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Abstract

This note is written for experimentalists of the condensed matter physics, who want to know
the fundamental physics of the AC magnetic susceptibility. Experimentally, in recent days one
can easily measure the AC magnetic susceptibility of various magnetic systems, using the
SQUID magnetometer (such as the equipment from Quantum Design). However, it is sometime
hard even for many professional researchers to figure out the physics of the magnetic behavior.
We have been studying the magnetic phase transitions of low-dimensional magnetism, including
spin glasses for many years. This note is based on our experience. In spite of many reviews on
the AC magnetic susceptibility, it seems that there are few reviews on the physics of the AC
magnetic susceptibility on the magnetic system such as random spin systems (spin glasses,
superspin glasses, superparamagnets, quasi 2D ferromagnets, and so on). It is hoped that this
note will be useful for experimentalists and students to understand the physics of magnetism.

In order to investigate the magnetism of the matters, it is important to observe directly the
magnetic response of the magnetic systems by the application of external magnetic field.
Immediately after the application of the magnetic field, the state of the system remains
unchanged. After some characteristic times, the state of the system will reach a new state in
thermal equilibrium, leading to the new magnetization. This is called as a magnetic relaxation
phenomenon. In order to examine the mechanism, we need to know the magnetization in thermal
equilibrium and also need to know the information concerning the relaxation process into the
state in thermal equilibrium. The dynamic magnetization measurement is required for one to
understand the time dependence of magnetic correlations. There are many methods for this
purpose, including the inelastic magnetic neutron scattering, the relaxation rate measurement of
the zero-field-cooled susceptibility, and the AC magnetic susceptibility. The most suitable
dynamic methods should be chosen, depending on the properties of the systems (spin glasses,
ferromagnetism, superspin glass, superparamagnetism), the condition of the observation, and the
physical quantities derived. In this note, we present the physics on the AC magnetic
susceptibility and the magnetic neutron scattering.
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1. Simple theory of AC magnetic susceptibility

Suppose that the AC magnetization mac(?) is generated in the magnetic system, when the AC
magnetic field /..(¢) is applied to it. Here mac(¢) and hac(?) are expressed in terms of the complex
numbers as

h,.(t) = Re[he'™]
m_ (1) = Re[m(w)e'™ ] (1.1)
M) _ Refiom(w)e™]
dt ,
where @ is the angular frequency, Re denotes the real part of the complex number, and y(®) is

the complex AC magnetic susceptibility. For convenience, we assume that 4 is real. The complex
number m( ) is related to / by the relation

m(@) = y(o)h =[x (@)~ iy" (@) (1.2)
where y'(w) is called the dispersion and y"(w) is called the absorption. Then the time
dependence of /ac(t) and mac(?) is expressed by

h,.(t) = hcos(at) (1.3)

and
m, (t) = Re[{1'(®) ~iy" (@)} he']
=Re[{y'(w)—iy"(w)}h{cos(awt)+icos(wt)}]
= y'(w)hcos(at) + y"(w)hsin(wt) (1.4)

= y'(w)hcos(at) + y"(w)hcos(wt —%)

where y'(w) is also called the in-phase component and y"(w) is called the out-of-phase

component. The power absorbed by the system is given by
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1 T he'™ + h*efiwz ia)m(a))e"”’ . ia)m*((!))eiiwt
_1 t
T l T 2 8
= %T[ia)h*m(a)) —iwhm’ ()]
:%2Re[—ia)hm*(a))] (1.5)

= %a)Re[—ih(;(HLi;(”)h*]
1 2 Y IEI1
= Ea)|h| Re[—i(y'+iy")]

= %a)|h|2 7" ’

where T is the period and is given by 7 = 27/®. Then the power absorbed by the system is
proportional to the absorption y".

((Units))

We have a comment on the cgs units of the AC magnetic susceptibility. The unit of m(w) is
emu (=erg/Gauss), where Gauss = Oe, while the unit of /4 is Oe. Then the unit of y(w) is
emu/Oe. Conventionally we use simply emu instead of emu/Oe as the unit of y(w). When the
weight of the system is given by the unit of g, the unit of the resultant susceptibility is given by
emu/g. When the number of a specific magnetic atom is given by the unit of moles, the unit of
the resultant susceptibility is emu/mole.

