Magnons of ferromgnetism
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton

(Date: April 21, 2012)

A magnon is quantized spin wave. We find the magnon dispersion relation of ω vs k.

1. Magnon

The ground state of a simple ferromagnet has all spins parallel. Consider N spins each of magnitude S on a line or a ring, with nearest neighbor spins coupled by the Heisenberg interaction,

$$
H=-2 J \sum_{p=1}^{N} \mathbf{S}_{p} \cdot \mathbf{S}_{p+1}
$$

where J is the exchange integral, and $\hbar \mathbf{S}_{p}$ is the angular momentum of the spin at the point p . If we treat $\boldsymbol{S}_{\mathrm{p}}$ as a classical vector, then in the ground state,

$$
\mathbf{S}_{p} \cdot \mathbf{S}_{p+1}=S^{2}
$$

and the exchange energy of the system is

$$
E_{0}=-2 N J S^{2}
$$

What is the energy of the first excited state? We consider an excited state with one particular spin reversed.

$$
E_{1}=-2(N-2) J S^{2}+2 \cdot 2 J S^{2}=-2 N J S^{2}+8 J S^{2}
$$

We can form an excitation of much lower energy if we let all the spins share the reversal. The elementary excitations of a spin system have a wave-like form, and called magnons.

2. Derivation of the magnon dispersion relation

The term in H which involve the p-th spin are

$$
-2 J \mathbf{S}_{p} \cdot\left(\mathbf{S}_{p-1}+\mathbf{S}_{p+1}\right)
$$

The magnetic moment at the site p is

$$
\boldsymbol{\mu}_{p}=-g \mu_{B} \mathbf{S}_{p} .
$$

Then we get

$$
-2 J\left(\frac{\boldsymbol{\mu}_{p}}{-g \mu_{B}}\right) \cdot\left(\boldsymbol{S}_{p-1}+\boldsymbol{S}_{p+1}\right)=-\boldsymbol{\mu}_{p} \cdot \boldsymbol{B}_{p}
$$

where the effective magnetic field that acts on the p-th spin is

$$
\boldsymbol{B}_{p}=-\frac{2 J}{g \mu_{B}}\left(\boldsymbol{S}_{p-1}+\boldsymbol{S}_{p+1}\right)
$$

We know that

$$
\frac{d\left(\hbar \boldsymbol{S}_{p}\right)}{d t}=\boldsymbol{\tau}_{p}=\boldsymbol{\mu}_{p} \times \boldsymbol{B}_{p}
$$

or

$$
\begin{aligned}
\frac{d \boldsymbol{S}_{p}}{d t} & =-\frac{g \mu_{B}}{\hbar} \boldsymbol{S}_{p} \times\left(-\frac{2 J}{g \mu_{B}}\right)\left(\boldsymbol{S}_{p-1}+\boldsymbol{S}_{p+1}\right) \\
& =\frac{2 J}{\hbar}\left(\boldsymbol{S}_{p} \times \boldsymbol{S}_{p-1}+\boldsymbol{S}_{p} \times \boldsymbol{S}_{p+1}\right)
\end{aligned}
$$

In Cartesian components

$$
\begin{aligned}
& \frac{d S_{p}^{x}}{d t}=\frac{2 J}{\hbar}\left[S_{p}^{y}\left(S_{p-1}^{z}+S_{p+1}^{z}\right)-S_{p}^{z}\left(S_{p-1}^{y}+S_{p+1}^{y}\right)\right] \\
& \frac{d S_{p}^{y}}{d t}=\frac{2 J}{\hbar}\left[S_{p}^{z}\left(S_{p-1}^{x}+S_{p+1}^{x}\right)-S_{p}^{x}\left(S_{p-1}^{z}+S_{p+1}^{z}\right)\right] \\
& \frac{d S_{p}^{z}}{d t}=\frac{2 J}{\hbar}\left[S_{p}^{x}\left(S_{p-1}^{y}+S_{p+1}^{y}\right)-S_{p}^{y}\left(S_{p-1}^{x}+S_{p+1}^{x}\right)\right]
\end{aligned}
$$

