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Abstract 

In preparing this note, we have examined many textbooks of magnetism where the 
mechanism of the superexchange interaction is discussed. We realize that it may be 
difficult for readers (in particular graduate students and undergraduate students studying 
on the magnetism) to understand the physics on the superexchange interactions from these 
textbooks, partly because of the limited space of the textbooks and the requirement of the 
amount of knowledge in quantum mechanics. The present note is based on the lecture note 
of the Solid State Physics which one of the authors (MS) has prepared since 1986. The note 
has been revised many times. The Mathematica programs are used for calculations of the 
eigenvalue problems and plotting the electronic density of the wavefunctions. The use of 
the Mathematica will be helpful for students to understand the mechanism of the 
superexchange interactions visually. As a supplementary, one can see our lecture note on 
the spin Hamiltonian and the crystal field of transition metal ions. 

In this note, we discuss the development of various interactions between magnetic ions; 
such as direct exchange interaction and superexchange interaction. Direct exchange 
involves an overlap of electron wavefunctions from the two sites and Coulomb electrostatic 
interaction repulsion. The Pauli exclusion principle keeps the electrons with parallel spin 
away from each other, thereby reducing the Coulomb repulsion. Originally superexchange 
acquired its name because of the relatively large distances, occupied by normally 
diamagnetic ions, radicals, or molecules. Small exchange coupling existed even between 
3d ions separated by one negative ion. Anderson (1959) considered a molecular orbitals 
formed of the admixture of the localized 3d orbitals and p orbitals of the intervening 
negative ion. The bonding orbital is mainly occupied by a negative ion, while the 
antibonding orbital is partially occupied by 3d electrons, leading to the magnetism of the 
system. Thus the wavefunction of localized d spins extends over the neighboring negative 
ion. There is a probability of transferring from one 3d orbital of the magnetic ion to the 
neighboring 3d orbitals, leading to the exchange interaction.  

A considerably more satisfactory system of semi-empirical rules was developed over a 
period of years mainly by Goodenough and Kanamori. These rules have the important 
features of taking into account the occupation of the various d levels as dictated by ligand 
field theory. They are related to the prescriptions of Anderson’s paper about the sign of 
superexchange. The main features of the superexchange interactions are usually explained 
in terms of the so-called Goodenough-Kanamori-Anderson rules. According to these rules, 
a 180º superexchange (the magnetic ion-ligand-magnetic ion angle is 180º) of two 
magnetic ions with partially filled d shells is strongly antiferromagnetic, whereas a 90º 
superexchange interaction is ferromagnetic and much weaker. 
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((Note)) 

In this note we use the following notations for the 3d orbitals. d = t2g = d(xy), d(yz), and 
d(zx). d = eg = d(x2 – y2) and d(3z2-r2). 
 
1. Introduction 

The magnetism of the matters is an essentially quantum phenomenon. In 1928 
Heisenberg1proposed a theory of ferromagnetism, based on the quantum mechanics. In the 
ferromagnets such as Fe, Co, and Ni, atoms or ions forming the matters have  localized d 
electrons. He considered that there is a ferromagnetic exchange interaction (J>0), in the 
form of  

jiJ SS  2 .  (1.1) 

When two wavefunctions are orthogonal, this interaction leads to a ferromagnetic spin 
order where all the spins of ions are aligned along the same direction. In other words, there 
are two kinds of interactions between two electrons; repulsive Coulomb interaction and a 
exchange interaction. The exchange interaction occurs as a result of the Pauli exclusion 
principle in the quantum mechanics. It is responsible for the Weiss molecular field 
generated in ferromagnets. This form of the exchange interaction is called a Heisenberg 
model for the magnetism of localized spins. (See Sec.2.2 for the detail.) 

The importance of the exchange interaction received attention before Heisenberg 
proposed his theory. It was proposed by Heitler and London2 that the interaction is the 
cause of covalent bonding of hydrogen molecules. In this case, there is an attractive 
Coulomb interaction between the electron of one atom and the nucleus of the other atom 
as well as a repulsive Coulomb interaction between two electrons. Thus the exchange 
integral J is negative and the ground state is a spin singlet, when the overlap integral 
between two wavefunctions are not equal to zero. (See Sec.2.1 for the detail.) 

In 1949, Shull and Smart3 had carried out a neutron diffraction and demonstrated that 
MnO is an antiferromagnet. The nearest-neighbor Mn2+ ions are connected through an 
intervening O2-. The interaction between Mn2+ ions is antiferromagnetic, and is called a 
superexchange interaction. Such interaction is rather different from the direct exchange 
interaction proposed by Heisenberg.1 

Originally superexchange acquired its name because of the relatively large distances, 
occupied by normally diamagnetic ions, radicals, or molecules. Small exchange coupling 
existed even between ions separated by one or several diamagnetic groups. The mechanism 
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of superexchange was first introduced by Kramers4 (1934). He tried to explain the 
exchange interaction in paramagnetic salts. He pointed out that the ions could cause spin 
dependent perturbations in the wavefunctions of intervening ions, thereby transmitting the 
exchange effect over large distances, but no specific mechanism were discussed.  

In 1950, Anderson5 refined the Kramers’ approach. The idea can be illustrated by two 
Mn2+ and one O2- ions arranged collinearly. The simplest model requires the consideration 
of four electrons. The ground state consists of one electron on each Mn2+ in the states d1 
and d2, and two electrons on the O2- ion in identical p orbitals. The p orbitals have a 
dumbbell shape that coincides with the axis joining the two Mn2+ ions. Because of the 
overlap of their wavefunctions, one of p electrons from the O2- ion hops over to one of the 
Mn2+ ions. The remaining unpaired p electron on O2- ion then enters into a direct exchange 
with one d2 electron of the other Mn2+ ion. The superexchange interaction between Mn2+ 
spins is then antiferromagnetic.  

After further refinement, it was realized that this type of theory became involved in 
increasing uncertainties and complexities. In this theory the exchange effect appears in a 
third order of the perturbation theory. One encountered some difficulty. This perturbation 
theory is poorly convergent. The early terms which do not lead to magnetic effects are 
rather large. 

In order to overcome such a difficulty, Anderson6 (1959) proposed a new theory of the 
superexchange interaction from a different view point. He considered molecular orbitals 
formed of the admixture of the localized 3d orbitals and p orbitals of the intervening 
negative ion. There are two orbitals thus obtained; the bonding orbital and the antibonding 
orbital. The bonding orbital is mainly occupied by a negative ion, while the antibonding 
orbital is partially occupied by 3d electrons, leading to the magnetism of the system. Thus 
the wavefunction of localized d spins extends over the neighboring negative ion. There is 
a probability of transferring from one 3d orbital of the magnetic ion to the neighboring 3d 
orbitals. The repulsive Coulomb interaction tends to prevent such a transition. In other 
words, when one d electron of the magnetic ions jumps into the unoccupied site of the 
neighboring magnetic ions, there is an energy increase by U, where U is the repulsive 
Coulomb interaction. In this picture, the first-order of the perturbation is a usual 
ferromagnetic exchange interaction, while the second-order of the perturbation is an 
antiferromagnetic exchange interaction and is expressed by 

21

2

4 SS 
U

t
, (1.2) 

where t is the transition matrix of the transition of the electron in one atom to the 
neighboring atom and U is the Coulomb interaction between two electrons with different 
spin directions in the same atom. This is a new approach of the superexchange interaction 
by Anderson.6 This Hamiltonian is called as a Hubbard Hamiltonian. In the limit of tU  , 
electron can move around in the crystal, forming conduction electrons in the metal. In 
contrast, in the limit of tU  , electrons are localized in the lattice point, forming the 
insulator. The superexchange interaction results from a perturbation energy from the 
insulator as a limiting case. It is concluded from the above discussion that the exchange 
interaction can be expressed by the general form 

21122 SS  J , (1.3) 
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for both the direct exchange interaction and the superexchange interaction. Nevertheless, 
we encounter a difficulty in evaluating the magnitude and sign of J12 from the first principle 
of the quantum mechanics. (See Sec. 3 – 6 for the detail.) 

A considerably more satisfactory system of semi-empirical rules was developed over a 
period of years by Goodenough7 and Kanamori.8 These rules have the important features 
of taking into account the occupation of the various d levels as dictated by ligand field 
theory. They are related to the prescriptions of Anderson’s paper6 about the sign of 
superexchange. The exchange interaction in magnetic insulators is predominantly caused 
by the so-called superexchange – which is due to the overlap of the localized orbitals of 
the magnetic electrons with those of intermediate ligands. The main features of the 
superexchange interactions are usually explained in terms of the so-called Goodenough-
Kanamori-Anderson rules.8.9,10 According to these rules, a 180º superexchange (the 
magnetic ion-ligand-magnetic ion angle is 180º) of two magnetic ions with partially filled 
d shells is strongly antiferromagnetic, whereas a 90º superexchange interaction is 
ferromagnetic and much weaker. (See Sec. 7 and 8). 
 