((Experiment))

We use the AC susceptibility option of MPMS SQUID magnetometer (Quantum Design) for
the measurements of AC magnetic susceptibility, at the Department of Physics, SUNY at
Binghamton. The frequency ranges between 0.01 Hz and 1000 Hz. When = 0.01 Hz is used, it
may take 2 hours for each measurement. The amplitude of the AC magnetic field (/) is between
I mOe and 4.0 Oe. One can simultaneously and directly measure the in-phase component [/
Z(®)] in the units of emu and the out-of-phase component [# y"'(®)] in the units of emu. The
remnant magnetic field is less than 1 mOe using the ultralow field capability option.

2. Debye relaxation with a single relaxation time'*
We consider a Debye relaxation with a single relaxation time z. We start with the Casimir-du
Pr¢ equations* given by



H(w) =215 4 5 (2.1)
where

X(@=0)=y,— x5+ Xs=Xr = X0 22)
y(=0)=y, =1,

Here y (=y. ) is the adiabatic susceptibility and y, (=y,) is the isothermal susceptibility.
These susceptibilities are defined by

Xs = ), - X
s T\ 47 /8 T Ao
OH 2.3)
oM
Ar = (a_H)T =X '
where M is the DC magnetization of the system and H is the DC magnetic field. Then we have

7(o) :M_,_ o

1+iwt
= ﬁ ;),fig (I-io7)+ 7, 2.4)
Yo~ Xo (Yo~ X.)0OT
= Yo+ —1i
Ao 1+ w’c? 1+ w’c?

The dispersion and absorption are obtained as

X=1. +—ﬁ_f{°‘;
ot (2.5)
== 20T
1+ w’c?

We assume that y, =0 (high frequency limit of susceptibility). Then we get

x 1

Yo 1+ @7’

l" T

;0= 1+(02'[2 ) (26)
We note that y'= y, and »"=0 in the limit of @ —0. Figure shows the plots of y"/ 0 and ¥/ yo
as a function of wr. At wr = 1, the absorption has a maximum, while the dispersion has an

inflection point. The maximum of the absorption provides a method of determining an average
relaxation time.



0.8

0.6

0.4+

0.2

. . . . . e
0.2 0.5 1.0 2.0 5.0 10.0

Fig.1 Plotof y"/y0 and y”/ yo as a function of x (= wr) for the Debye relaxation.

From the above equation, we find that ¥/ and y "/ yo satisfy the equation

2 ) (2 Ly
(% 2} [Zj & o)

The Argand diagram (the plot of real part and imaginary part of (@) in the x-y plane (x = ¥/ yo
and y = y”/y0,) shows a circle (radius 1/2) centered at (1/2, 0) in the plane of ¥/ vs y”/ yo.

This plot is called a Cole-Cole plot. The deviation of the Cole-Cole plot from a semicircle
suggests that the system does not follow the Debye relaxation. This indicates that there are more
than two relaxation times in the system.
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Fig.2 Cole-Cole plot of the real part y”/y (= x) vs the imaginary part ¥/ (= y) for the Debye
relaxation.

((Note)) Definition
1) Argand diagram

A way of representing complex numbers as points on a coordinate plane, also known as the
Argand plane or the complex plane, using the x-axis as the real axis and the y-axis as the



imaginary axis. It is named for the French amateur mathematician Jean Robert Argand (1768-
1822) who described it in a paper in 1806.

2) Cole-Cole Plot

The Cole-Cole plot presents complex material parameters such as impedance or permittivity
of dielectric materials as a locus in the Gaussian number plane as a function of frequency. The
Cole-Cole diagram is named after two brothers, Kenneth S. Cole and Robert H. Cole, in 1931,
the experimental investigations on the impedance of biological tissue conducted.