If the amplitude of the excitation is small $\left(\left|S_{p}^{x}\right| \ll S,\left|S_{p}^{y}\right| \ll S\right)$. We may obtain an approximate set of linear equations by taking all $S_{p}^{z}=S$ and by neglecting terms in the product of S_{x} and S_{y} in $\frac{d \mathbf{S}_{p}}{d t}$,

$$
\begin{aligned}
& \frac{d S_{p}^{x}}{d t}=\frac{2 J S}{\hbar}\left(2 S_{p}^{y}-S_{p-1}^{y}-S_{p+1}^{y}\right) \\
& \frac{d S_{p}^{y}}{d t}=-\frac{2 J S}{\hbar}\left(2 S_{p}^{x}-S_{p-1}^{x}-S_{p+1}^{x}\right) \\
& \frac{d S_{p}^{z}}{d t}=0
\end{aligned}
$$

We look for travelling wave solutions of the above equations of the form.

$$
S_{p}^{x}=\operatorname{Re}\left[u \exp [i(p k a-\omega t)], \quad S_{p}{ }^{y}=\operatorname{Re}[v \exp [i(p k a-\omega t)]\right.
$$

where u and v are complex numbers, p is an integer, and a is the lattice constant. Then we get

$$
\begin{aligned}
& -i \omega u=\frac{2 J S}{\hbar}\left(2-e^{-i k a}-e^{-i k a}\right) v=\frac{4 J S}{\hbar}[1-\cos (k a)] v \\
& -i \omega v=-\frac{2 J S}{\hbar}\left(2-e^{-i k a}-e^{-i k a}\right) u=-\frac{4 J S}{\hbar}[1-\cos (k a)] u
\end{aligned}
$$

These equations have a solution for u and v if the determinant of the coefficients is equal to zero.

$$
\left|\begin{array}{cc}
i \omega & \frac{4 J S}{\hbar}[1-\cos (k a)] \\
-\frac{4 J S}{\hbar}[1-\cos (k a)] & i \omega
\end{array}\right|=0
$$

or

$$
\hbar \omega=4 J S[(1-\cos (k a)]
$$

With this solution we find that

$$
v=-i u
$$

where u is assumed to be real. Then we have

$$
\begin{aligned}
S_{p}^{x} & =\operatorname{Re}[u \exp [i(p k a-\omega t)], \\
& =u \cos (p k a-\omega t) \\
S_{p}{ }^{y} & =\operatorname{Re}\left[u e^{-i \frac{\pi}{2}} \exp [i(p k a-\omega t)]\right. \\
& =u \sin (p k a-\omega t)
\end{aligned}
$$

Circular precession:

3. Periodic boundary condition

The spin wave has the travelling wave form,

$$
\psi=\exp \left[i\left(k x-\omega_{k} t\right)\right.
$$

We assume the periodic boundary condition,

$$
\psi(0)=\psi(L)
$$

where $L=N a$ and a is the lattice constant. Then we have

$$
k=\frac{2 \pi}{L} n
$$

with $n=0,1,2,3, \ldots, N / 2$ (the first Brillouin zone).

4. Magnon dispersion relation

$$
\hbar \omega_{k}=4 J S[(1-\cos (k a)]
$$

For $k a \ll 1$,

$$
\hbar \omega_{k}=8 J S \sin ^{2} \frac{k a}{2} \approx 2 J S a^{2} k^{2}
$$

The frequency is proportional to k^{2}.
((Note))
We note that the dispersion relation for a ferromagnetic cubic lattice with nearest-neighbor interactions,

$$
\hbar \omega_{k}=2 S[J(0)-J(\boldsymbol{k})]
$$

with

$$
J(\mathbf{k})=\sum_{j} J_{i j} e^{i \mathbf{k} \cdot \mathbf{r}_{i j}}
$$

where the summation is over the δ vectors denoted by δ which join the central atom to its nearest neighbors.