2. Direct exchange interaction 

2.1 Heitler-London model 
We consider a hydrogen molecule (two-electron system). The two proton atoms are 

located at ra and rb. This was first considered by Heitler and London2 in 1927. In the limit 
of infinite separation we assume that we have two neutral hydrogen atoms, where there is 
one electron around each proton. The Hamiltonian is given by 
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where m is a mass of electron. When the distance between two hydrogens are sufficiently 
long, they are regarded as isolated hydrogen atoms. The Schrödinger equation of each 
hydrogen atom is given by 
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where E0 is the energy eigenvalue, and )( 11 rr aa    and )( 22 rr bb    are the energy 

eigenfunction. 

 
Fig.1 Model of hydrogen molecule. Protons at ra and rb. Electrons at r1 and r2. 
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Since 

0]ˆ,ˆ[ ,12 HP , (2.3) 

we have a simultaneous eigenket of 12P̂  and Ĥ :  

 EH ˆ  and  12P̂ . (2.4) 

Since ˆ P 12
2 1,  

  2
12

2
12

ˆˆ PP , (2.5) 

we have = ±1. Since the spins are fermion, the wave function should be antisymmetric 
under the exchange of two particles.  

Here we discuss the eigenvalue and eigenfunction of the system.11 The Hamiltonian Ĥ  of 
the system in the case of no magnetic field does not contain the spin operators, and hence, 
when it is applied to the wave function, it has no effect on the spin variables. The wave 
function of the system of particles can be written in the form of product, 

spinspace   , (2.6) 

where space  depends only on the co-ordinates of the particles and spin  only on their 

spins. If the Hamiltonian Ĥ  contains the spin operators, the separation of the spacial part 
and spin part is not possible. We need to introduce the Slater determinant. For the two 
particle systems, the wavefunction can be described by 

2211

22111





bb

aa

N
 , (2.7) 

where N is the normalization factor, i  (i = a, b) are the spatial states of the isolated 

hydrogen atom,  ,  are the spin states, the index 1 and 2, are the positions of particles. 

If the Hamiltonian Ĥ  does not contain the spin operators, the spacial wavefunction 
can be described by the antisymmetric wavefunction (Baym12) 
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 , (2.8) 

for the triplet spin state (S = 1) and by the symmetric wave function 
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21212 abba

s
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


ℓ

, (2.9) 

for the singlet spin state (S = 0), where ℓ  is the overlap integral, ℓba  . The singlet 

spin state is expressed by  spin 
1

2
[(      ] (see Sec. 2.4A). 

The expectation value of the Hamiltonian in the states s

space  and a

space  is 
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where the upper sign denotes the singlet spin state, the lower the triplet, and 
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Because of abHabbaHba   and abHbabaHab  , we have 
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Here baabR rr  , Vc is the Coulomb integral, and exV  is the exchange contribution to the 

electron energy 
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Then we have 
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The term 
ab

c
R

e
V

2

  is always positive, while 
ab

ex
R

e
V

2
2
ℓ  is in general negative. Thus E+ 

(singlet spin state) is lower than E+ (triplet spin state). So we can conclude that the H2 
molecule binds in the spin singlet state, but not in the triplet state. The strength of the 
binding is roughly proportional to the amount of the overlap of the two electron states.  
((Note)) 

In the Heitler-London model, the overlap integral ℓ  is not equal to zero since 

sa 1  and sb 1 . In this case, Vex becomes negative, favoring the singlet spin state 

(S = 0) or antiferromagnetic spin alignment.  
 
2.2 Direct exchange interaction in the case of the zero overlap integral 
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We now consider the simple case when the overlap integral is equal to zero; 
0 ℓba   (orthogonal). The electron energy is given by 
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The matrix of Ĥ  in the basis of )(s

space  and )(a

space  is calculated as 
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The integral K is called as the Coulomb integral. The integral J is called an exchange 
integral. Here we can prove that J is always positive. The Fourier transform of the Coulomb 
interaction is given by 
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The substitution of this into the integral J leads to 
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We note that the spin part spin  is symmetric (S = 1, triplet) for )(a

space and antisymmetric 

(S = 0, singlet) for )(s

space , respectively. Since J>0, the energy of the spin triplet state (= 

K – J) is lower than that of the spin singlet state (= K + J). In other words, the ferromagnetic 
spin alignment is energetically favorable (Heisenberg model). 

In general, the direct exchange is ferromagnetic if the two orbitals a  and a  are 

orthogonal. If two orbitals a  and a  are not orthogonal, then the magnitude of the 

overlap integral provide a measure for the covalency of these orbitals. This rule will be 
used in Sec.7. 
 
2.3 Dirac spin-exchange operator 

We use the Dirac exchange operator11:  
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21212112
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Since 11 2

1
S  and 22 2

1
S  

gletgletglet SSP sinsin21sin12 )ˆˆ2
2

1
(ˆ    (antisymmetric), (2.25) 

triplettriplettriplet SSP   )ˆˆ2
2

1
(ˆ

2112  (symmetric) (2.26) 

or 

gletgletSS sinsin21 4

3ˆˆ   , (2.27) 

triplettripletSS 
4

1ˆˆ
21  . (2.28) 

We define the Spin Hamiltonian (exchange energy) by 

)
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1ˆˆ(2ˆ
21  SSJKH s . (2.29) 

Since J is positive, the interaction is ferromagnetic.  

gletgletglets JKSSJKH sinsin21sin )()]ˆˆ2
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([ˆ   , (2.30) 

triplettriplettriplets JKSSJKH  )()]ˆˆ2

2
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212


ℏ
. (2.31) 

The above equation is usually referred to as the Heisenberg exchange interaction.  
 
2.4 Clebsch-Gordan co-efficient 

A Addition of two spin S (=1/2) 

The results of the calculation are summarized as follows (Sakurai11) 
j1 = 1/2, j2 = 1/2 ( m1  1/ 2 , m2  1/ 2) 

D1/ 2  D1/ 2  D1  D0  

(i) j = 1 (symmetric) 
m = m1+ m2 

 
Fig.2 Recursion relations to obtain the Clebsch-Gordon co-efficients for mj, , where j 

= 1 and m = 1, 0, and -1. 
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(ii) j = 0 (m  0) (antisymmetric) 
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B. Mathematica program for the Clebsch-Gordan coefficient 

Determination of CG co-efficient 
Addition of S1=1/2, S2=1/2 
 
CG[j1_,j2_,j_]:=Table[Sum[ClebschGordan[{j1,k1},{j2,k2},{j,
k1+k2}] a[j1,k1] b[j2,k2]  KroneckerDelta[k1+k2,m],{k1,-
j1,j1},{k2,-j2,j2}],{m,-j,j}] 
 CG[1/2,1/2,1]//TableForm 

  
 CG[1/2,1/2,0]//TableForm 

  
 
3. Exchange interaction due to the electron transfer 

3.1 Localized spins and itinerant spins 

In the ferromagnetic theory proposed by Heisenberg,1 it is assumed that the 3d 
electrons are localized around atoms. Since the orbital angular momentum is almost 
quenched, we consider only the spin angular momentum. According to the Hund’law, the 
spin S is given by S = 2 for (3d)6 (Fe2+) and S = 3/2 for (3d)7. Correspondingly, the spin 
magnetic moment is 4B per atom for (3d)6 and 3B per atom for (3d)7, respectively. The 
measurement of the saturation magnetization at low temperatures shows that the magnetic 
moment is 2.22 B, corresponding to the electron configuration (3d)7.78. This implies that 
the 3d electrons are not localized, but rather itinerant. Anderson6 have shown that in 
magnetic insulator compounds the d electrons are localized owing to the Mott mechanism 
of strong correlation. Relatively weak covalency between localized states or delocalization 
mechanism gives rise to the superexchange interaction of usually antiferromagnetic sign 
between the local moments. 
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The localized model starts with the electronic states localized in the real space, while 
the itinerant model starts with those localized in the reciprocal or wave-vector space. What 
happens to the interactions between the d electrons when the d electrons are itinerant? In 
order to understand the essential point for the difference between these model, here we now 
consider a solid formed of hydrogen atoms (see Fig.1). The separation distance is d. Each 
hydrogen atom has one electron in average. We assume that the orbital state of each atom 
is in the 1s state. When the lattice constant d becomes shorter, the energy band is formed. 
Since there is one (odd number) electron per unit cell, it is predicted from the energy band 
theory that the system should be a metal with a half-filled band. Here we assume a repulsive 

Coulomb interaction U between electrons with different spin states (   and  ) in the 

same atom, and the transition matrix t for electrons to jump from one atom to the nearest 
neighbor atoms. The state of the atom is characterized by the number of electrons; neutral 
state (the number of electrons is 1), and ionic states (the number of electrons is 0 or 2). 
When U is much larger than t, the electron transfer does not occur at al. It is expected that 
a state close to the isolated ionic is realized (Mott insulator13,14). On the other hand, when 
t is much larger than U, the electrons move about the whole crystal and behave as 
conduction electrons. The difference between these two cases is controlled by the relative 
magnitude of t and U in the Hamiltonian. When the ratio of t to U is changed, a transition 
is expected to occur from one state to the other state. This transition (which is presumably 
discontinuous in three and two dimensions) is called the Mott transition or the Mott 
problem in the electron theory of solids. The Hamiltonian is called the Hubbard 
Hamiltonian, although it was used before the work of Hubbard. 
 
