34

ˆ  iLy  , 14 2ˆ  iLz  . 
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(we use the unit of ħ =1), we have 
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. (11.18) 

 
Then the g-values are calculated as 
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, (11.19) 

 
where  (≈ -850 cm-1) and E2 = E3>E1>E5>E4. We find that 
 

zyx ggg  . 

 

11.3. Ni2+ 

As a typical example, we consider the case of Ni2+ [((3d)8; S = 1, L = 3] under the 
octahedral crystal field. The energy diagram consists of a orbital singlet state (2) as a 
ground state and an orbital triplet (5). The energy difference between the ground state and 
the excited state is 1 eV and is much larger than the magnitude of the spin-orbit coupling 
constant (= -335 cm-1 = -0.0415 eV), Note that 1 meV = 8.0655 cm-1.  
(i) Since the ground state is the orbital singlet, the quenching of the orbital angular 
momentum occurs.  

(ii) The spin degeneracy is (2S + 1) = 3. smS ,  with S = 1, and ms = 1, 0, and -1. 
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Fig.23 Crystal-field splitting of Ni2+ ion ground state in the ochtahedral and 

tetragonal fields. 
 
In the ground-orbital singlet, the mean value of orbital angular momentum is zero and the 
value of spin S = 1. The spin anisotropy arises only as a 2nd-order effect through the 
combined effect of spin-orbit coupling and trigonal field within the upper states which are 
linked with the ground state in the second order perturbation. For a trigonal distortion, we 

expect the anisotropy to be adequately represented by a term 2
zDS .  

 
11.4 Cr3+ 

Cr3+ (3d3) has a ground state 4F. In an octahedral field, the sevenfold orbital degeneracy 
(2L+1 = 7) is removed, and the levels are split into a lower orbital singlet (2) and two 
higher lying orbital triplets (5, 4). The low-lying singlet has a fourfold spin degeneracy 
(2S+1 = 4, S = 3/2). It is not removed even by the combination action of the octahedral and 
spin-orbit coupling, forming two Kramers doublets (see the detail in Sec.12). It can be 
removed only by the external magnetic field.  
 
12. Spin Hamiltonian for S = 1/2, 1, 3/2, 2 and 5/2 

 

12.1 S = 1/2 

For S = 1/2, the spin operators are described by 
 




















zz
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xx

S

S

S







2

1ˆ
2

1ˆ
2

1ˆ

. (12.1) 

 
where the Pauli spin matrix is given by 
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x , 
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10
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z  (12.2) 
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. (12.3) 

 

4

1

4

1ˆ 22  zzS  , 
4

1ˆˆ 22  yx SS . (12.4) 

Then Hamiltonian (S = ½) can be described as  
 

)ˆˆˆ()ˆ(ˆ
zzzyyyxxxB HSgHSgHSgH  S . (12.5) 

 

We note that there is no single ion anisotropy for S = 1/2. 

 
12.2. S =1 

A. Eigenvalue problem for S = 1 

For S = 1 in the case of (3d)8, Ni2+ ion), the spin operators are described by (3x3) spin 
matrices, 
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 (12.6) 
 
Then 
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001
ˆ 2
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 (12.7) 
 
Here we consider the eigenvalue problem for the effective spin Hamiltonian given by 
 

)ˆˆ()]1(
3

1ˆ[ˆ 222
yxz SSSSSH   . (12.8) 
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We have the determinant given by 
 

0

3
0

0
3

2
0

0
3

)ˆˆdet( 
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W

W

IWH









, (12.9) 

 
or 
 


3

2
W , 




3
, 



3

 

 
where W is the energy eigenvalue. For Ni2+ it is known that  =  = 1 cm-1. 
 

 
 

Fig.24 Energy level of (3d)8 Ni2+ ion, where D =  and E = . 
 
The ground state with spin triplet (orbital singlet) is split into three spin singlets due to the 
spin-orbit interaction. 

What is the wave function of the ground state? 
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, (12.10) 
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or 
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, (12.13) 

 
031  cc   and 02 c   31 cc   

 

)11(
2

1
3   

 
Since the ground state is a spin singlet  
 

 )11(
2

1
3   

 )11(
2

1
2   

 01   

 
we find that the quenching of the spin angular momentum occurs in the system 
 

00011  zz SS  . (12.14) 

 
B. Magnetic susceptibility with the quenching of the spin angular momentum 

What is the susceptibility of the system for H//z? We start with this formula wih H = 
H0, 

 

Z
HH

TkN BA ln
00 


 , (12.15) 

 
Noting that 
 


3

2
1 W , 2

0
222

2 3
HgW B


  2

0
222

3 3
HgW B


 ,  

 
the partition function Z can be estimated as 
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2
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0

222
33

2
HgHg BB eeeeZ




 
  

 
Then we have 
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 2
0

222cosh2ln
3

ln HgeZ B
    

 
Then the susceptibility is given by 
 

))cosh(2(

)sinh(2 22








  


e

gN BA  (12.16) 

 

at H0 = 0. In the limit of 0 , 
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 , (12.17) 

 

where 0TkB , and 8/1125049.0)3/(2 BBA kN   emu/(mol K). NA is the Avogadro 

number and kB is the Boltzmann constant. When we assume that g = 2, we have the T 
dependence of the susceptibility shown here, where T0 is changed as a parameter. The 
susceptibility has a maximum at 6835.0/ 0 TT . 

 

 
 
Fig.25 Tempretaure dependence of the susceptibility for S = 1. T0 = /kB = 2 (red), 

3, 4, 5, 6, 7, 8, 9, 10 K (purple). 
 
At low temperature,   becomes zero, because of the factor TkBe

/ . The energy of ground 

state does not change with the magnetic field. (the system is in the ground state with singlet.) 
 
C. Mathematica program: energy diagram of the spin Hamiltonian with S = 1 in 

the presence of magnetic field (the general case) 

As an example of the application of the spin Hamiltonian, we consider a spin S = 1 in 
an axially symmetric system with an external magnetic field H = (Hx, Hy, Hz).  
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The energy level of the spin Hamiltonian with S = 1

H = gµB HHxSx + HySy + HzSzL + δ ASz2 − S HS + 1Lê3E + ε ISx2 − Sy
2M

Clear@"Global`∗"D;
Jx@�_, n_, m_D :=

1

2
H� − mL H� + m + 1L KroneckerDelta@n, m + 1D +

1

2
H� + mL H� − m + 1L KroneckerDelta@n, m − 1D;

Jy@�_, n_, m_D :=

−
1

2
� H� − mL H� + m + 1L KroneckerDelta@n, m + 1D +

1

2
� H� + mL H� − m + 1L KroneckerDelta@n, m − 1D;

Jz@�_, n_, m_D := m KroneckerDelta@n, mD
Sx = Table@Jx@1, n, mD, 8n, 1, −1, −1<, 8m, 1, −1, −1<D;
Sy = Table@Jy@1, n, mD, 8n, 1, −1, −1<, 8m, 1, −1, −1<D;
Sz = Table@Jz@1, n, mD, 8n, 1, −1, −1<, 8m, 1, −1, −1<D;
I1 = 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<;
Hamil@Hx_, Hy_, Hz_D :=

g µB HHx Sx + Hy Sy + Hz SzL + δ Sz.Sz −
1

3
S HS + 1L I1 +

ε HSx.Sx − Sy.SyL ê. S → 1;
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Matrix element in the general case

Hamil@Hx, Hy, HzD êê Simplify

99δ

3
+ g Hz µB,

g HHx − � HyL µB

2
, ε=,

9g HHx + � HyL µB

2
, −

2 δ

3
,

g HHx − � HyL µB

2
=,

9ε,
g HHx + � HyL µB

2
,
1

3
Hδ − 3 g Hz µBL==

Eigenvalue problems: eugenvalues and eigenfunctions; Hx

eqx1 = Eigensystem@Hamil@Hx, 0, 0DD êê Simplify

991
3

Hδ − 3 εL, 1

6
−δ + 3 ε − 3 δ2 + 2 δ ε + ε2 + 4 g

2
Hx

2 µB2 ,

1

6
−δ + 3 ε + δ2 + 2 δ ε + ε2 + 4 g

2
Hx

2 µB2 =,
98−1, 0, 1<,
91, − g Hx µB δ − 3 ε + δ2 + 2 δ ε + ε2 + 4 g

2
Hx

2 µB2 ì

2 δ ε + ε2 + g2 Hx2 µB2 −

ε δ2 + 2 δ ε + ε2 + 4 g
2
Hx

2 µB2 , 1=,

91, g Hx µB −δ + 3 ε + δ2 + 2 δ ε + ε2 + 4 g
2
Hx

2 µB2 ì

2 δ ε + ε2 + g
2
Hx

2 µB2 +

ε δ2 + 2 δ ε + ε2 + 4 g2 Hx2 µB2 , 1===
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Eigenvalue problems: eugenvalues and eigenfunctions; Hy