5. Quantization of spin waves

Holstein-Primakoff

The z-component of S_{j} at the j-th takes the values

$$
S_{j}{ }^{2}=S-n_{j}
$$

where $n_{\mathrm{j}}=0,1,2, \ldots, 2 \mathrm{~S}$ (total number: $2 S+1$). Let $\left|n_{j}\right\rangle$ be the eigen state of n_{j} with $S_{j}{ }^{z}=S-n_{j}$. Note that n_{j} is the spin deviation operator. Here we introduce the operators a_{j} and $a_{j}{ }^{*}$,

$$
\begin{aligned}
& a_{j}\left|n_{j}\right\rangle=\sqrt{n_{j}}\left|n_{j}-1\right\rangle \\
& a_{j}^{*}\left|n_{j}\right\rangle=\sqrt{n_{j}+1}\left|n_{j}+1\right\rangle
\end{aligned}
$$

a_{j} is the annihilation operator and a_{j}^{*} is the creation operator.
The commutation relation is valid,

$$
\left[a_{j}, a_{j}^{*}\right]=1
$$

and

$$
a_{j}^{*} a_{j}\left|n_{j}\right\rangle=\sqrt{n_{j}} a_{j}^{*}\left|n_{j}-1\right\rangle=n_{j}\left|n_{j}\right\rangle .
$$

Spin operators satisfy the following relations,

$$
\begin{aligned}
& \left.\left(S_{j}^{x}+i S_{j}^{y}\right) n_{j}\right\rangle=\sqrt{(S-M)(S+M+1)}\left|n_{j}-1\right\rangle \\
& \left(S_{j}^{x}-i S_{j}^{y}\right)\left|n_{j}\right\rangle=\sqrt{(S+M)(S-M+1)}\left|n_{j}+1\right\rangle
\end{aligned}
$$

with

$$
M=S-n_{j}
$$

Then we have the Holstein-Primakoff transformation,

$$
\begin{aligned}
& S_{j}^{+}=S_{j}^{x}+i S_{j}^{y}=\sqrt{2 S}\left(1-\frac{a_{j}^{*} a_{j}}{2 S}\right)^{1 / 2} a_{j} \\
& S_{j}^{-}=S_{j}^{x}-i S_{j}^{y}=\sqrt{2 S} a_{j}^{*}\left(1-\frac{a_{j}^{*} a_{j}}{2 S}\right)^{1 / 2}
\end{aligned}
$$

S_{j}^{+}and S_{j}^{-}can be approximated as follows $\left(\frac{\left\langle a_{j}{ }^{*} a_{j}\right\rangle}{S} \ll 1\right)$.

$$
\begin{aligned}
& S_{j}^{+}=\sqrt{2 S}\left(1-\frac{a_{j}^{*} a_{j}}{4 S}+\ldots\right) a_{j} \\
& S_{j}^{-}=\sqrt{2 S} a_{j}^{*}\left(1-\frac{a_{j}^{*} a_{j}}{4 S}+\ldots\right)
\end{aligned}
$$

The Hamiltonian H is described as

$$
H=-2 \sum_{\langle i, j\rangle} J_{i j} \mathbf{S}_{i} \cdot \mathbf{S}_{j}=-2 \sum_{\langle i, j\rangle} J_{i j}\left[S_{i}^{z} S_{j}^{z}+\frac{1}{2}\left(S_{i}^{-} S_{j}^{+}+S_{i}^{+} S_{j}^{-}\right)\right],
$$

Here we note

$$
\begin{aligned}
S_{j}{ }^{z} S_{j}^{z} & =\left(S-n_{i}\right)\left(S-n_{j}\right)=S^{2}-\left(n_{i}+n_{j}\right) S+n_{i} n_{j}, \\
S_{i}^{-} S_{j}^{+} & =2 S\left(a_{i}^{*}-\frac{a_{i}^{*} a_{i}^{*} a_{i}}{4 S}+\ldots\right)\left(a_{j}-\frac{a_{j}^{*} a_{j} a_{j}}{4 S}+\ldots\right) \\
& =2 S a_{i}^{*} a_{j}-\frac{1}{2} a_{i}^{*} a_{j}^{*} a_{j} a_{j}-\frac{1}{2} a_{i}^{*} a_{i}^{*} a_{i} a_{j}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
S_{i}^{+} S_{j}^{-} & =2 S\left(a_{i}-\frac{a_{i}^{*} a_{i} a_{i}}{4 S}+\ldots\right)\left(a_{j}^{*}-\frac{a_{j}^{*} a_{j}^{*} a_{j}}{4 S}+\ldots\right) \\
& =2 S a_{i} a_{j}^{*}-\frac{1}{2} a_{i} a_{j}^{*} a_{j}^{*} a_{j}-\frac{1}{2} a_{i}^{*} a_{i} a_{i} a_{j}^{*}+\ldots
\end{aligned}
$$