3.2 Hubbard model 

The Hubbard Hamiltonian has been proposed to discuss the electron correlation in the 
spin system. In this model, the correlation on the same atom is considered to be important. 
 

 
Fig.3 One-dimensional model of hydrogen-atom solid, where the lattice constant is d. 

Each atom has one of four states , , 0, , ,0 , and 0,0 , where 0  is an 

empty state. U is a repulsive Coulomb interaction between electrons with different 
spin states in the same atom. t is the transition matrix for electrons to jump from 
one atom to the nearest neighbor atoms. 
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We consider a simple model when each electron is in the (1s) state. There is one 
electron per atom. In each atom, there are two spin states: up-spin state and down-spin state. 
According to the Pauli’s exclusive principle, there are four states in each atom; ionic state 
(one empty state, two one-electron states), and a neutral state (one two-electron state). 
 

 
Fig.4 Each atom has one of four states , , 0, , ,0 , and 0,0 , where 0  is an 

empty state. 
 

We assume that the distance between atoms is constant (d). When d is small, the system 
becomes metal with half-filled band. In an ionic state where two electrons are occupied in 
the up-spin state and the down-spin state, the repulsive Coulomb energy between two 
electrons leads to the increase of energy of the system. When d becomes large, the 
probability of jumping from one atom to the adjacent atom becomes small. 

We assume that tij is the transfer integral between the sites i and j (denoted by Ri and 
Rj). U is the Coulomb interaction between two electrons in the same atom. The model 
Hamiltonian H is given by a so-called Hubbard model (Yosida,15 Shiba16) 

  

 



),(

.).(
ji

j
j

jjiij nnUchcctH , (3.1) 

where the summation is taken over the pair (i, j), 
jc  and jc  are the creation and 

annihilation operators of electron with spin  on the atom j. The number operator is defined 

by  jjj ccn
 . The commutation relations for these operators are given by 

0},{

0},{

},{

'

'

''''





















 

ji

ji

ijijjiji

cc

cc

cccccc

. (3.2) 

The first term of the Hamiltonian is the translation term from the j-site to the i-site. The 
second term is the Coulomb interaction between the electrons with the up-state and down-
spin state on the same atom and is the origin of electron correlation.  

For simplicity we consider the system with only two atoms at the sites 1 and 2. There 
are two spin states (up-state and down-state) on the same atom. The relevant Hamiltonian 
is given by 

)()(
221121212121 















  nnnnUcccccccctH . (3.3) 

There are possible six states;  2,11 ,  2,12 ,  2,13 , 

 1,14 ,  2,25 , and  2,16 . Note that there are two electrons at 

the same atoms for the states 4  and 5 , while the atoms 1 and 2 are occupied by one 

electron for 1 , 2 , 3 , and 6 . 
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Fig.5 Possible states of two neighboring atoms located at positions (1) and (2). 

 
The matrix element of the Hubbard Hamiltonian based on the above six states is given by 





































000000

000

000

0000

0000

000000

Utt

Utt

tt

tt

H . (3.4) 

((Note)) 

 















 1,1)]()([
2211212121214 nnnnUcccccccctH   

432

2,11,12,1

 Utt

tUt




. (3.5) 

 
3.3 Eigenvalue problem 

We solve the eigenvalue problem using the Mathematica (sse below). The results are 
as follows. The energy eigenvalues and eigenkets 

E = E1 = 0,  61   , (3.6) 

E = E2 = 0, )(
2

1
322   , (3.7) 

E = E3 = 0, 13   , (3.8) 

E = E4 = U )(
2

1
544   , (3.9) 
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E = E5 = )16(
2

1 22 tUU  , 

5432

22

5 )(
4

16
 




t

tUU
, (3.10) 

E E6 = )16(
2

1 22 tUU   

5432

22

6 )(
4

16
 




t

tUU
, (3.11) 

where 4  and 5  are not normalized in order to avoid the complication. The ground 

state energy is E5 and the corresponding eigenket is rewritten as 

)
2

1

2

1
(2)

2

1

2

1
(2

4

16
5432

22

5  



t

tUU
. 

 (3.12) 
Note that the eigenket 5 is rewritten as 

)
2

1

2

1
(2)

2

1

2

1
(2

4

16
5432

22

6  



t

tUU
. 

 (3.13) 
We now consider the two extreme cases. 
(i) The case of U>>t 

E1 = 0, E2 = 0, E3 = 0, E4 = U, 
U

t
E

2

5

4
 , and 

U

t
UE

2

6

4
 . 

)
2

1

2

1
(2)

2

1

2

1
(2

2 54325  
t

U
, (3.14) 

or 

)(
2

1
325   . (3.15) 

Note that this eigenket is normalizad.  

)
2

1
(

2

1
546   . (3.16) 

 

 
Fig.6 Energy levels of states i  (i = 1 – 6). 
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5321 ,,,  are the states where atoms 1 and 2 are occupied by one electron. 

64 ,   are the states where atom 1 (or atom 2) is occupied by two electrons. 

 

)2,12,1(
2

1

2,1

)2,12,1(
2

1

2,1

5

3

2

1

















, (3.17) 

5

2

5

4


U

t
H  . 

The addition of two electron spins of S = 1/2 gives the total spin S = 1 (symmetric state) 
and S = 0 (anti-symmetric state). 1 corresponds to 1,1  mS . 5 corresponds to 

0,1  mS . 3 corresponds to 1,1  mS . 2 corresponds to 0,0  mS . 

(ii) The case of U<<t 

E1 = 0, E2 = 0, E3 = 0, E4 = U, tUE 2
2

1
5  , and tUE 2

2

1
6   

2
5432

5





 , (3.18) 

2

)()( 5432
6





 . (3.19) 

Note that 5  is the ground state, where both the up and spin electrons occupy. 

 
3.4 Effective spin Hamiltonian for Mott insulator14 

We now consider the case of U>>t., where atoms 1 and 2 are occupied by one electron 

(  2,11 ,  2,12 ,  2,13 , and  2,16 ). We use the 

perturbation theory. The excited state are  1,14  and  2,25 , where the 

atom is occupied by two electrons. The Hamiltonian consists of unperturbed Hamiltonian 
H0 and the perturbation Hamiltonian H1, 

)()(
212121212211

10















 



cccccccctnnnnU

HHH
, (3.20) 

where 

)(

),(

212121211

22110























cccccccctH

nnnnUH
, (3.21) 

and 
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000  ii EH   (i = 1, 2, 3, 6), 440  UH  , 550  UH  , (3.22) 

)( 5421   tH . (3.23) 

From the perturbation theory (time-independent non-degenerate case), we have 
)0(

1
1

0

)0(

1

)0()0(

1

)0()0(
)( nnnnnnn PHHEHHEE   , (3.24) 

where P is the complementary projection operator. Here we calculate the second process. 

21
1

001 )( PHHEH   for 2

)0(  n . (3.25) 

Note that iiP    (i = 1, 2, 3, 6), 44
ˆ  P , 55  P , )( 5421   tH , and 

)( 5440   tH . Then we have 

 

)()()()(

)(

54
1

0154
1

001

21
1

0012












HtHHEtH

PHHEHH eff
 (3.26) 

or 

)(
2

)(ˆ
32

2

5412  
U

t
H

U

t
Hef . (3.27) 

Here we use the Dirac notation for the spin exchange operator11 

)ˆˆ41(
2

1
)ˆˆ1(

2

1ˆ
212112 SSσσ P , (3.28) 

where S1 and S2 are the spin operators of the 1 and 2 sites. Here we note that 

 

  2

2

12

2

221

2

ˆ2,12,1
2

2,11ˆ2

2

1ˆˆ2
2





effH
U

t

P
U

t

U

t










 SS

 (3.29) 

or 

)
4

1ˆˆ(2)
4

1ˆˆ(
4

2121

2

 SSSS J
U

t
Heff , (3.30) 

with 
U

t
J

22
 . 

Thus the effective spin Hamiltonian for 2N states is given by 

 
),(

21
ˆˆ2

ji

eff JH SS , (3.31) 

where J = 2t2/U>0. This Hamiltonian is called an antiferromagnetic Heisenberg 
Hamiltonian. The summation is taken over the nearest neighbor pairs of spins.  

In summary, the resultant spin Hamiltonian is a sum of antiferromagnetic and 
ferromagnetic interactions, 

)
4

1ˆˆ)(
2

(2ˆ
21

2

 SSdirecttotal J
U

t
H . (3.32) 

Where Jdirect is the ferromagnetic interaction (direct exchange interaction). 
 