eqy1 = Eigensystem@Hamil@0, Hy, 0DD
991

3
Hδ + 3 εL, 1

6
−δ − 3 ε − 3 δ2 − 2 δ ε + ε2 + 4 g

2
Hy

2 µB2 ,

1

6
−δ − 3 ε + 3 δ2 − 2 δ ε + ε2 + 4 g2 Hy2 µB2 =,

981, 0, 1<, 9−1, − −
� g Hy ε µB

2
− 1ëI 2 M � g Hy µB

δ

3
+

1

6
δ + 3 ε + 3 δ2 − 2 δ ε + ε2 + 4 g2 Hy2 µB2 ì

−
δ ε

2
+

ε2

2
+
1

2
g
2
Hy

2 µB2 +
1

2
ε

δ2 − 2 δ ε + ε2 + 4 g2 Hy2 µB2 , 1=,

9−1, − −
� g Hy ε µB

2
− 1ëI 2 M � g Hy µB

δ

3
+

1

6
δ + 3 ε − 3 δ2 − 2 δ ε + ε2 + 4 g2 Hy2 µB2 ì

−
δ ε

2
+

ε2

2
+
1

2
g
2
Hy

2 µB2 −
1

2
ε

δ2 − 2 δ ε + ε2 + 4 g2 Hy2 µB2 , 1===
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Eigenvalue problems: eugenvalues and eigenfunctions; Hz

eqz1 = Eigensystem@Hamil@0, 0, HzDD
99−

2 δ

3
,
1

3
δ − 3 ε2 + g

2
Hz

2 µB2 ,

1

3
δ + 3 ε2 + g2 Hz2 µB2 =,

980, 1, 0<, 9−
−g Hz µB + ε2 + g2 Hz2 µB2

ε
, 0, 1=,

9−
−g Hz µB − ε2 + g2 Hz2 µB2

ε
, 0, 1===

rule1 = 8g → 1, µB → 1<
8g → 1, µB → 1<

Magnetic field // z, e/d  vs gmBHz

d

energyHz = eqz1@@1DDêδ ê. 8Hz → δ y, ε → δ x< ê. rule1 êê
Simplify@	, 8x > 0, δ > 0<D &

9−
2

3
,
1

3
− x

2 + y2 ,
1

3
+ x

2 + y2 =
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Fig.26 Zeeman splitting of the energy levels for S = 1 as a function of  /zB Hg . 

H//z. The index shows the value of  (= 0 – 1.0). 

pz@ξ_D := PlotBEvaluate@energyHz ê. x → ξ D,
8y, 0, 2<,
PlotStyle → Table@8Thick, Hue@0.15` iD<,

8i, 0, 4<D, PlotLabel → 8ξ <,
AxesLabel → :"gµBHz

δ
", "Eêδ">,

Background → GrayLevel@0.5DF;
ptz = Evaluate@Table@pz@ξD, 8ξ, 0, 1, 0.2`<DD;
Show@GraphicsGrid@Partition@ptz, 2DDD
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Magnetic field //x, E/d  vs gmBHx

d

energyHx =

eqx1@@1DDêδ ê. 8Hx → δ y, ε → δ x< ê. rule1 êê
Simplify@	, 8x > 0, δ > 0<D &

:1
3

− x,
1

6
−1 + 3 x − 3 1 + 2 x + x2 + 4 y

2
,

1

6
−1 + 3 x + 3 1 + 2 x + x

2 + 4 y2 >

px@ξ_D := PlotBEvaluate@energyHx ê. x → ξ D,
8y, 0, 2<,
PlotStyle → Table@8Thick, Hue@0.15` iD<,8i, 0, 4<D, PlotLabel → 8ξ <,
AxesLabel → :"gµBHxδ

δ
", "Eêδ">,

Background → GrayLevel@0.5DF;
ptx = Evaluate@Table@px@ξD, 8ξ, 0, 1, 0.2`<DD;
Show@GraphicsGrid@Partition@ptx, 2DDD
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Fig.27 Zeeman splitting of the energy levels for S = 1 as a function of  /xBHg . 

H//x. The index shows the value of  (= 0 – 1.0). 
 

 

Magnetic field êê y, εêδ vs
gµBHy

δ

energyHy =

eqy1@@1DDêδ ê. 8Hy → δ y, ε → δ x< ê. rule1 êê
Simplify@	, 8x > 0, δ > 0<D &

91
3

+ x,
1

6
−1 − 3 x − 3 1 − 2 x + x

2 + 4 y2 ,

1

6
−1 − 3 x + 3 1 − 2 x + x2 + 4 y

2 =

py@ξ_D := PlotBEvaluate@energyHy ê. x → ξ D,
8y, 0, 2<,
PlotStyle → Table@8Thick, Hue@0.15` iD<,8i, 0, 4<D, PlotLabel → 8ξ <,
AxesLabel → :"gµBHy

δ
", "Eêδ">,

Background → GrayLevel@0.5DF;
pty = Evaluate@Table@py@ξD, 8ξ, 0, 1, 0.2<DD;
Show@GraphicsGrid@Partition@pty, 2DDD
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Fig.28 Zeeman splitting of the energy levels for S = 1 as a function of  /xBHg . 

H//x. The index shows the value of  (= 0 – 1.0). 
 
12.3 S = 3/2 

A. Simple case with  = 0 and >0 

For simplicity we consider the spin Hamiltonian with  = 0 and  > 0. 
 

)]1(
3

1ˆ[ˆ 2  SSSH z . (12.18) 

 
Here note that 
 

zzz mmmH )(ˆ  , (12.19) 

 
with 
 

)
4

5
(ˆ)( 2  zzzz mmHmm  , (12.20) 

 

where zm  is the eigenket of zŜ  with the eigenvalue 
2

1
 ,

2

3
zm , 
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,ˆ
zzzz mmmS   (12.21) 

 
For this we get 
 

















 








 





2

1
2

3

z

z

m

m

 (12.22) 

 
Both states are spin doublets (Kramers doublet). This is true for any half-integer spin (S = 
1/2, 3/2, 5/2,…) 
 

 
 
Fig.29 Schematic diagram of the energy levels due to the crystal-field for S = 3/2. 

There are two Kramers doublets. 
 
B. Kramers doublet 

((Time reversal operator)) 

Most operators of interest are either even or odd under the time reversal. AA ˆˆˆˆ 1    
(+: even, -: odd). 
 

(1) 1̂ˆˆ 1
ii    (i is a pure imaginary, 1̂  is the identity operator). 

 

(2) pp ˆˆˆˆ 1    

 

(3) rr ˆˆˆˆ 1  
: ( rr ̂ ). 

 

(4) SS ˆˆˆˆ 1    ( Ŝ  is the spin angular momentum). 
 

(5) HH ˆˆˆˆ 1   , when )ˆ(
2

ˆˆ
2

xV
m

p
H   and )ˆ(xV  is a potential energy. The relation is 

independent of the form of )ˆ(xV . 

See the Appendix 2 for the detail of the time reversal operator for spin 1/2  
 
((Kramers theorem)) 

We introduce the time reversal operator ̂ . Suppose that Ĥ is invariant under time 
reversal,  
 

0̂]ˆ,ˆ[ H . (12.23) 



84 
 

 

Let n  and n̂  be the energy eigenket and its time-reversed states, respectively 

 

nnnnnn EEHH   ˆˆˆˆˆˆ . (12.24) 

 

n̂  and n  belong to the same energy eigenvalue. 

When 1̂ˆ 2   (half-integer), n̂  and n  are orthogonal. 

This means that n̂  and n  (having the same energy) must correspond to distinct 

states (Kramers doublet). 
 

S = 1 (even number of electrons) singlet 
S = 3/2 (odd number of electrons) doublet (Kramers doublet) 

 

 
 

Fig.30 Schematic diagram of the energy levels for the odd number of electrons 
under the crystal field and spin-orbit interaction. The ground state is a 
Kramers doublet.  