3. Relaxation with a distribution of relaxation times

Suppose that there is a broad distribution of the relaxation time 7 between Zmin and Zmax. In
this case we need to modify the Casimir-du Pré equations.* The probability distribution of
relaxation times g(7) is supposed to be slowly varying in Inz. Let the number of magnetic entities
with relaxation times between Inz and Inz + dlnzbe g(7)dlnz. According to Lundgren et
al.(1981)° and Wenger (1986)’ (developed for spin glasses) the dispersion #' can be described by

max

' _lr mO(T)
(@)= hfn{n—1+(wf)2 g(r)dInt (3.1)

with the normalization condition

[g@dnz=1 (3.2)
where Zmin and zimax are the minimum and maximum values of relaxation times in the system, and
mo( 7) is the magnetic moment of clusters. In the following we denote the system to be in the state
Whel’l Tmin << rm<< rmax, Whel‘e Tm — 1/0).

Tmax

M=_lj
Onhw h_

2m, (1) 4y (07)’
! 1+ (@) T g(r)dInt (3.3)

Suppose that g(7) of Inz is approximately constant in a range (Inzmin, InzZmax). Then g(7) in the
integrant may be replaced by g(zm). Then we have

oy'(w) _  17¢ 2my(7) (1)’
oo hI [+ (o) P47

2
h

(o7)’
[1+(07)’T

g, my(x,) | dIn(wr)) (3.4)

Tmin

2 Tmax
= _Z g(z-m)mO(Tm) .[

(@7)

i+ (@77

Tmin

or



8}('(0)) 1 1 1

my(7,)g(z )[ =1
0 m m 2
Olnw 1 +(w7,,,) 1 + (a)rmm) (3.5)
~ _ZmO(Tm)g(Tm)
The absorption is also evaluated as
m, (7))t
x"( )—— —0 g(t)dInt
I 1+ (wr)?
—lm (r )e(r )I ———dInr (3.6)
h 0 m g m ) :
=—m0<rm>g<rm> j l+Z‘)—)dln(m)
or
(@)= m,(z,)g(z )Tf;d(am
Z h 0 m g m Ry 1+ (0)7,')
= %mo(f )&(7,)larctan(wr,,, ) — arctan(@7,,;,) (3.7)
w1
Ezmo (Tm)g(rm)
Then we have a so-called the 772 relation
7 oy'(w)
" __r 3.8
7'(@) 2 0w | 38

which is a very useful relation for the analysis of experimental data.

4. Yoshimitsu-Matsubara method

It is known that for many dielectric substances, the presence of the distribution of relaxation
times can be described by a fairly simple empirical law. We consider the case when the Cole-
Cole plot is deviated from the circle. According to Yoshimitsu and Matsubara (1968),® the
complex susceptibility may be described by

_ Zo
A I+ (or) @

where fis between 0 and 1. The real part (dispersion) is obtained as

pr
x'(@,7) _ 2)

Xo 1+ (a)z')zﬁ + 2(0)2’)ﬁ COS('B;)

1+ (w7)” cos(

x= (4.2)

The imaginary part (absorption) is obtained as



pr
_X'(w7) _ 2)

Xo 1+ (07)” +2(0r)” COS('b;”)

(1)’ sin(

y 4.3)

The susceptibility can be rewritten in a form given by

Zo Zo
,T) == = G(r,)d 4.4
x(@:) 1+(wr) ‘l+ior (7)d7, “4)

where G( 1) is the distribution function of the relaxation times. An explicit form of G(71) is given
by Yoshimitsu and Matsubara® as

B B sin(frr)
Y =16(7) = odx” +x77 +2cos(fr)] ’ *5)

with x = 71/7. Figures 3 and 4 show a plot of y(x) as a function of x. The parameter £ is a measure
of the width of the distribution. For = 1, y(x) is a Dirac delta function and gives the Debye
relaxation. As fis decreased, the peak of the distribution moves toward smaller x and finally y(x)
concentrates around x = 0 (f#<1/2). Figure 5 shows the Cole-Cole plot of x vs y, where x =
¥ (w,7) g, and y = y"(w,7)/ y,. It is found that the circle with g = 1 is distorted as S is

decreased.
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Fig.3 Plot of the distribution function of the relaxation, y(x) as a function of x (= 71/7) for f=
0.1-0.9.
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Fig.4 Plot of y(x) as a function of x (= 7/7) for #=0.95—-0.99.
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Fig.5 the Cole-Cole plot of x vs y, where x = y'(w,7)/ y, and y = y"(®,7)/ y,. The pamater

is changed between 0.1 and 1.