3.5. Mathematica program: eigenvalue problem for the Hubbard model 
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Simple case of the Hubbard model, eigenvalue problem 
 A1={{0,0,0,0,0,0},{0,0,0,-t,-t,0},{0,0,0,-t, -t,0},{0,-t,-
t,U,0,0},{0,-t,-t,0,U,0},{0,0,0,0,0,0}};A1//MatrixForm 

  
 eq1=Eigensystem[A1]//Simplify 

  
 Eg=eq1[[1,5]] 

  
The ground state energy of the system Eg 
We use x = t/U  and U = ty depending on the magnitudes of U and t. 
 Eg11=Eg/.{t→ U x}//Simplify[#,U>0]& 

  
 Eg12=Series[Eg11,{x,0,3}]//Normal 

  
 Eg21=Eg/.{U→ t y}//Simplify[#,t>0]& 

  

  
 Eg22=Series[Eg21,{y,0,3}]//Normal 

  
Eigenkets  
f1 (E = 0), f2 (E = 0), f3 (E = 0), f4 (E = U),  
f5 (E=E5)  
f6 (E =E6) 
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 f5and f6 are not normalized. 
We consider the special case for f5and f6 in the limit of U>>t and U<<t. 
 φ51=eq1[[2,5]] 

  
 φ52=φ51//.{t→ U 
x}//Simplify[#,U>0]&//Series[#,{x,0,3}]&//Normal 

  
 φ53=φ51//.{U→t 
y}//Simplify[#,t>0]&//Series[#,{y,0,3}]&//Normal 

  
 φ61=eq1[[2,6]] 

  
 φ62=φ61//.{t→ U 
x}//Simplify[#,U>0]&//Series[#,{x,0,3}]&//Normal 

  
 φ63=φ61//.{U→ t 
y}//Simplify[#,t>0]&//Series[#,{y,0,3}]&//Normal 

  
Plot of energy levels 

  

  
 Plot[Evaluate[Energy],{x,0,1}, PlotStyle→Table[Hue[0.2 
i],{i,0,5}], Prolog→AbsoluteThickness[3], 
AxesLabel→{"t/U","E/U"},Background→GrayLevel[0.7]] 

 

 
Fig.7 The normalized energy levels E/U as a function of t/U. 321 ,,   (green), 4  

(blue), 5  (purple), and 6  (red). 
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4. Superexchange interaction (first approach by Anderson,5 1950) 

 

 
Fig.8 Electron configuration of Mn2+ with (3d)5. 

 
The idea can be illustrated by two Mn2+ ions and one intervening O2- (White17) The 

Mn2+(A)- O2- —Mn2+ (B) are arranged along the one axis, forming a 180º position. There 

are two spins in the O2- site (the up-spin state  and down-spin state  ). Because of the 

overlap of wave functions, one of p electrons (with down-spin state  ) from the O2- hops 

over to one of Mn2+ ions (A). (in Figs.8, 9, and 10) we assume that a part of one electron 
hops). Note that only the down-state electron of p-electrons can move to the Mn2+ site (A). 
The remaining unpaired p electron on the O2- site then enters into a direct exchange with 
the other Mn2+ ion (B) with an exchange interaction J. The resultant interaction between 
the Mn2+ ions coupled through O- ions is antiferromagnetic. 

Here we evaluate the magnitude of effective interaction between Mn2+ (A) and Mn2+ 
(B). We introduce two parameters; (i) the energy matrix element t for shifting p-electron 
to A and (ii) the increase of energy (= ) for the shift of p-electron to Mn2+ (A). Then 

probability of the above process is evaluated as  2/t , where  = Ed – Ep. The resultant 

exchange energy arising from a mixture between ground state and excited state, is 2)/( tJ . 

The same thing happens for the case when one of p electrons (with down-spin state  ) 

from the O2- hops over to one of Mn2+ ions (B). So the resultant exchange energy is given 
by 22 )/(2 Jt . When S1 and S2 are spins of Mn2+ ions (A and B), the superexchange is 

described by 

212 SS  JEex , (4.1) 

where )/( 222 SJtJ  . When J’<0, S1 and S2 are antiparallel, favoring the 

antiferromagnetic spin arrangement.  
 

 
Fig.9 180º configuration 
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or 
 

 
Fig.10 Schematic diagram of the 180º configuration. 

 
5. Superexchange interaction: revised approach  

5.1 Molecular orbital due to d-p mixing (P.W. Anderson,6 1959) 

It was realized that the original theory (above mentioned) became involved in 
increasing uncertainties and complexities. The exchange effect appears in a third order of 
the perturbation theory. One encountered some difficulty. This perturbation theory is 
poorly convergent. The early terms which do not lead to magnetic effects are rather large. 

The basic idea of Anderson6 (1959) is simple. We use the following model of the 
molecular orbital to explain this idea. We consider a Ni2+ (F-)6 octahedron, and consider 
the z-axis to lie along one Ni2+ - F- bond. The p orbital, of the z symmetry, and the p, x 
and y. It is clear that a covalent bond between the p (p(z))and d(3z2 - r2) along the z axis 
could be formed. The appropriate matrix element to cause this bond does not exist, but, of 
course, that the d function is considerably higher than the p function in energy and that 
therefore the best bonding function contains only a relatively small admixture  of d(3z2 - 
r2). 

)3( 22
rzdpbonding 

  
 (5.1) 

This bonding function is expected to contain two electrons, the two which originally 
occupied p (p(z)) on the F- ion. Now the only wavefunction which is left for the magnetic 
electrons to occupy is the corresponding antibonding function 


  przdgantibondin S )(

)3( 22 


 (5.2) 

which is orthogonal to bonding : 0gantibondinbonding  . Here S is the overlap integral 

rdS przd 
  

 *

)3( 22 . (5.3) 

The energy of bonding  is lower than that of gantibondin . There will be a corresponding energy 

shift in this orbital relative to d(3z2 - r2), 

 
22 )(  pddAB EEEEE . (5.4) 

(see 5.4 for the derivation). 
 
5.2 Slater wavefunctions due to the d-p orbital mixing. 
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We now consider the d-p mixing for the wavefunctions in the system of three-electrons. 
When the Hamiltonian depends on the spin operators, the wavefunction of the three 
electrons cannot be described by a product of spatial and spin parts of wavefunctions 
Suppose that there are three states; d , p  and p , where p is one of px, py, pz orbitals, 

and d is one of d (g) and d (t2g) orbitals, and the arrows denote the spi-up and down-
states. It is well described by the Slater determinant (Kanamori18) 































)3()2()1(

)3()2()1(

)3()2()1(

'

)3()2()1(

)3()2()1(

)3()2()1(
1

)3,2,1(

ddd

ppp

ddd

ppp

ppp

ddd

N
 , (5.5) 

where 1, 2, and 3 are position of each electron and spin-coordinates. The second 

determinant represents the electron configuration after the charge transfer  dp . 

Using the general property of the determinant (purely mathematics), the above equation 
can be rewritten as 
























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)3()2()1(
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1

)3,2,1(

dpdpdp
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N


  (5.6) 

This is also rewritten as 




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N

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

 , (5.7) 

where N is the normalization factor and  is an arbitrary constant. We choose  such that 
pd   and dp '  are orthogonal. 

0))('(  pddp  , (5.8) 

or 

0''
*
 dpdp  . (5.9) 

If , ’, and dp  are real, we have 





 




 S
S

S

1
' , (5.10) 

where dpS   is the overlap integral. We consider two states; pd  , dp ' . 

The state pd   is an antibonding orbital (higher energy) and dp '  is a bonding 

orbital (lower energy). In the three-electrons configuration, one electron is in the state 

pd  , and two electrons are in the state dp ' . In the bonding orbital, the 

resultant spin is equal to zero since two spins (up and down state) would cancel out each 

other. The spin in the antibonding orbital pd   is responsible for the spin distribution 

of the system. 
 
5.3 Evaluation of superexchange interaction 
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In the above picture of the molecular orbital, the spin of magnetic ion is located on the 
orbit given by gantibondin  which extends over the negative ion. This magnetic ion interacts 

with the magnetic ion on the other side through a direct exchange interaction. The exchange 
interaction between the magnetic d-electrons is expressed by 

jieffJ SS ˆˆ2  , (5.11) 

where the effective interaction is given by 

)(2 2
pdpdeff WJJ   , (5.12) 

where Jpd is the direct exchange interaction and Wpd (= -t2/U) is the exchange interaction 
due to the charge transfer. Here we use the factor of 2 since two magnetic ions are 
equivalent and no change occurs in the magnetic property, even if the role of one magnetic 
ion can be replaced by that of the other magnetic ion. 
 
5.4 Simple model of p-d mixing 

A. Eigenvalue problem 

We now consider a simple eigenvalue problem for the non-degenerate case. Ĥ  is the 
Hamiltonian leading to the p-d mixing. 

pEdtpH

ptdEdH

p

d





ˆ

ˆ
. (5.13) 

The eigenvalue problem is given by 

 EH ˆ , (5.14) 

pCdC pd  . (5.15) 

The matrix of Ĥ  is given by 











p

d

Et

tE
Ĥ . (5.16) 

The energy eigenvalues are determined from the following quadratic equation  
0))(( 2  tEEEE pd . (5.17) 

The bonding state is given by 

d
t

ppd
t

t
B 

 



224

2
, (5.18) 

with the energy eigenvalue, 

22

22

4
2

1

22

4)(
t

EEtEEEE
E

pdpdpd

B 





  , (5.19) 

or 

...4
2

1

2 3

42
22 




 tt
EtEE ppB , (5.20) 

where pd EE  . The antibonding state is given by 

p
t

dp
t

t
dAB 

 



224

2
, (5.21) 
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with the energy eigenvalue  

22
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22

4)(
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EEtEEEE
E

pdpdpd

AB 



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or 
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42
22 




 tt
EtEE ddAB . (5.23) 

We define the energy difference E  given by 

...4
2

1

2 3

42
22 
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 tt
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or 

2

2

22








tt

E , (5.25) 

where  = t/ and pd EE  . 