 
For the odd number of electrons in the incomplete shell, there remains the levels with 
double degeneracy in the absence of B in spite of any crystal field (Kramers doublet). 
((Note)) 
 

Co2+: (3d)7  n = 7  odd number   Kramers doublet 
Ni2+: (3d)8  n = 8  even number   No Kramers doublet 

 
C. ((Mathematica program)) Energy diagram of the spin Hamiltonian with S = 

3/2 in the presence of magnetic field 

 
As an example of the application of the spin Hamiltonian, we consider a spin S = 3/2 

in an axially symmetric system with an external magnetic field H = (Hx, Hy, Hz).  
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The energy level of the spin Hamiltonian with S = 3ê2
H = gµB HHxSx + HySy + HzSzL + δ ASz2 − S HS + 1L ê3E + ε ISx2 − Sy2M

Jx@�_, n_, m_D :=
1

2
H� − mL H� + m + 1L KroneckerDelta@n, m + 1D +

1

2
H� + mL H� − m + 1L KroneckerDelta@n, m − 1D;

Jy@�_, n_, m_D :=

−
1

2
� H� − mL H� + m + 1L KroneckerDelta@n, m + 1D +

1

2
� H� + mL H� − m + 1L KroneckerDelta@n, m − 1D;

Jz@�_, n_, m_D := m KroneckerDelta@n, mD
Sx = Table@Jx@3ê 2, n, mD, 8n, 3ê2, −3ê2, −1<,8m, 3ê2, −3ê2, −1<D;
Sy = Table@Jy@3ê 2, n, mD, 8n, 3ê2, −3ê2, −1<,8m, 3ê2, −3ê2, −1<D;
Sz = Table@Jz@3ê 2, n, mD, 8n, 3ê2, −3ê2, −1<,8m, 3ê2, −3ê2, −1<D;
I1 = 881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<, 80, 0, 0, 1<<;
Hamil@Hx_, Hy_, Hz_D :=

g µB HHx Sx + Hy Sy + Hz SzL + δ Sz.Sz −
1

3
S HS + 1L I1 +

ε HSx.Sx − Sy.SyL ê. S → 3ê 2;
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Matrix element in the general case

Hamil@Hx, Hy, HzD êê Simplify

::δ +
3 g Hz µB

2
,
1

2
3 g HHx − � HyL µB, 3 ε, 0>,

: 1
2

3 g HHx + � HyL µB, −δ +
g Hz µB

2
, g HHx − � HyL µB, 3 ε>,

: 3 ε, g HHx + � HyL µB, −δ −
g Hz µB

2
,
1

2
3 g HHx − � HyL µB>,

:0, 3 ε,
1

2
3 g HHx + � HyL µB, δ −

3 g Hz µB

2
>>

Eigenvalue problems: eugenvalues and eigenfunctions for H = Hx, Hy, and Hz

eqx1 = Eigensystem@Hamil@Hx, 0, 0DD êê Simplify;

eqy1 = Eigensystem@Hamil@0, Hy, 0DD êê Simplify;

eqz1 = Eigensystem@Hamil@0, 0, HzDD êê Simplify;

rule1 = 8g → 1, µB → 1<;
Magnetic field // z, e/d  vs 

gmBHz

d

energyHz = eqz1@@1DDêδ ê. 8Hz → δ y, ε → δ x< ê. rule1 êê
Simplify@	, 8x > 0, δ > 0<D &;

pz@ξ_D := PlotBEvaluate@energyHz ê. x → ξ D, 8y, 0, 2<,
PlotStyle → Table@8Hue@0.15 iD, Thick<, 8i, 0, 4<D,
PlotLabel → 8ξ <, PlotPoints → 100,

AxesLabel → :"gµBHz

δ
", "Eêδ">, Background → GrayLevel@0.5DF;

ptz = Evaluate@Table@pz@ξD, 8ξ, 0, 1, 0.2<DD;
Show@GraphicsGrid@Partition@ptz, 2DDD
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Fig.31 Zeeman splitting of the energy levels for S = 3/2 as a function of 
 /zB Hg . H//z. The index shows the value of  (= 0 – 1.0). 
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Magnetic field //x, E/d  vs 
gmBHx

d

energyHx = eqx1@@1DD êδ ê. 8Hx → δ y, ε → δ x< ê. rule1 êê
Simplify@	, 8x > 0, δ > 0<D &;

px@ξ_D := PlotBEvaluate@energyHx ê. x → ξ D, 8y, 0, 2<,
PlotStyle → Table@8Thick, Hue@0.15 iD<, 8i, 0, 4<D,
PlotLabel → 8ξ <, PlotPoints → 100,

AxesLabel → :"gµBHx

δ
", "Eêδ">, Background → GrayLevel@0.5DF;

ptx = Evaluate@Table@px@ξD, 8ξ, 0, 1, 0.2<DD;
Show@GraphicsGrid@Partition@ptx, 2DDD
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Fig.32 Zeeman splitting of the energy levels for S = 3/2 as a function of 

 /xBHg . H//x. The index shows the value of  (= 0 – 1.0). 
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Magnetic field êê y, Eêδ vs
gµBHy

δ

energyHy = eqy1@@1DDêδ ê. 8Hy → δ y, ε → δ x< ê. rule1 êê
Simplify@	, 8x > 0, δ > 0<D &;

py@ξ_D := PlotBEvaluate@energyHy ê. x → ξ D, 8y, 0, 2<,
PlotStyle → Table@8Hue@0.15 iD, Thick<, 8i, 0, 4<D,
Prolog → AbsoluteThickness@2.5 D, PlotLabel → 8ξ <,
PlotPoints → 100, AxesLabel → :"gµBHy

δ
", "Eêδ">,

Background → GrayLevel@0.5DF;
pty = Evaluate@Table@py@ξD, 8ξ, 0, 1, 0.2<DD;
Show@GraphicsGrid@Partition@pty, 2DDD
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Fig.33 Zeeman splitting of the energy levels for S = 3/2 as a function of 
 /yBHg . H//y. The index shows the value of  (= 0 – 1.0). 

 
12.4. Energy diagram for S = 2 
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The energy level of the spin Hamiltonian with S = 2

H = gµB HHxSx + HySy + HzSzL + δ ASz2 − S HS + 1Lê3E + ε ISx2 − Sy2M
Jx@�_, n_, m_D :=

1

2
H� − mL H� + m + 1L KroneckerDelta@n, m + 1D +

1

2
H� + mL H� − m + 1L KroneckerDelta@n, m − 1D;

Jy@�_, n_, m_D :=

−
1

2
� H� − mL H� + m + 1L KroneckerDelta@n, m + 1D +

1

2
� H� + mL H� − m + 1L KroneckerDelta@n, m − 1D;

Jz@�_, n_, m_D := m KroneckerDelta@n, mD
Sx = Table@Jx@2, n, mD, 8n, 2, −2, −1<, 8m, 2, −2, −1<D;
Sy = Table@Jy@2, n, mD, 8n, 2, −2, −1<, 8m, 2, −2, −1<D;
Sz = Table@Jz@2, n, mD, 8n, 2, −2, −1<, 8m, 2, −2, −1<D;
I1 = 881, 0, 0, 0, 0<, 80, 1, 0, 0, 0<, 80, 0, 1, 0, 0<,80, 0, 0, 1, 0<, 80, 0, 0, 0, 1<<;
Hamil@Hx_, Hy_, Hz_D :=

g µB HHx Sx + Hy Sy + Hz SzL + δ Sz.Sz −
1

3
S HS + 1L I1 +

ε HSx.Sx − Sy.SyL ê. S → 2;
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Matrix element for H=0

Hamil@0, 0, 0D êê Simplify

992 δ, 0, 6 ε, 0, 0=,
80, −δ, 0, 3 ε, 0<, 9 6 ε, 0, −2 δ, 0, 6 ε=,
80, 3 ε, 0, −δ, 0<, 90, 0, 6 ε, 0, 2 δ==

Eigenvalue problems: eugenvalues and eigenfunctions for H =  0

eq1 = Eigensystem@Hamil@0, 0, 0DD êê Simplify

::2 δ, −δ − 3 ε, −δ + 3 ε, −2 δ2 + 3 ε2
, 2 δ2 + 3 ε2 >,

:8−1, 0, 0, 0, 1<, 80, −1, 0, 1, 0<,

80, 1, 0, 1, 0<, :1, 0, −

2

3
Kδ + δ2 + 3 ε2 O

ε
, 0, 1>,

:1, 0,

2

3
K−δ + δ2 + 3 ε2 O

ε
, 0, 1>>>
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Fig.34 Energy diagram for S = 2. / vs . The ground state is a spin singlet. 
 
12.5. S = 5/2 

A. Simple case for S = 5/2 

 

 
 

Fig.35 Schematic diagram of the energy levels for S = 5/2 under the crystal field. 
There are three Kramers doublets. 

