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A magnon is quantized spin wave. We find the magnon dispersion relation of @ vs k.

1. Magnon

The ground state of a simple ferromagnet has all spins parallel. Consider N spins each of
magnitude S on a line or a ring, with nearest neighbor spins coupled by the Heisenberg
interaction,

N
H=-2J)S,-S,.,

p=l

where J is the exchange integral, and 7S, is the angular momentum of the spin at the point p. If

we treat Sp as a classical vector, then in the ground state,

S-S =8

p T ptl
and the exchange energy of the system is
E,=-2NJS’

What is the energy of the first excited state? We consider an excited state with one particular
spin reversed.



E, =-2(N-2)JS* +2-2J§* =-2NJS* +8JS>

We can form an excitation of much lower energy if we let all the spins share the reversal. The
elementary excitations of a spin system have a wave-like form, and called magnons.

2. Derivation of the magnon dispersion relation
The term in H which involve the p-th spin are
-2JS,-(S,,+S,.),
The magnetic moment at the site p is
n, =—8HS, .

Then we get

y 24
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where the effective magnetic field that acts on the p-th spin is

2J
Bp =_g_IUB(Sp4 +Sp+1)
We know that
d(hS )
TP - Tp - 'uP pr



or

as 2J
_p:—%spx(— )(Sp71+Sp+l)
dt h gHp

2J
=7(Sp><Sp71+Sp><Sp+l)

In Cartesian components
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If the amplitude of the excitation is small (|S;| << S, Slf‘ <<§). We may obtain an approximate

set of linear equations by taking all S, =S and by neglecting terms in the product of Sx and Sy in

ds,
dt’
ds,” 2JS
d: = 7(2Spy - Spfly - Sp+1y)
ds,’ 2JS x x x
d; =_7(2Sp _Spfl _Sp+l )
as,” _,
dt

We look for travelling wave solutions of the above equations of the form.

S," =Re[uexp[i( pka— ot)], S,” =Re[vexp[i( pka — ot)]



where u and v are complex numbers, p is an integer, and a is the lattice constant. Then we get

—ioou = % Q2-e™—e™)y= 4hLS[l —cos(ka)]v

— v = —% Q2-—e™—e ™y = —%[l —cos(ka)u

These equations have a solution for u and v if the determinant of the coefficients is equal to zero.

iw %[l —cos(ka)]

=0
— %[l —cos(ka)] iw

or
ha =4JS[(1—cos(ka)]

With this solution we find that

where u is assumed to be real. Then we have

S," = Re[u exp[i( pka — ot)]
=u cos( pka — o) ’

S, = Re[ueiiE expli( pka — wt)]
=usin( pka — ot)

Circular precession:

OO0



3. Periodic boundary condition
The spin wave has the travelling wave form,
w =expli(kx —w,t)
We assume the periodic boundary condition,
w(0)=w (L)
where L = Na and a is the lattice constant. Then we have

kzz—ﬁn
L

withn =0, 1,2, 3,...., N/2 (the first Brillouin zone).
4. Magnon dispersion relation
ho, =4JS[(1-cos(ka)]

For ka<<l1,
he, =8JSsin 5 2JSa’k”.

The frequency is proportional to A°.
((Note))
We note that the dispersion relation for a ferromagnetic cubic lattice with nearest-neighbor
interactions,
he, =28[J(0)—J(k)]

with

Jk)=>J.e""
J



where the summation is over the J vectors denoted by ¢ which join the central atom to its nearest
neighbors.

S. Quantization of spin waves
Holstein-Primakoff

The z-component of Sj at the j-th takes the values
S_/Z =S—-n

J

where nj =0, 1, 2, ..., 2S (total number: 25+1). Let ‘n/> be the eigen state of nj with S;"= S —n;.