 

 
Fig.11 Energy levels Ed and Ep for the d and p orbitals, EAB and EB for the antibonmding 

and bonding molecular orbitals. 
 
B. Perturbation approach 

 

 
Fig.12 Energy levels Ed and Ep for the d and p orbitals before perturbation. 

 
We apply the perturbation theory to this problem (p-d mixing), where  = Ed – Ep>>t. 

dEdH d0
ˆ , pEpH p0

ˆ , (5.26) 

ptdH 1
ˆ , dtpH 1

ˆ . (5.27) 

The energy of the anti-bonding and bonding states is described by 


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EE
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EE d
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d
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 , (5.28) 
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
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The energy difference E  is given by 


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EE
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EEEEE
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 , (5.30) 
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Then the bonding state is described by dpB   . Then the energy difference is 

rewritten as 


2

2

22


tt

E , where  = t/ and pd EE  . 

 
C. Mathematica program for the case A 

Exact solution of the eigenvalue problem 

y=c1 yd+c2 yp 
 
 H1={{Ed,t},{t,Ep}} 
 {{Ed,t},{t,Ep}} 

 eq1=Eigensystem[H1] 

  
 rule1={Ed→Ep+ξ} 
 {Ed→Ep+ξ} 

Antibonding state 
x=Ed - Ep 

  

  
 ψAB=ϕ1/.rule1//FullSimplify 

  
Bonding state 

  

:: 1
2

i
k
jjEd+Ep−

"######## ## ######## ## ###### ## ######## ## ####
Ed2− 2EdEp+ Ep2+ 4t2

y
{
zz,
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"######## ## ######## ## ###### ## ######## ## ####
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Ed2− 2EdEp+ Ep2+ 4t2

2t
, 1>>>
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"######### #### ########## #### #### ###### ####
Ed2−2EdEp+Ep2+4t2
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= êêSimplify
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>
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è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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 ψB=ϕ2/.rule1//FullSimplify 

  

  

  
 ψAB.ψB//Simplify 
 0 

The energy of antibonding state 
 EAB=eq1[[1,2]]/.rule1//Simplify 

  
 Series[EAB,{t,0,4}]//Simplify[#,ξ>0]&//Normal 

  
The energy of bonding state 
 EB=eq1[[1,1]]/.rule1//Simplify 

  
 Series[EB,{t,0,4}]//Simplify[#,ξ>0]&//Normal 

  
The energy difference between the antibonding amd bonding states 
 DEN=EAB-EB/.rule1//Simplify 

  
 
6 Molecular orbitals 

6.1. hybridization of 2s and 2p(z) orbitals 

Before discussing the molecular orbitals of 2p and 3d electrons, first we consider the 
simple case, the hybridization of 2s orbital and 2p(z) orbital. The 2s orbital is spherically 
symmetric about the origin, while the 2p(z) orbital has a dumbbell-shape whose rotation 

axis is the z axis. We consider the wavefunction given by szp 2)(2   , where  

is chosen as a parameter. The electronic density of the state s2  is positive in both the +z 

and –z directions, while the electronic density of the state )(2 zp  is positive in the z-

direction and negative in the –z direction. For >0, the electronic density of   has a 

lopsided orbital. The amplitude in the +z axis side is larger than that in the –z direction. For 
<0, on the other side, the amplitude in the –z axis side is larger than in the +z axis side. 
The shape depends on the sign of . Figure 13 shows the result of the calculation for the 
angular distribution of   using Mathematica (SphericalPlot3D), where  = -0.3, 0, and 

0.3. Such a phenomenon is called the hybridization. Note that in the Baym’s textbook,12 he 

used the wavefunction given by )(22 zps    with  = -0.5 – 0.5 which is different 
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from our notation. We tried to calculate the electronic density using Mathematica. We 
could not reproduce the result which he showed in his textbook. 
 

 
 

Fig.13 3D polar representation of szp 2)(2    with  = -0.3, 0, and 0.3 

 
6.2 Mixing of d-p orbitals and d-p 

A. Antibonding molecular orbital of d(3z2-r2) and p(z) (= p) 

 

 
Fig.14 Symmetry relation of )3( 22 rzd   (= d or eg), p(z) (= p) and p(x) (= p). 

 

Here we consider the antibonding molecular orbital )()3( 22
zprzd    

which occurs as a result of the p-d mixing. The )3( 22 rzd   orbital has a dumbbell shape 

whose rotation axis is the z axis, and a small circular disk-shape around the origin. The 

electron density of the dumbbell in the )3( 22 rzd   orbital is positive in both the +z and –

z directions. The electron density of the circular disk shape in the )3( 22 rzd   orbital is 

negative in both +x and –x directions. The p(z) (= p) orbital has a dumbbell shape whose 
rotation axis is the z axis. The electronic density of the state p(z) is negative in the +z-
direction and positive in the –z direction. For <0, the electronic density of   has a 

lopsided orbital. The amplitude of the dumbbell in the +z axis side is much larger than that 
in the –z direction. For <0, the amplitude of the dumbbell in the –z axis side is much larger 
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than in the +z axis side. The shape of the lopsided orbital depends on the sign of . In 
contrast, the circular disk-shape around the origin is almost independent of . Figure 15 

shows the results of the calculation for the angular distribution of   using Mathematica 

(SphericalPlot3D), where  = -0.4, 0, and 0.4. In conclusion, there is a strong covalency of 
d and p orbitals along the direction connecting between d and p electrons (the z axis in 
the present case). We may say that there is an overlap of wavefunctions between d and p. 
The orbits d and p are not orthogonal, d  p. 

 

 

Fig.15 3D polar representation of )()3( 22
zprzd    with  = -0.4, 0, and 0.4. 

 
B. Antibonding molecular orbitals of d(3z2-r2) and p(x) (= p) 

Here we consider the antibonding molecular orbital )()3( 22
xprzd   . The 

p(x) (= p) orbital has a dumbbell shape whose rotation axis is the x axis. The electronic 
density of the state p(x) (= p) is positive in the +x direction and negative in the –x direction. 
The dumbbell shape almost remains unchanged for  = -0.4, 0, and 0.4. In contrast, the 
circular disk-shape is strongly dependent on the value of . The center of the circular disc 
shifts along the -x direction for >0 and along the +x direction. Figure 16 shows the 
electronic density of   calculated using Mathematica (SphericalPlot3D), where  = -0.4, 

0, and 0.4. In conclusion, there is a weak covalency between d and p. orbitals along the 
direction connecting between d and p electrons (the z axis in the present case). We may say 
that there is no overlap between d and p. d  p. 
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Fig.16 3D polar representation of )()3( 22

xprzd    with  = -0.4, 0, and 0.4. 

 
6.2 Mixing of d-p orbitals and d-p 

A. Antibonding molecular orbital of d(zx) and p(z) (= p) 

 

 
Fig.17 Symmetry relation of d(zx) (= d or t2g), p(z) (= p) and p(x) (= p). 

 
We consider the antibonding molecular orbital )()( zpzxd   . The d(zx) (= 

d) orbital has a clover shape with 4 leaves in the z-x plane. The electronic density of the 
d(zx) orbital is positive for the leaves in the first and third quadrants and negative in the 
second and fourth quadrants. The p(z) (= p) orbital has a dumbbell shape whose rotation 
axis is the z axis. The electronic density of the state p(x) (= p) is positive in the +x-direction 
and negative in the –x direction. Figure18 shows the electronic density of 

)()( zpzxd    calculated using Mathematica (SphericalPlot3D), where  = -0.4, 

0, and 0.4. For >0, the region of the leaves of the third and fourth quadrants in the z-x 
plane becomes large, while the region of the leaves of the first and second quadrants 
becomes small. For <0, the region of the leaves of the third and fourth quadrants in the z-
x plane becomes small, while the region of the leaves of the first and second quadrants 
becomes large. Note that for = 0, the electronic density of )(zxd  is equal to zero on the 
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z axis. In conclusion, there is a weak covalency between d and p. orbitals along the x axis, 
rather than the z axis connecting between d and p electrons. We may say that there is no 
overlap of wavefunctions between d and p, d  p. 
 

 

Fig.18 3D polar representation of )()( zpzxd    with  = -0.4, 0, and 0.4. 

 
B. Antibonding molecular orbital of d(zx) and p(x) (= p) 

We consider the antibonding molecular orbital )()( xpzxd   . The p(x) (= p) 

orbital has a dumbbell shape whose rotation axis is the x axis. The electronic density of the 
state p(x) (= p) is positive in the +x-direction and negative in the –x direction. Figure 19 
shows the electronic density of )()( xpzxd    calculated using Mathematica 

(SphericalPlot3D), where  = -0.4, 0, and 0.4. For >0, the region of the leaves of the first 
and fourth quadrants in the z-x plane becomes small, while the region of the leaves of the 
second and third quadrants becomes large. For <0, the region of the leaves of the first and 
fourth quadrants in the z-x plane becomes large, while the region of the leaves of the second 
and third quadrants becomes small. In conclusion, there is a relatively strong covalency 
between d and p. orbitals along the z axis connecting between d and p electrons. We may 
say that there is overlap of wavefunctions between d and p orbitals, d  p. 
 