 
(2S + 1) = 6 degeneracy 

 

)]1(
3

1ˆ[ˆ 2  SSSDH z . (12.25) 

 

energy = eq1@@1DD ê δ ê. 8ε → δ x< êê
Simplify@	, 8x > 0, δ > 0<D &

:2, −1 − 3 x, −1 + 3 x, −2 1 + 3 x
2
, 2 1 + 3 x

2 >

PlotBEvaluate@energyD, 8x, −2, 2<,
PlotStyle → Table@8Thick, Hue@0.15 iD<, 8i, 0, 4<D,
Prolog → AbsoluteThickness@2.5 D,
AxesLabel → :" ε

δ
", "Eêδ">, Background → GrayLevel@0.7DF
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d
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Here note that 
 

zzz mmmH )(ˆ  . (12.26) 

 

)
2

7

2

5

3

1
(ˆ)( 2  zzzz mDmHmm  (12.27) 

 
where mz = 5/2, 3/2, -1/2, -3/2,-5/2. 
 
From this we get 
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B. Mathematica for S = 5/2 (general case) 

 

 

The energy level of the spin Hamiltonian with S = 5 ê 2
H = gµB HHxSx + HySy + HzSzL + δ ASz2 − S HS + 1Lê 3E + ε ISx2 − Sy2M

Clear@"Gobal`"D;
Jx@�_, n_, m_D :=

1

2
H� − mL H� + m + 1L KroneckerDelta@n, m + 1D +

1

2
H� + mL H� − m + 1L KroneckerDelta@n, m − 1D;

Jy@�_, n_, m_D :=

−
1

2
� H� − mL H� + m + 1L KroneckerDelta@n, m + 1D +

1

2
� H� + mL H� − m + 1L KroneckerDelta@n, m − 1D;

Jz@�_, n_, m_D := m KroneckerDelta@n, mD
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Sx = Table@Jx@5 ê 2, n, mD, 8n, 5 ê 2, −5 ê 2, −1<,8m, 5 ê 2, −5 ê 2, −1<D;
Sy = Table@Jy@5 ê 2, n, mD, 8n, 5 ê 2, −5 ê 2, −1<,8m, 5 ê 2, −5 ê 2, −1<D;
Sz = Table@Jz@5 ê 2, n, mD, 8n, 5 ê 2, −5 ê 2, −1<,8m, 5 ê 2, −5 ê 2, −1<D;
I1 = 881, 0, 0, 0, 0, 0<, 80, 1, 0, 0, 0, 0<,80, 0, 1, 0, 0, 0<, 80, 0, 0, 1, 0, 0<, 80, 0, 0, 0, 1, 0<,80, 0, 0, 0, 0, 1<<;
Hamil@Hx_, Hy_, Hz_D :=

g µB HHx Sx + Hy Sy + Hz SzL + δ Sz.Sz −
1

3
S HS + 1L I1 +

ε HSx.Sx − Sy.SyL ê. S → 5 ê 2;
Matrix element for H=0

eq1 =
Hamil@0, 0, 0D

δ
ê. 8ε → δ x< êê

Simplify@	, 8x > 0, δ > 0<D &
::10

3
, 0, 10 x, 0, 0, 0>,

:0, −
2

3
, 0, 3 2 x, 0, 0>, : 10 x, 0, −

8

3
, 0, 3 2 x, 0>,

:0, 3 2 x, 0, −
8

3
, 0, 10 x>,

:0, 0, 3 2 x, 0, −
2

3
, 0>, :0, 0, 0, 10 x, 0,

10

3
>>
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Fig.36 Energy diagram for S = 5/2. / vs . All the three states are a Kramers 

doublet. 
 
13. Spin Hamiltonian of Fe2+ and Co2+ in the trigonal crystal field 

13.1. Fe2+ 

A. Energy diagram 

For Fe2+ [(3d)6], the ground state is the orbital triplet. Thus we cannot use the method 
proposed by Pryce. In this case, we need to determine the energy diagram by taking both 
the crystal field and the spin orbit interaction into account.18 
 

Eigenvalue problems: eugenvalues and eigenfunctions for H =  0

eq1 = Eigenvalues@eq1D êê Simplify;
PlotBEvaluate@eq1D, 8x, −2, 2<,
PlotStyle → Table@8Thick, Hue@0.15 iD<, 8i, 0, 4<D,
PlotPoints → 100, AxesLabel → :" ε

δ
", "Eêδ">,

Background → GrayLevel@0.5DF
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Fig.37 Crystal field splitting of Fe2+ ion ground states. 
 

The free-ion (3d)6, 5D state (L = 2, S = 2) of the Fe2+ is split by the cubic crystal field 
into the orbital doublet (E) and orbital triplet (T2), the latter being the lowest one. The 

orbital wavefunction of the ground orbital triplet are represented by 
 

122

0

121

3

1

3

2
1

0

3

1

3

2
1

















d

s

d

 (13.1) 

 

where we use the notation, mml  ,3  and we have the relation mmz mL  ˆ  (m = 

-3, -2, -1, 0, 1, 2, 3). Hereafter we do not use the operators in quantum mechanics for 
convenience. We consider the splitting of the orbital triplet by the perturbing Hamiltonian 
given by 
 

)
3

2
( 2

0  zlSlkH 
��

. (13.2) 

 
where k (≈ 1) is a constant,  (= -100 cm-1 for Fe2+) is a spin-orbit coupling constant, and 
S is the spin angular momentum of the magnitude 2. The second term is the tetragonal field. 
A fictitious angular momentum l of the magnitude 1 represents the triplet state (l is 
antiparallel to the real orbital angular momentum L (= -kl). 

Since lz + Sz is a constant of the motion, its eigenvalue m can be used to classify the 

various states, where m = lz’+ Sz’, lz|lz’>= lz’|lz’> (lz’ = 1, 0, -1), and Sz|Sz’>= Sz’|Sz’> (Sz’ 

=2, 1,0,-1,-2). There are 15 states. A notation ',' zz Sl  is used to specify these states. 
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m = lz’+ Sz’, Eigenfunctions 

3 2',1'  zz Sl  

2 1,1 , 2,0  

1 0,1 , 1,0 , 2,1  

0 1,1  , 0,0 , 1,1  

-1 2,1  , 1,0  , 0,1  

-2 2,0  , 1,1   

-3 2,1   

We have the splitting of the ground orbital triplet by the spin-orbit coupling ’ and the 
trigonal field  (>0). The energy levels are denoted by 
 

E3 (m = ± 3), E2
(±) (m = ± 2), E1

(i) (i = 1, 2, 3) (m = ±1), E0
(0) and E0

(±) (m = 0). 

 

Here we use 
'


x . 

(i) m = ±3 (E3) 
 

2
3'

3 
xE


 

 
(ii) m = ±2 [E2] 
 

22 29
2

1

2

1

6'
xx

xE



 

 
(iii) m = ±1 [E1

(1), E1
(2), E1

(3)] 
 

i

i
xE




 1
3'

)(
1   (i = 1, 2, 3). 

where 
 

1
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1

3
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(iv) m = 0 [E0

(0), E0
(±)] 

 

1
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)0(
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The ground level is either E0
(+) or E1

(1), depending on the sign of x. All the energy states 

except for E1
(1) and E0

(+) might be neglected in the first approximation, since these lowest 

levels lie 100 cm-1 below the others.  
Thus we may use a fictitious spin s = 1 for the lowest three states denoted by the 

eigenkets |0> for the singlet and |±1> for the doublet: 

 

2,11,00,1 3211  ∓ccc , for E = E1
(1), (13.3) 

 

1,10,01,1 3210  aaa  for E = E0
(+). (13.4) 

 
The parameters c1, c2, c3, a1, a2, and a3 are defined by 

 

12

3

2

2

2

1  ccc ,  12

3

2

2

2

1  aaa , (13.5) 

 

1

1 1

3





c ,  2c ,  

1

3 1

2





c , (13.5) 

 

6

3
2

0

31





aa ,  

62

0

0
2







a , (13.6) 

 
where 
 

1

2
1

2
1

2 ]
)1(

2
1

)1(

3
[ 








 , (13.7) 

 
and the parameters 0 and 1 are related to the energy E1

(1) and E0
(+) through 

 

1

)1(
1 1

3'





xE
, 0

)(
0 1

3'






xE

. (13.8) 

 
B. Spin Hamiltonian with fictitious spin s = 1. 

The g-factors can be evaluates as gc = gc
(0) + g and ga = ga

(0) + g, where g is due 

to the effect of spin-orbit coupling in admixing the upper orbital levels into the ground 
three orbitals, and gc

(0) and ga
(0) are given by 

 
2

3
2

2
2

111
)0( )4(2 ckckcVg zc    , (13.9) 

 

332211322110
)0( 22)(32)(2 acacacacackVg xc   .  

 (13.10) 
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where zzz SklV 2  and xxx SklV 2 . For a given k, the two gc
(0) and ga

(0) values are 

functions of the single parameter x and so they bear a functional relationship to each other. 
In Fig.40 we show the gc

(0) and ga
(0) as a function of x with k as a parameter: gc

(0)>ga
(0) 

for x<0 and gc
(0)<ga

(0) for x>0. Note that x = -1.27 for FeCl2.  