Then we get

$$
\begin{aligned}
H & =-2 \sum_{<i, j>} J_{i j}\left[S^{2}-\left(n_{i}+n_{j}\right) S+n_{i} n_{j}+S\left(a_{i}^{*} a_{j}+a_{i} a_{j}^{*}\right)\right. \\
& \left.-\frac{1}{4}\left(a_{i}^{*} a_{j}^{*} a_{j} a_{j}+a_{i}^{*} a_{i}^{*} a_{i} a_{j}+a_{i} a_{j}^{*} a_{j}^{*} a_{j}+a_{i}^{*} a_{i} a_{i} a_{j}^{*}\right)+\ldots\right]
\end{aligned}
$$

We neglect the fourth term and higher order terms such as $a_{i}{ }^{*} a_{j}{ }^{*} a_{j} a_{j}$.

$$
\begin{aligned}
H & =-2 \sum_{<i, j>} J_{i j}\left[S^{2}-\left(n_{i}+n_{j}\right) S+n_{i} n_{j}+S\left(a_{i}^{*} a_{j}+a_{i} a_{j}^{*}\right)\right] \\
& =-2 \sum_{<i, j>} J_{i j}\left[S^{2}-\left(n_{i}+n_{j}\right) S+n_{i} n_{j}+S\left(a_{i}^{*} a_{j}+a_{j}^{*} a_{i}\right)\right]
\end{aligned}
$$

because of $\left[a_{i}, a_{j}^{*}\right]=0$ for $i \neq j$. We introduce the Fourier transform $a_{\mathbf{q}}{ }^{+}$and $a_{\mathbf{q}}$,

$$
\begin{aligned}
& a_{\mathbf{q}}=\frac{1}{\sqrt{N}} \sum_{j} a_{j} e^{i \boldsymbol{q} \cdot \mathbf{r}_{j}} \\
& a_{\mathbf{q}}^{+}=\frac{1}{\sqrt{N}} \sum_{j} a_{j}^{*} e^{-i \mathbf{q} \cdot \mathbf{r}_{j}}
\end{aligned}
$$

Commutation relation:

$$
\left[a_{\mathbf{q}}, a_{\mathbf{q}}^{+}\right]=\frac{1}{N} \sum_{i, j}\left[a_{i}, a_{j}^{*}\right] e^{i \boldsymbol{q} \cdot\left(\mathbf{r}_{j}-\mathbf{r}_{j}\right)}=\frac{1}{N} \sum_{i, j} \delta_{i j} e^{i \boldsymbol{q} \cdot\left(\mathbf{r}_{j}-\mathbf{r}_{j}\right)}=1
$$

Similarly we get

$$
a_{i}=\frac{1}{\sqrt{N}} \sum_{\mathbf{q}} a_{\mathbf{q}} \boldsymbol{e}^{-i \mathbf{q} \cdot \mathbf{r}_{j}}
$$

We introduce

$$
J(\mathbf{q})=\sum_{j} J_{i j} e^{i q\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)} .
$$

