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A magnon is quantized spin wave. We find the magnon dispersion relation of  vs k. 

 

 
 

1. Magnon 

The ground state of a simple ferromagnet has all spins parallel. Consider N spins each of 

magnitude S on a line or a ring, with nearest neighbor spins coupled by the Heisenberg 

interaction, 
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where J is the exchange integral, and pSℏ  is the angular momentum of the spin at the point p. If 

we treat Sp as a classical vector, then in the ground state, 
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and the exchange energy of the system is 
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What is the energy of the first excited state? We consider an excited state with one particular 

spin reversed. 
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We can form an excitation of much lower energy if we let all the spins share the reversal. The 

elementary excitations of a spin system have a wave-like form, and called magnons. 

 

2. Derivation of the magnon dispersion relation 

 

The term in H which involve the p-th spin are 
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The magnetic moment at the site p is 
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Then we get 
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where the effective magnetic field that acts on the p-th spin is 
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We know that 
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In Cartesian components 
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If the amplitude of the excitation is small ( SS x

p  , SS y

p  ). We may obtain an approximate 

set of linear equations by taking all SS z

p   and by neglecting terms in the product of Sx and Sy in 

dt

d pS
, 
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We look for travelling wave solutions of the above equations of the form. 
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where u and v are complex numbers, p is an integer, and a is the lattice constant. Then we get 
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These equations have a solution for u and v if the determinant of the coefficients is equal to zero. 
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or 
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With this solution we find that  
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where u is assumed to be real. Then we have 
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Circular precession: 
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3. Periodic boundary condition 

 

The spin wave has the travelling wave form, 
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We assume the periodic boundary condition, 

 

)()0( L 
 

 

where L = Na and a is the lattice constant. Then we have 
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with n = 0, 1,2, 3,…., N/2 (the first Brillouin zone). 

 

4. Magnon dispersion relation  
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For ka<<1, 
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The frequency is proportional to k2.  

 

((Note)) 

We note that the dispersion relation for a ferromagnetic cubic lattice with nearest-neighbor 

interactions, 
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where the summation is over the  vectors denoted by  which join the central atom to its nearest 

neighbors. 

 

5. Quantization of spin waves 

 

Holstein-Primakoff 

 

The z-component of Sj at the j-th takes the values 
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where nj = 0, 1, 2, …, 2S (total number: 2S+1). Let jn  be the eigen state of nj with j

z
j nSS  . 

Note that nj is the spin deviation operator. Here we introduce the operators aj and *

ja
, 
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aj is the annihilation operator and *

ja is the creation operator.  

The commutation relation is valid, 
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Spin operators satisfy the following relations, 
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Then we have the Holstein-Primakoff transformation, 
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The Hamiltonian H is described as 
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We neglect the fourth term and higher order terms such as jjji aaaa
**

. 
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ji aa 0 for ji  . We introduce the Fourier transform aq
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Commutation relation: 
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Similarly we get 
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We introduce 
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Then the Hamiltonian can be expressed by 
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where 
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is the magnon dispersion relation. 

 

((Simple example)) 

 

 
 

Jij = J only for the nearest- neighbor pairs. 
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which is the spin wave dispersion (magnon dispersion).  
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Fig. Dispersion curve of magnon. 

 

6. Magnetization 

The z-component of the magnetization is  
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The magnon is a boson. 
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The total number of magnons excited at a temperature T is 
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where D() is the number of magnon modes per unit frequency range. 
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We use the magnon dispersion relation, 
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Then the density of states is given by 
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The integral is taken over the allowed range of q, which is the first Brillouin zone. At T = 0 K, 

we may carry the integral between 0 and ∞, because <n()> →∞ exponentially as →∞. 
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wherec SNgM Bs )0(  and 3NaV  . This result is called the Bloch T3/2 law. The 

magnetization  
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7. Heat capacity 

The heat capacity is given by 
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where  = 1/(kBT), 
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Then we get 
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Here we note that 
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and 3NaV  . Then we have 
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The heat capacity is proportional to T3/2. 

 

8. Spin wave theory (Feynman) S = 1/2. 

We consider a spin wave theory which is described by Feynman. The Hamiltonian is  
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where s is the Pauli operator. With this Hamiltonian we have a complete description of the 

ferromagnet. 

 

 
 

1ˆ2ˆˆ
1,1   nnnn Pσσ  

 

where 1
ˆˆ  nn σσ  interchanges the spins of the n-th and (n+1)-th electrons. 

 

For the ground state all spins are up (  , so if you exchange a particular pair of spins, one 

can get back the original state. The ground state is a stationary state: -J/2 for each pair of spins. 

That is, the energy of the system in the ground state is -J/2 per spin. 

It is convenient to measure the energies with respect to the ground state. Our new 

Hamiltonian is 
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Here we consider 
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Eigenvalue problem 
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Let us take as a trial function 
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The difference energy solutions correspond to “waves” of down spin-called “spin waves.” 

 

For ka<<1, E is approximated by 
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