 
Fig.19 3D polar representation of )()( xpzxd    with  = -0.4, 0, and 0.4. 

 
7. The Goodenough-Kanamori-Anderson rules 

7.1 180º and 90ºsuperexchange interactions 
A considerably more satisfactory system of semiempirical rules was developed over a 

period of years by Goodenough7 and Kanamori.8 The main features of the superexchange 
interactions are usually explained in terms of the so-called Goodenough-Kanamori-
Anderson rules.9,10 These rules have the important features of taking into account the 
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occupation of the various d levels as dictated by ligand field theory. According to these 
rules, a 180º superexchange (the magnetic ion-ligand-magnetic ion angle is 180º) of two 
magnetic ions with partially filled d shells is strongly antiferromagnetic, whereas a 90º 
superexchange interaction is ferromagnetic and much weaker. In Appendix, we show the 
magnetic properties of typical pure spin systems (2D and 3D) which we are interested 
in.19,20 
 

 
Fig.20 180º and 90º configurations for the 3d orbital-p orbital-3d orbital. 

 
or 
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Fig.21 90º configuration for the 3d orbital-p orbital-3d orbital. 

 
7.2 General rules for GKA9,10 

These rules seem to explain almost the complete gamut of spin pattern data on a wide 
variety of substances.9 

A. When the two ions have lobes of magnetic orbitals pointing toward each other in such 
a way that the orbitals would have a reasonably overlap integral, the exchange is 
antiferromagnetic. There are several subcases. 

(a) When the lobes are d(3z2-r2) type orbitals in the octahedral case, particularly in the 180 
º position in which these lobes point directly toward a ligand and each other, one obtain 
particularly large superexchange. 

(b) When d(xy) orbitals are in the 180º position to each other, so that they can interact via 
p orbitals on the ligand, one again obtain antiferromagnetism. 

(c) In a 90º ligand situation, when one ion has a d(3z2-r2) occupied and the other a d(xy), 
the p for one is the p for the other and one expect strong overlap and thus 
antiferromagnetic exchange. 

B. When the orbitals are arranged in such a way that they are expected to be in contact but 
to have no overlap integral- most notably a d(3z2-r2) and d(xy) in 180º position, where 
the overlap is zero by symmetry, the rule gives ferromagnetic interaction (not, however, 
usually as strong as the antiferromagnetic one). 

 
7.3. Rules of GKA 

There are four rules, d  p, d  p,, d  p, d  p, where d = t2g and d = eg. 
A. d  p 

The p-orbital does not change its sign when the coordinate axes are rotated around the 
line connecting these ions. The occupied d-orbitals do change their sign. Therefore the p 
-orbital is orthogonal to the d -orbital (d  p ). This implies that the exchange integral 
between d and p is positive (ferromagnetic) (see Sec.2.2). 
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Fig.22 The symmetry relation. d[d(zx)]  p [p(z)]. d[d(zx)]  p [p(x)]. 

 

 
Fig.23 The symmetry relation. d[d(xy)]  p [p(x)]. d[d(xy)]  p [p(y)]. 

 
B. d  p

The electron transfer, or partial covalence, can only take place between p and d. The 
orbit d(3z2 - r2) does not change sign by rotating the coordinate axes around the x-axis. 
Therefore a partial covalent bond involving the p-orbital can be formed with the d orbital; 
i.e., electron transfer from p can take place to the d orbital, but not to the d-orbitals. The 
charge transfer can take place only if the cation and anion orbitals are non-orthogonal. If 
the cation-anion orbitals are orthogonal, the direct exchange referred to above is positive 
(ferromagnetic); otherwise it is negative (antiferromagnetic).  
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Fig.24 The symmetry relation. d[d(3z2-r2)]  p [p(z)]. d[d(3z2-r2)]  p [p(x)]. 

 
C d  p  

Figure 23 shows the symmetry relation between the d-orbital [d(xy)] and the p-orbital 
[p(x), p and p(y); p orbital]. Figure 25 shows the symmetry relation between the d-orbital 
[d(x2 - y2)] and the p-orbital [p(x), p and p(y); p orbital]. The p orbital is orthogonal to 
the d-orbital [d(xy)]. But it is not orthogonal to the d-orbital [d(x2 - y2)]. There is a 
principal overlap between these orbitals, leading to the occurrence of the charge transfer, 
or partial covalence (so-called  transfer). On the other hand, the p orbital is orthogonal 
to the d-orbital [d(x2 - y2)]. But it is not orthogonal to the d-orbital [d(xy)]. There is a 
principal overlap between these orbitals, leading to the occurrence of the charge transfer 
(so-called  transfer). Since the orbital overlap involved in the  transfer is greater than 
that in the  transfer, processes involving  transfer are stronger. 

In summary we have  
pd (t2g), strong overlap between p and d (eg), 
pd (eg), weak overlap between p and d (t2g), 

The orbit d [d(x2 – y2)] is orthogonal to the orbit p. So there is no charge transfer between 
d [d(x2 – y2)] and p. The direct exchange is ferromagnetic. 

 
Fig.25 The symmetry relation. d[d(x2-y2)]  p [p(y)]. d[d(x2-y2)]  p [p(x)]. 
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D. d  p  

The d-p bond should be weaker than the d-p bond owing to a smaller overlap. The 
direct exchange interaction is antiferromagnetic.  
 

 
Fig.26 The symmetry relation. d[d(xy)]  p [p(x)]. d[d(xy)]  p [p(y)]. 

Note that -transfer is stronger than the -transfer. the d- p bond should be weaker 
than the d- p bond owing to a smaller overlap. The d-s bond has the same property as 
the d- p bond, and therefore we shall confine ourselves in the following to the d- p 
bond. In fact we have no mean of clearly distinguishing between them, because an electron 
transfer can generally occur from an s-p hybridized orbital. 
 
The rules obtained are summarized as follows. 
 

 d  p charge transfer 
 d  p antiferromagnetic (non-orthogonal) 
 d  p  no charge transfer 
 d  p  ferromagnetic (orthogonal) 

 
 d  p charge transfer 
 d  pantiferromagnetic (non-orthogonal) 
 d  p  no charge transfer 
 d  p  ferromagnetic (orthogonal) 

 
7.4. GKA rules for the 90 configuration 

The rules for the 90 configuration are different from those for the 180° configuration. 
Here we take an example of the d (cation-- p(anion) - d’ (cation-2) bond. As is 
discussed above, the d-orbital of the cation-1 is orthogonal to the p orbital of the anion. 
The p orbital has a dumbbell shape whose rotation axis is parallel to the direction of the 
bond between the cation-1 and the anion. For 180° configuration, the bond between the 
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cation-1 and the anion is parallel to the bond between cation-2 and the anion. The p orbital 
can be regarded as the p’ orbital from the viewpoint of the bond between the anion and 
cation-2, since the rotation axis of p orbital is parallel to the direction of the bond between 
the cation-2 and anion. Since the d' orbital is orthogonal to the p' orbital, it follows that 
the p (=p') orbital is orthogonal to the d' for the cation-2.  

In contrast, the situation is rather different for the 90° configuration. In this case, the 
bond between the cation-2 and the anion is perpendicular to the bond between cation-1 and 
the anion. The p can be regarded as the p’ orbital from the viewpoint of the bond between 
the anion and cation-2, since the rotation axis of the p orbital is perpendicular to the 
direction of the bond between the cation-2 and anion. Since the d' orbital is not orthogonal 
to the p' orbital, then it follows that the p (=p') orbital is not orthogonal to the d' orbital.  

Similar discussion is made for various kinds of superexchange interaction in the 90º 
and 180º configurations. The rules thus obtained are summarized in the Table for the 90° 
and 180° configuration.  
 
 90 180 
 d  p p (= p')  d p (= p') d 
 d  p p (= p') d p (= p')  d 
 d  p  p (= p')  d p (= p') d 
 d  p  p (= p') d p (= p')  d 
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Fig.27 d  p. p (= p')  d. d p. p(= p')d 
 

 
Fig.28 d  p. p (=p') d. d  p. p (=p') d. 

 
 
8. Application of GKA rules to real systems 

8.1 180 configuration 

A. CaMnO3 180 case (Kanamori8) 

In this system, the manganese occurs in the crystal field at the Mn4+, which means that 
there are three d-electrons: (3d)3. The crystal field at the Mn4+ sites is cubic. Under the 
effect of a cubic field, the five-fold degenerate orbital d state of a single d electron is split 
into an orbital triplet (d, t2g) and an orbital doublet (d, g). According to the Hund’s rule, 
the three d-electrons will go to one of the de orbitals with their spins up. 
 

 
Fig.29 Schematic representation of the superexchange interaction (Mn4+ - 2p – Mn4+) in 

the 180º case. 



 37 

 
The superexchange involves the p-electrons of the O2-. The p-orbitals are described by 

p(x), p(y), and p(z), depending on the axis of rotation. These orbitals are classed into two 
types: (i) the p orbital (p-orbital whose axis points to one of the cations) and (ii) the p 
orbital (p-orbital whose axis is perpendicular to the line connecting the anion and cation).  