Note that #; is the spin deviation operator. Here we introduce the operators a; and a /.*
a_/.‘ ”./> =V ‘ n;— 1>
n_/.> =n; +1 ‘n_/. +1>

. g . . * . .
aj is the annihilation operator and a; is the creation operator.

*
a;

The commutation relation is valid,
[a;,a; ]1=1

and
a;a; ‘”/> =4,

Spin operators satisfy the following relations,

”_,-—1>:”_,-‘”_,->_

(5,748 |n,) = J(S—M)(S + M +D|n, -1)

(5,7 =i8,"|n,) = J(S+MYS —M D[, +1)

with



M=S-n..

J

Then we have the Holstein-Primakoff transformation,

S =8 +iS =\285(1-—-+1)"a

S, =8"-iS," =28a, a-—L=L)",

J

<aj*aj >
S

S and S, can be approximated as follows (

; <<1).

=28

~+..)a;

L)

The Hamiltonian H is described as

zZqQ z 1 - + +o -
H=-2%"JS,-S,=-2>J,[S’S, +2 (7S 575N,
<i,j> <i,j>

Here we note

S8 =(S—n)S—n;)=8>—=(n+n,)S+nn,

_a,a.4a; _q a a,
S°§T =28
(a; 4s -4, 45

L+.)
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a aa, . a a’ a,
S*S " =28(aq. — 5% 4 VgL T
t (@ 48 X j 4S )

1

* * * * *

=28aa, ——aa.a,a,——a, aaa; +..
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Then we get

H:—ZZ:JI.].[S2 —(n;+n;)S+nn, +S(al.*aj +al.aj*)

<i,j>

1
——(aaaa +aaaa +aaaa+aaaa D
4 [t ey

We neglect the fourth term and higher order terms such as al.*a_/.*ajaj .

=2 ZJU.[S2 —(n,+n,)S+nn, +S(al.*aj +al.a].*)]

<i,j>

=-2 ZJU[S2 —(n,+n;)S+mn; + S(al.*aj + a_/.*al.)]

<i,j>

because of [al.,aj*] =0 for i # j. We introduce the Fourier transform aq" and aq,

1 iq-r:
_ﬁZajeq !
J

* ﬂqrv

ST

Commutation relation:
[a a ]_ Z[al,a ]ezq(r -r;) _ z zq(r -r;

Similarly we get

We introduce



J((I) — ZJi/_el"I'(rf’r_/) )
j

Then the Hamiltonian can be expressed by

H=-2YJ,[S*=(n+n)S+nn,+S(a a,+a a)l

<i,j>

=283 J, + > 285[J(0) - J(Q)la, 4,

<i,j> q

=E,+ z ha)qaq*aq
q
where
ho, =217 (0)—J (q)]

is the magnon dispersion relation.

((Simple example))

Jij = J only for the nearest- neighbor pairs.

J(q)= z Ji/eiq""" = JZ ¢ = J(e" + e ) =2J cos(aq).
J J
Then we have
ho, =2S[J(0)-J(q)]=4JS(1-cos(qa)] = 2JS sin’ (q—za)

which is the spin wave dispersion (magnon dispersion).
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Fig. Dispersion curve of magnon.
6. Magnetization

The z-component of the magnetization is

J

M. =gu, ¥ S/ =g,y (S—n,)=gu,(NS-> a,'a,)
J q
The magnon is a boson.

M,(0)- M (T) =AM =gu; > (a,'a, )= guy " (n,)

q q

The total number of magnons excited at a temperature 7" is

> (n,) = [ doD(w) < n(w) >

q

where D(w) is the number of magnon modes per unit frequency range.

D(w)dw = v S4mg’dg = v - 4rg’ ﬂda)
(27) (27) do

We use the magnon dispersion relation,
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ho,=ho=2JSa °q’

@ B 4JSa?
dg h

q

Then the density of states is given by

v( n Y7
D = @
(@)= (2JSa2j

The integral is taken over the allowed range of ¢, which is the first Brillouin zone. At 7= 0 K,
we may carry the integral between 0 and co, because <n(@)> —oo exponentially as w—oo.