If we take the z axis parallel to the c axis, and x, y axes perpendicular to it, we have 
 

Sx = qsx,  Sy = qsy,  Sz = psz, 

 
Here 
 

1,11,1 310  aaS z  , 2,121,0( 321  ∓ccS z  , (13.11) 

pccS
z

 )2( 2

3

2

211  , 000  zS , (13.12) 

qacacacS 22)(6 33221101   , (13.13) 

 
where 
 

2

3

2

2 2ccp  , 332211 2)(3 acacacq  . (13.14) 

 
((Note)) 

Note that for s = 1, 201   s , where 0 , 1  are assumed to be eigenkets of s = 

1. In other words, we have 
 

3322110101 2)(62 acacacqqsS    , (13.15) 

 
2

3
2

21111 2ccppsS zz   . (13.16) 

 
If we assume that the exchange interaction within the ground orbital triplet is given by 

 

jiijij JH SS  2 , (13.17) 

 
the effective exchange interaction nearest spins within the ground levels is expressed by 
 

])([2 22
jzizjyiyjxixijij sspssssqJH  . (13.19) 

 
Thus the exchange interaction becomes anisotropic. This is rewritten as 
 

])([2 222
jzizjiijij ssqpqJH  ss . (13.20) 

 
The resultant spin Hamiltonian for Fe2+ is given by 
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ji

jzizA

ji

ji

i

iz ssJJsDH
,,

2 22)
3

2
( ss , (13.21) 

 
where the fictitious spin s = 1. J = q2Jij D ≈ /10 (>0) is the single ion anisotropy, and JA 

(=J (p2-q2)/q2) is the anisotropic exchange interaction. The second term is the isotropic 
exchange interaction, and third term is the anisotropic exchange interaction. The spin 
anisotropy parameter Deff is defined as Deff (= D (s -1/2) + 2zsJA. The XY (Ising) symmetry 

appears when Deff<0 (Deff>0). 

 
C. Mathematica-Program: energy diagram of Fe2+ in the trigonal field 

Here we calculate the energy levels, the probability amplitudes and parameters of spin 
Hamiltonian of Fe2+ ion in the trigonal field.  
((Mathematica program)) 
Fictitious spin s=1  in Fe2+, Spin Hamiltonian 
 Clear["Gobal`"] 

  
Wavefunctions, g-values, anisotropic exchange interaction 

E3= −J−
x

3
−2N;E2p = −J x

6
−
1

2
+
1

2

è!!!!!!!!!!!!!!!!!!!!!
x2+2 x +9N;

E2n= −J x
6

−
1

2
−
1

2

è!!!!!!!!!!!!!!!!!!!!!
x2 +2 x +9N;

E13@x1_D:= ModuleA8t, y<, t= x1;eq11 =t == Hy +1L −
3

y+1
−

2

y−1
;

s1= NSolve@eq11, yD êê Flatten;E13@tD = −J−
t

3
+Hy +1LN ê.s1@@1DDE;

E12@x2_D:= ModuleA8t, y<, t= x2;eq22 =t ==Hy +1L−
3

y+1
−

2

y−1
;

s2= NSolve@eq22, yD êê Flatten;E12@tD = −J−
t

3
+Hy +1LN ê.s2@@2DDE;

E11@x3_D:= ModuleA8t, y<, t= x3;eq33 =t ==Hy +1L−
3

y+1
−

2

y−1
;

s3= NSolve@eq33, yD êê Flatten;E11@tD = −J−
t

3
+Hy +1L ê.s3@@3DDNE;

E0= −J−
x

3
+1N;

E0p@x4_D:= ModuleA8t, y<, t= x4;eq44 = Jy +
t

3
−1N Jy−

2t

3
N−6� 0;

s4= NSolve@eq44, yD êê Flatten;E0p@tD = −yê.s4@@2DDE;
E0n@x5_D:= ModuleA8t, y<, t= x5;eq55 = Jy +

t

3
−1N Jy−

2t

3
N−6� 0;

s5= NSolve@eq55, yD êê Flatten;E0n@tD = −yê.s5@@1DDE
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Overview of the Energy levels,  E3, E2+, E2-, E13[x], E12[x], E11[x], E0, E0+[x],E0-[x] 
as a function of x  
 
Plot[Evaluate[{E3,E2p,E2n,E13[x],E12[x],E11[x],E0,E0p[x],E0
n[x]}],{x,-8,8}, PlotStyle→Table[Hue[0.1 

c1@x1_, k1_D:= ModuleA8t, k, y,s1, y1<, t = x1;k =k1;

eq11= t== Hy +1L −
3

y+1
−

2

y−1
;s1= NSolve@eq11, yDêê Flatten;

y1= yê. s1@@3DD;c1@t,kD =
1

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3H1+y1L2 +1+ 2H1−y1L2

i
k
jjjj −

è!!!!
3

1+y1

y
{
zzzzE;

c2@x1_, k1_D:= ModuleA8t, k, y,s1, y1<, t = x1;k =k1;

eq11= t== Hy +1L −
3

y+1
−

2

y−1
;s1= NSolve@eq11, yDêê Flatten;

y1= yê. s1@@3DD;c2@t,kD =
1

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3H1+y1L2 +1+ 2H1−y1L2
E;

c3@x1_, k1_D:= ModuleA8t, k, y,s1, y1<, t = x1;k =k1;

eq11= t== Hy +1L −
3

y+1
−

2

y−1
;s1= NSolve@eq11, yDêê Flatten;

y1= yê. s1@@3DD;c3@t,kD =
1

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3H1+y1L2 +1+ 2H1−y1L2

i
k
jjjj

è!!!!
2

1−y1

y
{
zzzzE;

a1@x1_, k1_D:= ModuleA8t, k, z,s2, y0<, t = x1;k =k1;

eq22= Jz +
t

3
−1N Jz−

2t

3
N−6� 0;s2 = NSolve@eq22,zD êê Flatten;

y0= Jz+
t

3
−1N ê.s2@@2DD;a1@t,kD = −

è!!!!
3è!!!!!!!!!!!!!

6+y02
E;

a2@x1_, k1_D:= ModuleA8t, k, z,s2, y0<, t = x1;k =k1;

eq22= Jz +
t

3
−1N Jz−

2t

3
N−6� 0;s2 = NSolve@eq22,zD êê Flatten;

y0= Jz+
t

3
−1N ê.s2@@2DD;a2@t,kD =

y0è!!!!!!!!!!!!!
6+y02

E;
a3@x1_, k1_D:= ModuleA8t, k, z,s2, y0<, t = x1;k =k1;

eq22= Jz +
t

3
−1N Jz−

2t

3
N−6� 0;s2 = NSolve@eq22,zD êê Flatten;

y0= Jz+
t

3
−1N ê.s2@@2DD;a3@t,kD = −

è!!!!
3è!!!!!!!!!!!!!

6+y02
E

q@x_,k_D :=
è!!!!
3 Hc1@x, kD a1@x, kD + c2@x, kD a2@x, kDL +è!!!!

2 c3@x,kD a3@x,kD;p@x_, k_D:= c2@x,kD2+ 2 c3@x,kD2;
gc@x_, k_D := −kc1@x, kD2+2c2@x,kD2+ Hk+4L c3@x, kD2;
ga@x_, k_D := −k Hc1@x, kD a2@x,kD +c2@x, kD a3@x,kDL +

2
è!!!!
3 Hc1@x,kD a1@x, kD +c2@x,kD a2@x, kDL +2

è!!!!
2 c3@x,kD a3@x, kD
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i],{i,0,8}],Prolog→AbsoluteThickness[3], 
AxesLabel→{"x=δ/λ'","E/|λ'|"}, Background→GrayLevel[0.7]] 

 
 �Graphics� 
 

Fig.38 The splitting of the ground orbital triplet by the spin-orbit coupling and 
the trigonal field for Fe2+ ion in the trigonal field. E3 (red), E2

(-) (yellow), 
E1

(3) (green), E0
(-) (purple), E0

(0) (blue), E1
(2) (green), E2

(+) (orange), E1
(1) 

(ligh blue), and E0
(+) (blue). 

 
The ground level : either  E11[x] or E0+[x] as a function of x  
 Plot[Evaluate[{E11[x],E0p[x]}],{x,-6,6}, 
PlotStyle→Table[Hue[0.5 
i],{i,0,1}],Prolog→AbsoluteThickness[3], 
AxesLabel→{"x=δ/λ'","E/|λ'|"},Background→GrayLevel[0.7]] 

 
�Graphics� 
 
Fig.39 The detail of the two energy levels E1

(1) (red) and E0
(+) (light blue) as a 

ground state for Fe2+ ion in the trigonal field. 
 