The p orbital is orthogonal to the d(3z2 – r2), d(xy), d(yz), and d(zx), except for d(x2 – 
y2). A partial covalent bond between the p orbital and d state [d(x2 – y2)]. can be formed, 

Then the charge transfer occurs from the p orbital with the spin up-state(  to the d state 

[d(x2 – y2)] of the Mn4+, according to the Hund’s rule requiring that the total spin should 
be maximum. The remaining p orbital (spin-down state), which is orthogonal to the d’ 
state, ferromagnetically couples to the d’ orbitals of the other Mn4+. Thus the resultant 
superexchange interaction between Mn4+ is antiferromagnetic. 
 
B. NiO, 180 case; (3d)8  

 

 
Fig.30 Schematic representation of the superexchange interaction (Ni2+ - 2ps – Ni2+) in the 

180º case. 
 
C. MnO 180 case 
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Fig.31 Schematic representation of the superexchange interaction (Mn2+ - 2p – Mn2+) in 

the 180º case. 
 
Note that d-p: is very weak. 
 
D.  Ni2+ (3d)8 and V2+ (3d)3 180 case 

One can expect a ferromagnetic interaction for this system. 
 

 
Fig.32 Schematic representation of the superexchange interaction  (V2+ - p – Ni2+) in the 

180º case. 
 
E Fe3+ (3d)5 and Cr3+ (3d)3 180 case 

(a) One can predict a ferromagnetic interaction. 
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Fig.33 Schematic representation of the superexchange interaction (Cr3+ - p – Fe3+) in the 

180º case. 
 
(b) The ferromagnetic interaction between Fe3+ and Cr3+ may be explained by considering 
that p-d bonds are more effective than d-p bonds. 
 

 
Fig.34 Schematic representation of the superexchange interaction (Fe3+ - p – Cr3+) in the 

180º case. 
 
8.2. 90 configuration 

A. NiCl2 
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Fig.35 Schematic representation of the superexchange interaction (Ni2+ - 3p – Ni2+) in 

the 90º case. 
 

The superexchange involves the p-electrons of the Cl-. The p orbital is orthogonal to 
the d(3z2 – r2), d(xy), d(yz), and d(zx), except for d(x2 – y2). A partial covalent bond between 
the p orbital and d state [d(x2 – y2)]. can be formed, Then the charge transfer occurs from 

the p orbital with the spin down-state(  to the d state of the Ni2+. The remaining p 

orbital (spin-up state), which is orthogonal to the d’ state, ferromagnetically couples to 
the d’ orbitals of the other Ni2+. Thus the resultant superexchange interaction between 
Ni2+ is ferromagnetic. 
 
B. CoCl2 

 
Fig.36 Schematic representation of the superexchange interaction (Co2+ - 3p – Co2+) in 

the 90º case. 
 
C. CrCl3 
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Fig.37 Schematic representation of the superexchange interaction (Cr3+ - 3p – Cr3+) in 

the 90º case. 
 

The superexchange involves the p-electrons of the Cl- ion. The p orbital is orthogonal 
to the d orbital. A partial covalent bond between the p orbital and d state can be formed, 

Then the charge transfer occurs from the p orbital with the spin up-state(  to the d state 

of the Cr3+. The remaining p orbital (spin-down state), which is orthogonal to the d’ state, 
antiferromagnetically couples to the d’ state of the other Cr3+. Thus the resultant 
superexchange interaction between Cr3+ spins is ferromagnetic. 
 
D. Ni2+ and V2+ 90 interaction 

 

 
Fig.38 Schematic representation of the superexchange interaction (Ni2+ - p – V2+) in the 

90º case. 
 
Antiferromagnetic interaction between a cation with a less-than-half-filled d-shell and a 
cation with a more-than-half-filled d-shell in the 90 case.  
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E. MnCl2 

 

 
Fig.39 Schematic representation of the superexchange interaction (Mn2+ - 3p – Mn2+) in 

the 90º case. 
 
F. CuCl2 

 
Fig.40 Schematic representation of the superexchange interaction (Cu2+ - 3p – Cu2+) in 

the 90º case. 
 
9. Application: La2CuO4 as a Mott insulator 

Finally we consider a superexchange interaction in La2CuO4 which is well-known as a 
mother-material of high temperature cuprate superconductor (Koike,21 2006). Cu2+ ions are 
located on the square lattice. There is an intervening O2- ion between the nearest neighbor 
Cu2+ ions. Because of the tetragonal crystal field produced by O2- ions and the Jahn-Teller 
effect related to the spontaneous lattice distortion, the d (= g) levels are split into the d(x2 
– y2) level and d(3z2 – r2). The d(x2 – y2) level (the highest energy level) is occupied by one 
electron, forming a half-filled band state. Because of the strong electron correlation 
(Coulomb energy between the electrons with the spin-up state and the spin-down state) in 
the d(x2 – y2) level, the d(x2 – y2) level split into the upper Hubbard band and the lower 
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Hubbard band. The lower Hubbard band is fully occupied by one electron, while the upper 
Hubbard state is empty. Thus the system becomes an insulator. In fact, there is a 2p band 
of O2- between the upper and lower Hubbard band. 

Since there are odd numbers of electrons per unit cell, reflecting of 3d9 for Cu2+ ion it 
is expected that this system should be a conductor with half-filled state. However, it is 
really an insulator. This implies that the band theory does not work well in this system. 
Such an insulator is known as a Mott-Hubbard insulator arising from the strong Coulomb 
interaction between electrons. When the Coulomb interaction U is much smaller than t, the 
electrons move over the crystal as a Bloch wave, When U is much larger than t, each 
electron is localized around the Cu2+ ion on the square lattice, leading to the insulator 
(Sec.3.1). 

Magnetically, there exists a superexchange interaction between Cu2+ ions through the 
intervening O2- ion. The mixing of the d(x2 – y2) orbital of Cu2+ ion and the p orbital of 
O2- ion form a antibonding molecular orbital. Figures 41 and 42 show the electronic density 

of the antibonding molecular orbitals )()( 22
xpyxdABx    and 

)()( 22
xpyxdABy   with  = -0.3, 0, and 0.3, respectively. The region of one of 

the clover leaves greatly expands along the +x axis for ABx  and greatly expands along 

the – y axis for ABy  for  = 0.3. This implies the strong covalency between d(x2 – y2) 

and p along the  axis where = x or y. The superexchange interaction leads to the 2D 
antiferromagnetic correlation between Cu2+ spins in the CuO2 layer. At low temperatures, 
these CuO2 planes show a 3D antiferromagnetic long range order through an 
antiferromagnetic interplanar interaction between the CuO2 layers.  

When holes are doped into La2CuO4, the O2- ions change into O- ions having electron 
spins. The antiferromagnetic spin order of Cu2+ spins vanishes due to the spin frustration 
effect from O- spin between Cu2+ ions. In turn, the superconductivity appears. When 
electrons are doped into La2CuO4, the electrons enter into the upper Hubbard band. The 
Cu2+ ions change into Cu+ with the electron configuration (3d)10. Then the 
antiferromagnetic order disappears (Koike,21 2006). 

 

 
Fig.41 3D polar representation of )()( 22

xpyxd    with  = -0.3, 0, and 0.3. 
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Fig.42 3D polar representation of )(ypdxy    with  = -0.3, 0, and 0.3. 

 
10. Conclusion 

In 1949, Mott14 discussed the insulating state and the metal-insulator transition arising 
from the electron correlation, as an example of NiO. In 1959, Anderson proposed a theory 
of superexchange interaction. Anderson pointed out that all of insulating magnetic 
compounds are Mott insulators. The theory not only elucidates the origin of the 
superexchange interaction but also gives a fundamental basis for the approach of spin 
Hamiltonian. Thanks to this paper, both the metal state and insulation state can be discussed 
on the same basis. The high temperature superconductivity is observed in Cu oxides in 
1980’s. In his proposed theory (1987), Anderson22 claimed that the strong Coulomb 
interaction (electron correlation) may be responsible for the high Tc superconductivity. It 
is our current understanding that the high Tc superconductivity is due to the condensation 
of electron pairs with the symmetry of the d-wave via antriferromagnetic spin fluctuations 
based on the superexchange interactions between Cu2+ spins. 
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Appendix 

A. Mathematica program 
<<Graphics`ParametricPlot3D` 
 <<Graphics` 

  

  

SuperStar;expr_∗ := exprê. 8Complex@a_, b_D� Complex@a, −bD<
ψpx=

−$%%%%%%1
2
SphericalHarmonicY@1, 1, θ, φD +

$%%%%%%1
2

SphericalHarmonicY@1, −1, θ, φD êê FullSimplify;
ψpy=

� $%%%%%%1
2

HSphericalHarmonicY@1,1, θ, φD + SphericalHarmonicY@1, −1, θ, φDL êê
FullSimplify;ψpz = SphericalHarmonicY@1,0, θ, φD êê FullSimplify;

ψdxy=

− � $%%%%%%1
2

HSphericalHarmonicY@2,2, θ, φD − SphericalHarmonicY@2, −2, θ, φDL êê
FullSimplify;