V h 3/2 0 wl/Zdw
AM =
g:uB 472_2 (2JSa2j 0 eﬁhw—l
. V kBT 3/2 0 xl/de
g:uB 472_2 2JSa2 0 ex —1
Since
o 1/2
);x _d)lc :%g(%) =0.0587(47")
0
we have
3/2 3/2
M _ 7 [kBTj 0.0587:l[kBTj 0.0587
M (0) NSa \2JS S\2JS

wherec M (0)= Ngu,S and V =Na’ . This result is called the Bloch 7% law. The

magnetization

1 kBT 3/2
M(T)_MS(O)[I—E[Z]SJ 0.0587]

75 Heat capacity
The heat capacity is given by
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dE ®”
T dT k T? ( 1) (1-e )

where = 1/(ksT),

E= Zq:h%<”q> = Jd"’D("’)h"’eﬁhw -1

d 1 _ ho 1

dT ™ -1 k,T* (™ -1)(1-e ™)

Then we get
1
da)
Tk, 4n [2]&1 j J e 1)(1 e’ﬁ””)
1 7/2r>o S/de
k T? 47° [2]&1 j [ j (e"-D(1-e)

i v [kBijT x*dx
Par’a’ \2J8) (et —)(1-e7)

Here we note that

© 5/2
j XA 45803
0

(e'=D(1=-e™)

and ¥V = Na® . Then we have

3/2
N [kBTj 4.45823
2JS

€=k 4’

The heat capacity is proportional to 722,

8. Spin wave theory (Feynman) S = 1/2.
We consider a spin wave theory which is described by Feynman. The Hamiltonian is
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A=

N |
[« ]
=
[« ]
=
=

where s is the Pauli operator. With this Hamiltonian we have a complete description of the
ferromagnet.

&
MO S aaaans
< X5 >

6 -6, =2P . —1

n n,n+1 -

where 6, -6, ., interchanges the spins of the n-th and (n+1)-th electrons.

n+l

For the ground state all spins are up (|+> , so if you exchange a particular pair of spins, one

can get back the original state. The ground state is a stationary state: -J/2 for each pair of spins.
That is, the energy of the system in the ground state is -J/2 per spin.

It is convenient to measure the energies with respect to the ground state. Our new
Hamiltonian is

H=-JY.(B,. -1

A |
! 4

2 -1 0 1 2 3 4 5 6 71 8
< >

With this Hamiltonian, the energy of the ground state is zero. Here we define the state |xn>

where all the spins except for the one on the spin at x;,.

I:I|x5> = _JZ(lsn,nJrl _1)|x5> = _J(f)s,e _1)|x5> _J(134,5 _1)|x5>

=-J( x6>—2|x5>+|x4>)

where
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A

Blvs) =|x.), Belvs) =|x6), By
Similarly,

H|x,)=~J(|x,.) - 2]x,) +|x,)

H|x,,) ==J(x,5) = 2x,..) +|x,)

Here we consider

v)=2.G,

X,)

Eigenvalue problem

Hly) = Ely)
or

ZC,fl xn> = EZC” xn>
or

ZC,fl xn> = EZC” xn>
or

Z(—J)(C” xn+1>_2cn xn>+cn xn71> = Ezcn
or

Z(_‘])(Cﬂ—l _2Cn + Cn+1) xn> = Ez Cn xn>
or

14

x5> = |x5> ,and . 1334|x5> = |x5> .




=J)c, ,-2C +C . )=EC,
Let us take as a trial function

C =e™ (Bloch state)

(=)(" 0 = 2™ 4 ") = Ee

E =2J[1-cos(ka)] (energy dispersion)
The difference energy solutions correspond to “waves” of down spin-called ‘spin waves.”
For ka<<1, E is approximated by

2 2
k*a

E=24 = Ak’a’
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