Plot of the g-factors gc[x,k] and ga[x,k] as a function of x with k = 0.9, 0.95, and1.0 
Plot[Evaluate[Table[{gc[x,k],ga[x,k]},{k,0.9,1,0.05}]],{x,-
10,10}, PlotStyle→Table[Hue[0.3 
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i],{i,0,10}],Prolog→AbsoluteThickness[3], 
AxesLabel→{"x=δ/λ'","gc"},Background→GrayLevel[0.7]] 

 
 �Graphics� 
 
Fig.40 Plot of gc (red) and ga (blue) as a function of x for Fe2+ ion in the trigonal 

field. k = 0.9, 0.95, and 1. 
 
Anisotropic parameters of spin Hamiltonian q and p, Plot of q and p as a function of x 
with k = 0.9, 0.95, and1.0 
 Plot[Evaluate[Table[{q[x,k],p[x,k]},{k,0.9,1.0,0.5}]],{x,-
8,8}, PlotStyle→Table[Hue[0.4 
i],{i,0,8}],Prolog→AbsoluteThickness[3], 
AxesLabel→{"x=δ/λ'","q, p"}, Background→GrayLevel[0.7]] 

 
 �Graphics� 
 
Fig.41 Plot of the parameters q (red) and p (green) for Fe2+ ion in the trigonal 

field. k = 0.9, 0.95, and 1. 
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Plotof
p2−q2

q2
asafunctionofx.k = 0.8, 0.9, 1, 1.1

PlotAEvaluateATableA p@x,kD2 −q@x, kD2
q@x, kD2 , 8k,0.8,1.1, 0.1<EE,

8x, −8, 8<, PlotStyle→ Table@Hue@0.5iD, 8i,0,8<D,
Prolog→ AbsoluteThickness@3D, AxesLabel→ 8"x=δêλ'","D"<,
Background→ GrayLevel@0.7DE



104 
 

 
 �Graphics� 
 
Fig.42 Plot of the spin anisotropy parameter p2/q2 – 1 as a function of x for Fe2+ 

ion in the trigonal field. k = 0.8, 0.9, 1, and 1.1. 
 
gc vs ga curves with k = 0.9, 0.95, 1.0 
ParametricPlot[Evaluate[Table[{gc[x,k],ga[x,k]},{k,0.9,1.0,
0.05}]],{x,-100,100}, 
PlotPoints→100,PlotStyle→Table[Hue[0.2 
i],{i,0,10}],Prolog→AbsoluteThickness[3], 
AxesLabel→{"gc","ga"},PlotRange→{{1.8,5.4},{1.5,4}}, 
Background→GrayLevel[0.7]] 

 
 �Graphics� 
 
Fig.43 Calculated relation between gc and ga-values of Fe2+ ion in the trigonal 

field. k = 0.9 (red), 0.95 (yellow), and 1.0 (green). 
 
squares of amplitudes (c1, c2, c3) of the wave functions as a function of x 
k = 0.9 
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PlotAEvaluateA9c1@x,0.9D2,c2@x, 0.9D2,c3@x, 0.9D2=E, 8x, −10,10<,
PlotStyle→ Table@Hue@0.3iD, 8i,0,3<D, Prolog→ AbsoluteThickness@2D,
Background→ GrayLevel@0.7DE
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 �Graphics� 
 
Fig.44 Plot of the probability amplitudes c1

2 (red), c2
2 (blue), and c3

2 (green), as 
a function of x for Fe2+ ion in the trigonal field. k = 0.9 

 

Squares of amplitudes (a1, a2, a3) of the wave functions, as a function of x 
k = 0.9 

  

 
 �Graphics� 
 
Fig.45 Plot of the probability amplitude an

2 (n = 1 – 3) for Fe2+ ion in the trigonal 
field. k = 0.9. 

 
13.2. Co2+ 

A. Energy diagram of Co2+ 
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Fig.46 Crystal-field splittings of Co2+ ion ground states. 
 

For Co2+ [(3d)7], the ground state is the orbital triplet. Thus we cannot use the method 
proposed by Pryce. In this case, we need to determine the energy diagram by taking both 
the crystal field and the spin orbit interaction into account.19,20 

In a cubic crystal field the free-ion 3d7 (L = 3, S = 3/2), 4F state is split into two orbital 
triplets and one orbital singlet with a triplet the lowest, 
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, (13.22) 

 

where we use the notation, mml  ,2  and we have the relation mmz mL  ˆ  (m = 

-2, -1, 0, 1, 2). We can verify that 
 

2

3
1ˆ1 ∓ zL , 00ˆ0 zL , 01ˆ11ˆ00ˆ1  ∓zzz LLL . 

 (13.23) 
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We can show that all the matrix element of L̂  within the states 0 , 1 , are exactly the 

same as the matrix element of -3l/2, where l is a fictitious angular momentum of the 
magnitude 1. Hereafter we do not use the operators in quantum mechanics for convenience. 

Now we consider the splitting of the ground orbital triplet by the tetragonal crystal field 
together with the spin-orbit coupling, 
 

)
3

2
(

2

3 2

0  zlSlkH 
��

, (13.24) 

 
where ’= k is the spin -orbit coupling constant and may be different from its free-ion 
value of -180 cm-1, and k is the orbital reduction factor due to admixture of 4P into 4T1 and 

is less than but of order unity,  is the trigonal field strength, and S is the spin angular 
momentum of the magnitude 3/2. A fictitious angular momentum l of the magnitude 1 
represents the triplet state (l is antiparallel to the real orbital angular momentum L = -3kl/2).  

Since lz + Sz is a constant of the motion, its eigenvalue m can be used to classify the 

various states, where m = lz’+ Sz’, (lz’ = 1, 0, -1 and Sz’ = 3/2, 1/2,-1/2,-3/2). There are 12 

eigenfunctions. 
 

m = lz’+ Sz’, Eigenfunctions 
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The secular equation reduces to three separate equations for energy. The energy 
eigenvalues are as follows. 
 

Es (m = ±5/2), 

Eq
(±) (m = ±3/2), 

Ec
(0), Ec

(1), and Ec
(2) (m = ±1/2). 

 
For all values of x, Ec

(0) is the lowest energy. The wave functions |±1>, |±3>, and |±4> 

for m = ±1/2 are given by 
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2

1
,1

2

1
,0

2

3
,1 3211 ∓∓  ccc  for E±1 = Ec

(0), (13.25) 

 

2

1
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2

1
,0

2

3
,1 6543 ∓∓  ccc  for E±3 = Ec

(1), (13.26) 

 

2

1
,1

2

1
,0

2

3
,1 9874 ∓∓  ccc  for E±4 = Ec

(2)). (13.27) 

 
where the parameters ci (i = 1 - 9) are defined by 
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, (13.28) 

 
with 
 

2/1
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j 
  (j = 0,1,2).  

 
The parameter j (j = 0, 1, 2) is related to Ec

(j)/’ as 
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and 
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. (13.30) 

 
The wave functions |±2> and |±5> for m = ±3/2 are given by 

 

2

1
,1

2

3
,0 212  dd  for E±2 = Eq

(+), (13.31) 

 

2

1
,1

2

3
,0 435  dd  for E±5 = Eq

(-), (13.32) 
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where the parameter di (i = 1- 4) is defined by 
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xd , (13.33) 
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with 
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62

9
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 qE

x .  (13.35) 

 
B. Fictitious spin s = 1/2 

Since there are only two states in this lowest Kramers doublet (E = Ec
(0)), the true spin 

S (= 3/2) can be replaced by a fictitious spin s of the magnitude 1/2 within the ground state. 
The g-factors can be evaluated as gc = gc

(0) + g and ga = ga
(0) + g, where g is due to 

the effect of spin-orbit coupling in admixing the upper orbital levels into the ground orbital 
triplet. The values of gc

(0) and ga
(0), are given by 

 
2

3
2

2
2

111
)0( )23(2)63(2 ckcckVg zc    , (13.36) 

 

32
2

22111
)0( 234342 ckccccVg xa   ∓

  (13.37) 

 
with  
 

Vz = -(3k/2)lz + 2Sz,  Vx = -(3k/2)lx + 2Sx. 

 
If we take the z axis parallel to the c axis, and x, y axes perpendicular to it, we may finally 
replace the true spin S = 3/2 within the ground doublet, by the s= 1/2 fictitious spin, 
 

S
x
 = qsx, Sy = qsy, Sz = psz; 

 
2

3
2

2
2

111 332 cccSp z    , (13.38) 
 

2
22111 2322 ccciSSq yx   ∓

 . (13.39) 
 
Let us now consider the Heisenberg exchange interaction given by 
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jzizjiji ssqpJqJJH  )(222 22
0

2
00 ssSS , (13.40) 

 
or 
 





ji

jzizA

ji

ji ssJJH
,,

22 ss . (13.41) 

 
where 
 

J = q2J0, JA = (p2/q2- 1)J.  