ψdyz=

� $%%%%%%1
2

HSphericalHarmonicY@2,1, θ, φD + SphericalHarmonicY@2, −1, θ, φDL êê
FullSimplify;

ψdzx=

−$%%%%%%1
2

HSphericalHarmonicY@2,1, θ, φD − SphericalHarmonicY@2, −1, θ, φDL êê
FullSimplify;

ψdx2y2=

$%%%%%%1
2

HSphericalHarmonicY@2, 2, θ, φD +

SphericalHarmonicY@2, −2, θ, φDL êê FullSimplify;
ψd3z2r2= SphericalHarmonicY@2,0, θ, φD êêSimplify;
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Qt1[k_]:=SphericalPlot3D[Evaluate[Ad5p3[k]],{θ,0,π},{φ,0,2π

},PlotLabel→{k},PlotPoints→40,PlotRange→All,DisplayFunction
→Identity];Rt1[k_]:=SphericalPlot3D[Evaluate[Ad5p1[k]],{θ,0
,π},{φ,0,2π},PlotLabel→{k},PlotPoints→40,PlotRange→All,Disp
layFunction→Identity];St1[k_]:=SphericalPlot3D[Evaluate[Adz
xp3[k]],{θ,0,π},{φ,0,2π},PlotLabel→{k},PlotPoints→40,PlotRa
nge→All,DisplayFunction→Identity];Tt1[k_]:=SphericalPlot3D[
Evaluate[Adzxp1[k]],{θ,0,π},{φ,0,2π},PlotLabel→{k},PlotPoin
ts→40,PlotRange→All,DisplayFunction→Identity] 
(a) Mixing of d(3z2-r2) and p(z) orbitals,  d(3z2-r2) - k  p(z). k is changed as a parameter. 
p(z) is a ps orbital. 
 Qt2=Table[Qt1[k],{k,-
0.4,0.4,0.4}];Qt3=Show[GraphicsArray[Partition[Qt2,3]],Disp
layFunction→$DisplayFunction] 

 
 �GraphicsArray� 

(b) Mixing of d(3z2-r2) and p(x) orbitals,  d(3z2-r2) - k  p(x). k is changed as a 
parameter. p(x) is a pp orbital. 
 Rt2=Table[Rt1[k],{k,-
0.4,0.4,0.4}];Rt3=Show[GraphicsArray[Partition[Rt2,3]],Disp
layFunction→$DisplayFunction] 

 
 �GraphicsArray� 

(c) Mixing of d(zx) and p(z) orbitals,  d(zx) - k  p(z). k is changed as a parameter. p(z) is 
a ps orbital. 
 St2=Table[St1[k],{k,-
0.4,0.4,0.4}];St3=Show[GraphicsArray[Partition[St2,3]],Disp
layFunction→$DisplayFunction] 

Ad5p3@k_D:= Abs@ ψd3z2r2 − k ψpzD2 êê Simplify;
Ad5p1@k_D:= Abs@ ψd3z2r2 − k ψpxD2 êê Simplify;
Adzxp3@k_D:= Abs@ ψdzx− k ψpz D2 êê Simplify;
Adzxp1@k_D:= Abs@ ψdzx− k ψpxD2 êê Simplify;
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 �GraphicsArray� 

(d) Mixing of d(zx) and p(x) orbitals,  d(zx) - k  p(x). k is changed as a parameter. p(x) is 
a pp orbital. 
 Tt2=Table[Tt1[k],{k,-
0.4,0.4,0.4}];Tt3=Show[GraphicsArray[Partition[Tt2,3]],Disp
layFunction→$DisplayFunction] 

 
 �GraphicsArray� 

 
B. Magnetic properties of typical magnetic compounds 

The magnetic properties of pure compounds and graphite intercalation compounds 
(GICs) (quasi 2D spin systems) are obtained from the Ref.19 and Ref.20, respectively. 
 
FeTiO3  

Ilmenite structure. An Ising antiferromagnet with the easy direction of spins along 
the c-axis. The Fe ions on the hexagonal lattice are ferromagnetically ordered. The 
2D ferromagnetic layers are stacked along the c axis. TN = 58.0 K. |J’/J| = 0.2. 

MnTiO3 
Ilmenite structure. An Ising antiferromagnet with the easy direction of spins along 
the c-axis . The Mn ions on the hexagonal lattice are antiferromagnetically ordered. 
TN = 63.6 K. |J’/J| = 0.04. 

K2MnF4 
K2NiF4 type structure. a = 4.20 Å. c = 13.14 Å. Antiferromagnet. TN = 42.37 (58.0) 
K. Spin//c. Typical 2D antiferromagnet. 

K2CoF4 
K2NiF4 type structure. 2D Ising antiferromagnet. Spin//c. TN = 107 K. S = 1/2 
(fictitious spin) 
gc = 6.30. ga = 3.13. 

K2NiF4 
a = 4.006 Å. c = 13.076 Å. 2D antiferromagnet. TN = 97.1 K. Spin//c. Typical 2D 
antiferromagnet. 

K2CuF4 
K2NiF4 type structure. a = 4.155 Å. c = 12.71 Å. 2D Heisenberg-like Ferromagnet 
with XY spin anisotropy. Tc = 6.25 K. Spinc. S = 1/2. J = 11.2 K. HA = 2.44 kOe.  
Typical 2D XY-like ferromagnet. 

MnCl2 
CdCl2 type structure, a = 6.20 Å,  = 33º33’. Antiferromagnet. TN1 = 1.96 K and 
TN2 = 1.81 K. Spin c. Complicated magtnetic structure (neutron scattering). Two 
peaks of -type in the heat capacity. 
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FeCl2 
CdCl2 type structure. a = 6.20 Å.  = 33º33’. Antiferromagnet. spin direction //c, 
TN = 23.5 K. Ferromagnetic intraplanar exchange interaction (J = 3.4 K). 
antiferromagnetic interplanar exchange interaction. Metamagnetism. He = 11.6 kOe, 
HA = 43 kOe, HE = 140 kOe. Fictitious spin S = 1. 

CoCl2 
CdCl2 type structure. a = 6.16 Å.  = 33º33’. Antiferromagnet. TN = 24.7 K. 
Intraplanar ferromagnetic and interplanar antiferromagnetic exchange interactions. 
Spinc. XY-like spin anisotropy. gc = 3.04. ga = 4.95. S = 1/2 (fictitious spin). 
J1 = 10.4 K. J2 = -0.89 K. 

NiCl2 
CdCl2 type structure. a = 6.13 Å.  = 33º36’. Antiferromagnet. S = 1. TN = 52 K. 
Intraplanar ferromagnetic and interplanar antiferromagnetic exchange interactions. 
Spinc. XY-like spin anisotropy. J1 = 9.5 K. J2 = -0.73 K. 

CrCl3 
a = 5.942 Å. c = 17.333 Å. Antiferromagnet. TN = 16.8 K. Intraplanar ferromagnetic 
and interplanar antiferromagnetic exchange interactions. Spinc. Transion from 
antiferromagnetic phase to the ferromagnetic phase occurs only at Hc (= several 
kOe). 

FeCl3 
a = 6.065 Å. c = 17.44 Å. Antiferromagnet. TN = 15 K. spin spiral in the ( )0514

plane. The rotation angle is 2/15 per layer. 
Stage-2 CrCl3 GIC 

Quasi 2D XY-like ferromagnet on the hexagonal lattice. Tcu =11.5 K. Tcl = 10.3 – 
10.5. c = 12.80 Å. The intraplanar interaction is ferromagnetiv (J = 5.86 K). The 
interplanar interaction is very weak and antiferromagnetic. S = 3/2.  

Stage-2 FeCl3 GIC 
Quasi 2D antiferromagnet on the hexagonal lattice. Spin glass like transitions at 
TSG

(h) = 4.5 K. TSG
(l) = 2 K. The FeCl3 layers may be formed of majority Fe3+ spins 

with XY spin anisotropy and minority Fe2+ spins with Ising anisotropy. The 
intraplanar exchange interaction between Fe3+ spins is antiferromagnetic. S = 5/2. 

Stage-2 MnCl2 GIC 
Quasi 2D Heisenberg-like antiferromagnet on the triangular lattice. S = 5/2. TN = 
1.1 K. No magnetic phase transition is observed from neutron scattering. 

Stage-2 CoCl2 GIC 
Quasi 2D XY-like ferromagnet. Tcu = 8.9 K. Tcl = 6.9 K. Fictitious spin S = 1/2. The 
interplanar exchange interaction is antiferromagnetic, while the intraplanar 
exchange interaction is ferromagnetic (J = 7.75 K). The anisotropic exchange 
interaction JA is 3.72 K. 

Stage-2 NiCl2 GIC 
Quasi 2D XY-like ferromagnet on the triangular lattice. Tcu = 21.3 K. Tcl = 18 K. 
Spin S = 1. The interplanar exchange interaction is antiferromagnetic, while the 
intraplanar exchange interaction is ferromagnetic (J = 7.5 K). 

Stage-2 CuCl2 GIC 
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Quasi 2D Heisenberg-like antiferromagnet on the isosceles triangle. No magnetic 
phase transition is observed from magnetic neutron scattering. The DC magnetic 
susceptibility shows a broad peak at 62 - 65 K. S = 1/2. 

 