Then the Hamiltonian can be expressed by

$$
\begin{aligned}
H & =-2 \sum_{<i, j>} J_{i j}\left[S^{2}-\left(n_{i}+n_{j}\right) S+n_{i} n_{j}+S\left(a_{i}^{*} a_{j}+a_{j}^{*} a_{i}\right)\right] \\
& =-2 S^{2} \sum_{<i, j>} J_{i j}+\sum_{q} 2 S[J(0)-J(\mathbf{q})] a_{\mathbf{q}}{ }^{*} a_{\mathbf{q}} \\
& =E_{0}+\sum_{\mathbf{q}} \hbar \omega_{\mathbf{q}} a_{\mathbf{q}}{ }^{*} a_{\mathbf{q}}
\end{aligned}
$$

where

$$
\hbar \omega_{\mathbf{q}}=2 S[J(0)-J(\mathbf{q})]
$$

is the magnon dispersion relation.
((Simple example))

$J_{\mathrm{ij}}=J$ only for the nearest- neighbor pairs.

$$
J(\mathbf{q})=\sum_{j} J_{i j}{ }^{i q \cdot \mathbf{r}_{j}}=J \sum_{j} e^{i \boldsymbol{q} \cdot \mathbf{r}_{j}}=J\left(e^{i q a}+e^{-i q a}\right)=2 J \cos (a q) .
$$

Then we have

$$
\hbar \omega_{\mathbf{q}}=2 S[J(0)-J(\mathbf{q})]=4 J S(1-\cos (q a)]=2 J S \sin ^{2}\left(\frac{q a}{2}\right)
$$

which is the spin wave dispersion (magnon dispersion).

Fig. Dispersion curve of magnon.

6. Magnetization

The z-component of the magnetization is

$$
M_{z}=g \mu_{B} \sum_{j} S_{j}{ }^{z}=g \mu_{B} \sum_{j}\left(S-n_{j}\right)=g \mu_{B}\left(N S-\sum_{q} a_{\mathbf{q}}{ }^{*} a_{\mathbf{q}}\right)
$$

The magnon is a boson.

$$
M_{s}(0)-M_{s}(T)=\Delta M=g \mu_{B} \sum_{q}\left\langle a_{\mathbf{q}}^{*} a_{\mathbf{q}}\right\rangle=g \mu_{B} \sum_{q}\left\langle n_{\mathbf{q}}\right\rangle
$$

The total number of magnons excited at a temperature T is

$$
\sum_{q}\left\langle n_{\mathbf{q}}\right\rangle=\int d \omega D(\omega)<n(\omega)>
$$

where $D(\omega)$ is the number of magnon modes per unit frequency range.

$$
D(\omega) d \omega=\frac{V}{(2 \pi)^{3}} 4 \pi q^{2} d q=\frac{V}{(2 \pi)^{3}} 4 \pi q^{2} \frac{d q}{d \omega} d \omega
$$

We use the magnon dispersion relation,

$$
\begin{aligned}
& \hbar \omega_{q}=\hbar \omega=2 J S a^{2} q^{2} \\
& \frac{d \omega}{d q}=\frac{4 J S a^{2}}{\hbar} q
\end{aligned}
$$

Then the density of states is given by

$$
D(\omega)=\frac{V}{4 \pi^{2}}\left(\frac{\hbar}{2 J S a^{2}}\right)^{3 / 2} \omega^{1 / 2}
$$

The integral is taken over the allowed range of \boldsymbol{q}, which is the first Brillouin zone. At $T=0 \mathrm{~K}$, we may carry the integral between 0 and ∞, because $\langle n(\omega)\rangle \rightarrow \infty$ exponentially as $\omega \rightarrow \infty$.

$$
\begin{aligned}
\Delta M & =g \mu_{B} \frac{V}{4 \pi^{2}}\left(\frac{\hbar}{2 J S a^{2}}\right)^{3 / 2} \int_{0}^{\infty} \frac{\omega^{1 / 2} d \omega}{e^{\beta \hbar \omega}-1} \\
& =g \mu_{B} \frac{V}{4 \pi^{2}}\left(\frac{k_{B} T}{2 J S a^{2}}\right)^{3 / 2} \int_{0}^{\infty} \frac{x^{1 / 2} d x}{e^{x}-1}
\end{aligned}
$$