 
The first term is a Heisenberg-type (isotropic) exchange interaction and the second term is 
an anisotropic exchange interaction: JA = J0 (p2 – q2). Since s = 1/2, there is no single ion 
anisotropy. The ratio JA/J (= (p2/q2-1) provides a measure for the spin symmetry of the 

system. The spin dimensionality of the system is Ising-like for JA>0, XY-like for JA<0, and 
Heisenberg-like for JA = 0. 
 
C. Mathematica program: energy diagram of Co2+ in the trigonal field 

Here we calculate the energy levels, the probability amplitudes and parameters of spin 
Hamiltonian of Co2+ ion in the trigonal field.  
 
((Mathematica program)) 
Six Kramers doublets in Co2+, M.E. Lines, Phys. Rev. 131, 546 (1963); 
    T. Oguchi, J. Phys. Soc. Jpn. 
      20, 2236 (1965)) 

  
 Clear["Gobal`"] 

  
 Since there are only two states in the lowest Kramers doublet, we can use a fictitious 
spin s for the lowest doublet. 
Pameters, c1, c2, c3, c4, c5, c6, c7, c8, c9, d1, d2, d3, d4, p, q, gc, ga 

Energylevels, Et, Ec0 = Ec
H0L
, Ec1 = Ec

H1L
, Ec2 = Ec

H2L
, Eqn= Eq

H−L
, Eqp = Eq

H+L

Et=
x

3
+
9

4
;Eqp = −

x

6
+
3

8
−
1

2
$%%%%%%%%%%%%%%%%%%%%%%%%%%%%x2+

3

2
x +

225

16
;

Eqn= −
x

6
+
3

8
+
1

2
$%%%%%%%%%%%%%%%%%%%%%%%%%%%%x2 +

3

2
x +

225

16
;

Ec0@x3_D:= ModuleA8t, y<,t= x3;eq1 =t ==
3

4
Hy +3L−

9

2y
−

6

y+2
;

s1= NSolve@eq1,yDêê Flatten;Ec0@tD = −J−
t

3
+
3

4
 Hy +3LN ê.s1@@3DDE;

Ec1@x2_D:= ModuleA8t, y<,t= x2;eq1 =t ==
3

4
Hy +3L−

9

2y
−

6

y+2
;

s1= NSolve@eq1,yDêê Flatten;Ec1@tD = −J−
t

3
+
3

4
 Hy +3LN ê.s1@@1DDE;

Ec2@x1_D:= ModuleA8t, y<,t= x1;eq1 =t ==
3

4
Hy +3L−

9

2y
−

6

y+2
;

s1= NSolve@eq1,yDêê Flatten;Ec2@tD = −J−
t

3
+
3

4
 Hy+3LN ê.s1@@2DDE
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c1@x4_,k1_D := ModuleA8t,y, k<,t =x4;k= k1;

eq44= t==
3

4
Hy +3L −

9

2y
−

6

y+2
;s4 = NSolve@eq44, yD êê Flatten;

c1@t,kD =

è!!!!
6
y

$%%%%%%%%%%%%%%%%%%%%%%%%%%%6
y2

+1+ 8Hy+2L2
ê.s4@@3DDE;

c2@x4_,k1_D := ModuleA8t,y, k<,t =x4;k= k1;

eq44= t==
3

4
Hy +3L −

9

2y
−

6

y+2
;s4 = NSolve@eq44, yD êê Flatten;

c2@t,kD =
−1

$%%%%%%%%%%%%%%%%%%%%%%%%%%%6
y2

+1+ 8Hy+2L2
ê.s4@@3DDE;

c3@x4_,k1_D := ModuleA8t,y, k<,t =x4;k= k1;

eq44= t==
3

4
Hy +3L −

9

2y
−

6

y+2
;s4 = NSolve@eq44, yD êê Flatten;

c3@t,kD =

è!!!!
8

y+2

$%%%%%%%%%%%%%%%%%%%%%%%%%%%6
y2

+1+ 8Hy+2L2
ê.s4@@3DDE;

c4@x4_,k1_D := ModuleA8t,y, k<,t =x4;k= k1;

eq44= t==
3

4
Hy +3L −

9

2y
−

6

y+2
;s4 = NSolve@eq44, yD êê Flatten;

c4@t,kD =

è!!!!
6
y

$%%%%%%%%%%%%%%%%%%%%%%%%%%%6
y2

+1+ 8Hy+2L2
ê.s4@@1DDE;

c5@x4_,k1_D := ModuleA8t,y, k<,t =x4;k= k1;

eq44= t==
3

4
Hy +3L −

9

2y
−

6

y+2
;s4 = NSolve@eq44, yD êê Flatten;

c5@t,kD =
−1

$%%%%%%%%%%%%%%%%%%%%%%%%%%%6
y2

+1+ 8Hy+2L2
ê.s4@@1DDE;

c6@x4_,k1_D := ModuleA8t,y, k<,t =x4;k= k1;

eq44= t==
3

4
Hy +3L −

9

2y
−

6

y+2
;s4 = NSolve@eq44, yD êê Flatten;

c6@t,kD =

è!!!!
8

y+2

$%%%%%%%%%%%%%%%%%%%%%%%%%%%6
y2

+1+ 8Hy+2L2
ê.s4@@1DDE;

c7@x4_,k1_D := ModuleA8t,y, k<,t =x4;k= k1;

eq44= t==
3

4
Hy +3L −

9

2y
−

6

y+2
;s4 = NSolve@eq44, yD êê Flatten;

c7@t,kD =

è!!!!
6
y

$%%%%%%%%%%%%%%%%%%%%%%%%%%%6
y2

+1+ 8Hy+2L2
ê.s4@@2DDE;

c8@x4_,k1_D := ModuleA8t,y, k<,t =x4;k= k1;

eq44= t==
3

4
Hy +3L −

9

2y
−

6

y+2
;s4 = NSolve@eq44, yD êê Flatten;

@ D ê @@ DDE
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Energy diagram of Et, Eq-, Eq+, Ec0, Ec1, Ec2 for Co2+ as a function of x 
 Plot[Evaluate[{Et,Eqn,Eqp,Ec0[x],Ec1[x],Ec2[x]}],{x,-
10,10}, PlotStyle→Table[Hue[0.15 
i],{i,0,6}],Prolog→AbsoluteThickness[3],Background→GrayLeve
l[0.7],AxesLabel→{"x=δ/λ'","E/|λ'|"}]  

 
 �Graphics� 
 
Fig.47 Energy levels of six Kramers doublets for Co2+ ion in the trigonal field. 

Ec(0) (light green), Eq
- (green) Ec

(1) (blue), Ec
(2) (purple), Eq

+ (yellow), and 
Es (red) 

 
Squares of parameters, c1, c2, c3, c4, c5, c6 as a function of x 
k = 0.9 

  

 
 �Graphics� 

 
Fig.48 Plot of the probability amplitudes cn

2 (n = 1 – 9) for Co2+ ion in the trigonal 
field. k = 0.9. 

 
Squares of parameters, c1, c2, c3, c4, c5, c6 as a function of x 
k = 0.9 
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 �Graphics� 

 
Fig.49 Plot of the probability amplitudes dn

2 (n = 1 – 4) for Co2+ ion in the 
trigonal field. k = 0.9. 

 
gc and ga, Lande g-factors along the c and a axes as a function of x 
k = 0.0, 0.95, 1.0 
plc=Plot[Evaluate[Table[{gc[x,k],ga[x,k]},{k,0.9,1.0,0.05}]
],{x,-
10,10},Prolog→AbsoluteThickness[2],PlotStyle→Table[Hue[0.15 
i],{i,0,5}],PlotRange→{{-10,10},{0,9}}, 
Background→GrayLevel[0.7]] 

 
 �Graphics� 

 
Fig.50 Plot of gc and ga as a function of x for Co2+ in the trigonal field. k = 0.9, 

0.95, and 1. gc>ga for x<0. gc<ga for x>0. 
 
Plot of gc vs ga 
k = 0.9, 0.95, 1 
 
p1=ParametricPlot[Evaluate[Table[{gc[x,k],ga[x,k]},{k,0.9,1
.0,0.05}]],{x,-
200,100},Prolog→AbsoluteThickness[2],AxesLabel→{"gc","ga"},
PlotStyle→Table[Hue[0.3 

PlotAEvaluateA9d1@x, 0.9D2, d2@x, 0.9D2, d3@x, 0.9D2, d4@x, 0.9D2=E,
8x, −10, 10<, PlotStyle→ Table@Hue@0.2iD, 8i,0,3<D,
Prolog→ AbsoluteThickness@2D, Background→ GrayLevel@0.7DE
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i],{i,0,5}],PlotRange→{{0,10},{0,6}}, 
Background→GrayLevel[0.7]] 

 

 
Fig.51 Calculated gc and ga-values of Co2+ ion in the trigonal field. k = 0.9 (red), 

0.95 (green), and 1.0 (blue). 
 
 
Parameters p and q as a function of x 
k = 0.8, 0.9, 1.0, 1.1 
 Plot[Evaluate[Table[{p[x,k],q[x,k]},{k,0.8.1.1,0.1}]],{x,-
5,5}, PlotStyle→Table[Hue[0.15 
i],{i,0,6}],Prolog→AbsoluteThickness[3],AxesLabel→{"x","p,q
"}, Background→GrayLevel[0.7]] 

 
 �Graphics� 

 
Fig.52 Plot of the parameters p (red) and q (yellow) as a function of x for Co2+ 

ion in the trigonal field. k = 0.8, 0.9, 1.0, and 1.0. 
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 �Graphics� 

 
Fig.53 Plot of p2/q2 – 1 as a function of x for Co2+ ion in the trigonal field. k = 

0.8, 0.9, 1.0, and 1.0. 
 
14. CONCLUSION 

We have shown that the spin Hamiltonian well accurately describes the magnetic 
properties of magnetic ions in the crystal field. When these magnetic ions are magnetically 
coupled through exchange interactions, they may undergo a second-order phase transition 
at a critical temperature [Curie temperature (ferromagnet) or a Néel temperature 
(antiferromagnet)]. Spins are ordered below the critical temperature. The static critical 
exponents depend on the dimensionality (d = 3, 2,) of the system and the symmetry 
dimensionality of the order parameter [Ising (n = 1), XY (n = 2), and Heisenberg (n = 3)]. 
The spin dimensionality can be determined from the spin Hamiltonian.21 In two dimensions, 
there are phase transitions for the Ising and XY spin symmetry. For example, K2CoF4 and 
Rb2CoF4 are two-dimensional (2D) Ising-like antiferromagnet (fictitious spin 1/2), and 
K2MnF4 is a 2D Heisenberg antiferromagnet. In contrast, K2CuF4 (spin 1/2) is a 2D XY-
like ferromagnet.22 For the 2D Ising model, there is an exact Onsager solution,23 while for 
the 2D XYmodel, the system is predicted to show a Kosterlitz-Thouless (KT) transition.24 
The spins form vortices at low temperatures. and below the KT transition temperature the 
vortices become bound. The critical exponents of critical behaviors of the spin systems 
with short range interactions depends only on the dimensionality d and the spin 
dimensionality n (the universality). 

Since the beginning of 1980’s, we have been studying the magnetic phase transitions 
of quasi 2D spin systems such as stage-2 CoCl2-, NiCl2-, CuCl2-, FeCl3-, MnCl2-, and 
CrCl3- graphite intercalation compounds.25-31 We find that the magnetic properties of these 
compounds are well described by the appropriate spin Hamiltonians of Co2+, Ni2+, Cu2+, 
Fe3+, Mn2+, and Cr3+ in the trigonal crystal field. 
 
REFERENCES 

1. C. Kittel, Introduction to Solid State Physics, seventh edition (John Wiley & Sons, 
Inc., New York, 1996). 

2. J.H. Van Vleck, Nobel Lecture (December 8, 1977), Quantum Mechanics The Key 

to Understanding Magnetism. 
3. R.M. White, Quantum Theory of Magnetism (Springer-Verlag, New York,2007). 
4. K. Yosida, Theory of Magnetism (Springer-Verlag, Berlin, 1996). 
5. J. Kanamori, Magnetism (Baifukan, Tokyo, 1969, in Japanese). 

-4 -2 2 4
x

1

2

3

4

Hp2êq2L−1



116 
 

6. M. Date, Electron Spin Resonance (Baifukan, Tokyo, 1978, in Japanese). 
7. L. Hoddeson, E. Braun, J. Teichmann, and S. Weart, Out of the Crystal Maze 

(Oxford University Press, New York, 1992). 
8. J.H. Van Vleck, Theory of Electric and Magnetic Susceptibilities (Oxford 

University Press, Oxford,1932). 
9. E.C. Stoner, Magnetism and Matter (Methuen, London, 1934). 
10. J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, 

Cambridge, 1961). 
11. A. Abraham and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions 

(Claendon Press, Oxford, 1970). 
12. S. Sugano, T. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in 

Crystals (Academic Press, New York, 1993). 
13. T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics 

(Springer-Verlag, Berlin, 1990). 
14. C.J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill Book 

Company, Inc., New York, 1962). 
15. K.W.H. Stevens, in Magnetism Vol.1 p1-22, edited by G.T. Rado and H. Suhl 

(Academic Press, New York 1963). 
16. A. Abraham and M. H. L. Pryce, Proc. Roy. Soc. (London) A205, 135 (1951). 
17. B. Bleaney and K.W.H. Stevens, Reports on Progress in Physics 16, 108 (1953). 
18. K. Inomata and T. Oguchi, J. Phys. Soc. Jpn. 23, 765 (1967). 
19. M.E. Lines, Phys. Rev. 131, 546 (1963). 
20. T. Oguchi, J. Phys. Soc. Jpn. 20, 2236 (1965). 
21. M.F. Collins, Magnetic Critical Scattering (Oxford University Press, New York, 

1989). 
22. L.J. de Jongh and A.R. Miedema, Advances in Physics 50, 947 (2001). 
23. L. Onsager, Phys. Rev. 65, 117 (1944). 
24. J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973). 
25. T. Enoki, M. Suzuki, and M. Endo, Graphite Intercalation Compounds and 

Applications (Oxford University Press, Oxford, 2003). Chapter 7. (review). 
26. M. Suzuki and I.S. Suzuki, Phys. Rev. B 57, 10674 (1998). (stage-2 CrCl3 GIC). 
27. D.G. Wiesler, M. Suzuki, I.S. Suzuki, and N. Rosov, Phys. Rev. B. 55, 6382 (1997). 

(stage-2 MnCl2 GIC). 
28. M. Suzuki and I.S. Suzuki, Phys. Rev. B 58, 371 (1998). (stage-2 FeCl3 GIC). 
29. M. Suzuki and I.S. Suzuki, Phys. Rev. B 58, 840 (1998). (stage-2 CoCl2 GIC). 
30. I.S. Suzuki and M. Suzuki, J. Phys. Cond. Matter 10, 5399 (1998). (stage-2 NiCl2 

GIC). 
31. M. Suzuki, I.S. Suzuki, C.R. Burr, D.G. Wiesler, N. Rosov, and K. Koga, Phys. 

Rev. B 50, 9188 (1994). (stage-2 CuCl2 GIC). 
 
 
Appendix 

A.1 perturbation theory for the non-degenerate case 

The Hamiltonian is given by 
ˆ H  ˆ H 0   ˆ H 1 , (A.1) 
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where ˆ H 0  is an unprtturbed Hamiltonian and ˆ H 1  is the perturbation. )0(

n  is the 

eigenket of ˆ H 0  with an eigenvalue )0(

nE (non-degenerate case). 
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Then the perturbation energy and the new eigenket are given by 
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A.2 Kramers theorem for N particles with spin 1/2 

For spin 1/2, the time reversal operator is defined by 

KiKS
i

yy
ˆˆˆ)ˆexp(ˆ  

ℏ
, (A.5) 

where K̂  is an operator which takes the complex conjugate and yî  is a unitary operator. 

Suppose that   is described by 

  CC , (A.6) 

where C+ and C- are complex numbers. Then the time reversal state is given by 

)(ˆ)(ˆˆˆ~ **   CCiCCKi yy   

)()ˆˆ( ****   CCCCi yy   

since  iŷ , and  iŷ . We again apply ̂  to ~  
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1̂ˆ 2   (A.7) 
 
We can show that 
(i) 

xx  ˆˆˆˆ 1   , (A.8) 

yy  ˆˆˆˆ 1   , (A.9) 
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zz  ˆˆˆˆ 1   . (A.10) 

 

(ii)   and   ˆ~  are orthogonal, since   0~ ** 
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We now consider the system with N electrons. N is an even or an odd integer number. 
For convenience we use  = 1. In general, the N-spins state   is described by 
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Since  Ki y
ˆ̂ , and  Ki y
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When N is odd, 0
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 , which means that   and the time reversal state 
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 are 

independent states. 
 
 