Since

$$
\int_{0}^{\infty} \frac{x^{1 / 2} d x}{e^{x}-1}=\frac{\sqrt{\pi}}{2} \varsigma\left(\frac{3}{2}\right)=0.0587\left(4 \pi^{2}\right)
$$

we have

$$
\frac{\Delta M}{M_{s}(0)}=\frac{V}{N S a^{3}}\left(\frac{k_{B} T}{2 J S}\right)^{3 / 2} 0.0587=\frac{1}{S}\left(\frac{k_{B} T}{2 J S}\right)^{3 / 2} 0.0587
$$

wherec $M_{s}(0)=N g \mu_{B} S$ and $V=N a^{3}$. This result is called the Bloch $\boldsymbol{T}^{3 / 2}$ law. The magnetization

$$
M(T)=M_{s}(0)\left[1-\frac{1}{S}\left(\frac{k_{B} T}{2 J S}\right)^{3 / 2} 0.0587\right]
$$

7. Heat capacity

The heat capacity is given by

$$
C=\frac{d E}{d T}=\frac{\hbar^{2}}{k_{B} T^{2}} \int d \omega D(\omega) \frac{\omega^{2}}{\left(e^{\beta \hbar \omega}-1\right)\left(1-e^{-\beta \hbar \omega}\right)}
$$

where $\beta=1 /\left(k_{\mathrm{B}} T\right)$,

$$
\begin{aligned}
& E=\sum_{q} \hbar \omega_{q}\left\langle n_{q}\right\rangle=\int d \omega D(\omega) \hbar \omega \frac{1}{e^{\beta \hbar \omega}-1} \\
& \frac{d}{d T} \frac{1}{e^{\beta \hbar \omega}-1}=\frac{\hbar \omega}{k_{B} T^{2}} \frac{1}{\left(e^{\beta \hbar \omega}-1\right)\left(1-e^{-\beta \hbar \omega}\right)}
\end{aligned}
$$

Then we get

$$
\begin{aligned}
C & =\frac{1}{k_{B} T^{2}} \frac{\hbar^{2} V}{4 \pi^{2}}\left(\frac{\hbar}{2 J S a^{2}}\right)^{3 / 2} \int d \omega \frac{\omega^{5 / 2}}{\left(e^{\beta \hbar \omega}-1\right)\left(1-e^{-\beta \hbar \omega}\right)} \\
& =\frac{1}{k_{B} T^{2}} \frac{\hbar^{2} V}{4 \pi^{2}}\left(\frac{\hbar}{2 J S a^{2}}\right)^{3 / 2}\left(\frac{k_{B} T}{\hbar}\right)^{7 / 2 \infty} \int_{0}^{3} \frac{x^{5 / 2} d x}{\left(e^{x}-1\right)\left(1-e^{-x}\right)} \\
& =k_{B} \frac{V}{4 \pi^{2} a^{3}}\left(\frac{k_{B} T}{2 J S}\right)^{3 / 2 \infty} \int_{0}^{\left(e^{x}-1\right)\left(1-e^{-x}\right)}
\end{aligned}
$$

Here we note that

$$
\int_{0}^{\infty} \frac{x^{5 / 2} d x}{\left(e^{x}-1\right)\left(1-e^{-x}\right)}=4.45823
$$

and $V=N a^{3}$. Then we have

$$
C=k_{B} \frac{N}{4 \pi^{2}}\left(\frac{k_{B} T}{2 J S}\right)^{3 / 2} 4.45823
$$

The heat capacity is proportional to $T^{3 / 2}$.

8. \quad Spin wave theory (Feynman) $S=1 / 2$.

We consider a spin wave theory which is described by Feynman. The Hamiltonian is

$$
\hat{H}=-\frac{J}{2} \sum_{n} \hat{\boldsymbol{\sigma}}_{n} \cdot \hat{\boldsymbol{\sigma}}_{n+1}
$$

where s is the Pauli operator. With this Hamiltonian we have a complete description of the ferromagnet.

$$
\hat{\boldsymbol{\sigma}}_{n} \cdot \hat{\boldsymbol{\sigma}}_{n+1}=2 \hat{P}_{n, n+1}-1
$$

where $\hat{\boldsymbol{\sigma}}_{n} \cdot \hat{\boldsymbol{\sigma}}_{n+1}$ interchanges the spins of the n-th and $(n+1)$-th electrons.

For the ground state all spins are up $(|+\rangle$, so if you exchange a particular pair of spins, one can get back the original state. The ground state is a stationary state: $-J / 2$ for each pair of spins. That is, the energy of the system in the ground state is $-J / 2$ per spin.

It is convenient to measure the energies with respect to the ground state. Our new Hamiltonian is

$$
\hat{H}=-J \sum_{n}\left(\hat{P}_{n, n+1}-1\right)
$$

With this Hamiltonian, the energy of the ground state is zero. Here we define the state $\left|x_{n}\right\rangle$ where all the spins except for the one on the spin at x_{n}.

$$
\begin{aligned}
\hat{H}\left|x_{5}\right\rangle & =-J \sum_{n}\left(\hat{P}_{n, n+1}-1\right)\left|x_{5}\right\rangle=-J\left(\hat{P}_{5,6}-1\right)\left|x_{5}\right\rangle-J\left(\hat{P}_{4,5}-1\right)\left|x_{5}\right\rangle \\
& =-J\left(\left|x_{6}\right\rangle-2\left|x_{5}\right\rangle+\left|x_{4}\right\rangle\right)
\end{aligned}
$$

where

$$
\hat{P}_{45}\left|x_{5}\right\rangle=\left|x_{4}\right\rangle, \hat{P}_{56}\left|x_{5}\right\rangle=\left|x_{6}\right\rangle, \hat{P}_{78}\left|x_{5}\right\rangle=\left|x_{5}\right\rangle, \text { and. } \hat{P}_{34}\left|x_{5}\right\rangle=\left|x_{5}\right\rangle .
$$

Similarly,

$$
\begin{aligned}
& \hat{H}\left|x_{n}\right\rangle=-J\left(\left|x_{n+1}\right\rangle-2\left|x_{n}\right\rangle+\left|x_{n-1}\right\rangle\right. \\
& \hat{H}\left|x_{n+1}\right\rangle=-J\left(\left|x_{n+2}\right\rangle-2\left|x_{n+1}\right\rangle+\left|x_{n}\right\rangle\right.
\end{aligned}
$$

Here we consider

$$
|\psi\rangle=\sum_{n} C_{n}\left|x_{n}\right\rangle
$$

Eigenvalue problem

$$
\hat{H}|\psi\rangle=E|\psi\rangle
$$

or

$$
\sum_{n} C_{n} \hat{H}\left|x_{n}\right\rangle=E \sum_{n} C_{n}\left|x_{n}\right\rangle
$$

or

$$
\sum_{n} C_{n} \hat{H}\left|x_{n}\right\rangle=E \sum_{n} C_{n}\left|x_{n}\right\rangle
$$

or

$$
\sum_{n}(-J)\left(C_{n}\left|x_{n+1}\right\rangle-2 C_{n}\left|x_{n}\right\rangle+C_{n}\left|x_{n-1}\right\rangle=E \sum_{n} C_{n}\left|x_{n}\right\rangle\right.
$$

or

$$
\sum_{n}(-J)\left(C_{n-1}-2 C_{n}+C_{n+1}\right)\left|x_{n}\right\rangle=E \sum_{n} C_{n}\left|x_{n}\right\rangle
$$

or

$$
(-J)\left(C_{n-1}-2 C_{n}+C_{n+1}\right)=E C_{n}
$$

Let us take as a trial function

$$
C_{n}=e^{i k x_{n}} \quad(\text { Bloch state })
$$

$$
(-J)\left(e^{i k\left(x_{n}-a\right)}-2 e^{i k x_{n}}+e^{i k\left(x_{n}+a\right)}\right)=E e^{i k x_{n}}
$$

$$
E=2 J[1-\cos (k a)] \quad \text { (energy dispersion) }
$$

The difference energy solutions correspond to "waves" of down spin-called "spin waves."
For $k a \ll 1, E$ is approximated by

$$
E=2 A \frac{k^{2} a^{2}}{2}=A k^{2} a^{2}
$$