S. Kramers-Kronig relation
The relation between the absorption and the dispersion is established though the Kramers-
Kronig relation

(@) - 1) =~ P [ L
T w -

0

(5.1
" 1,12 (@) = x(»)

T Y wo-w ,

where P denotes the principal value of the integral. The Kramers—Kronig relations have a

physical interpretation. The Kramers—Kronig relations imply that observing the dissipative

response (out-of-phase) of a system is sufficient to determine its in-phase (reactive) response,

and vice versa. The formulas above are not useful for reconstructing physical responses, as the

integrals run from -co to oo, implying we need to know the response at negative frequencies.



Fortunately, in most systems, the positive frequency-response determines the negative-frequency
response because of y(—@)= y (). This means that y'(w) is an even function of frequency

and »"(w) is an odd function of @. Using these properties, we have

@)~ 7@=o)=> P[ ALy,
T oy —o
(5.2)

20 ¢ 7' (@) — y(©
Zu(a)):__PJ.Z( 12) Zz( )da)l
T oy o -0

((Example)) We now apply the Kramers-Kronig relation to the case of the Debye relaxation with
x(0) =0. The dispersion can be derived from the absorption,
1 T
(a)l - a)) 1+ (601‘[)2

, 1 7 7" (o 1 K
7(@==P| 2@y, -1 Pl dao, (5.3)

T S w-0 T e
We use the Residue theorem to solve this. To this end, we consider the contour integral around
the closed loop C (semicircle with radius infinity) in the upper-half complex plane. Ci is the semi
circle (radius ¢, in the limit of € —0) centered at z= @ in the real axis. Then we have

/N

zZ=w

= infinity infinity

Fig.6 The path of the contour integral in the complex plane. The path consists of the three parts,
the semicircle (counter clock-wise) with radius of « centered at the origin, the semicircle
(clockwise) with radius € (in the limit of £ —0) centered at z = @, and the straight line of
the real axis from -oo to o0, except for a region around the small semi circle Ci.

§ ! = _dz=P| ! A —do, + § iy
“(z—w)1+(z7) c (0, —w) 1+ (o) o(z—w)1+(z7)

— 27iRes[z =] ,
T

(5.4)
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or

I ! | i 2da)1=7ziRes(Z=a))+27ziRes[z:i]
(0 —0)1+(o7) ¢ (5.5)
oz
1+ w’t’
So we obtain the expression for y'(w) as
7'(@) =—2%— (5.6)

l+o0’t”
Similarly, the absorption can be derived from the dispersion through the Kramers-Kronig
relation

1 % () e I
"w)=——P | 2—Ldw, =—— ¥, P d 5.7
7'(@) pa ~[Oa)1—a) “ 7Z'ZO Ia)l—a)1+(a)lr)2 @ (5.7)

—00

Using the Residue theorem for the contour integral around the path shown in Fig.6, we have

i§ ! ! 2dz—PT ! ! 2da)l+7z§ ! ! ~dz
(z—w)1+(z7) (0, —o) 1+ (oy7) (z—w)1+(z7)

C -0 Cl

:27ziRes[z=i] ,
.

(5.8)
or
K 1 1 . i . i
P.[( VT4 )zda)l:mRes[z:—]+2mRes[z=—]
(o -o)l+(or 4 ¢ (5.9)
___ ror
1+ (w7) ’
Then we have
" (w7)
1" () = ZO—“ (5.10)
l+w ",
6. Magnetic correlation function’'?

The magnetic correlation function can be measured by inelastic neutron scattering
measurement. It is closely related to the dynamic magnetic susceptibility through the fluctuation-
dissipation theorem.

6.1 Definition of the magnetic correlation function
The magnetic correlation function is the time and spatial Fourier transform of spin-spin

correlation < S (r=0)-S7(¢) >,

11



S?(Q,w) = Ljah‘e*"‘”’ <8“(—Q,0)-S7(Q,1) > (6.1)
2z

with ,
5°(Qu) = T exp(-iQ-R )8/ (1) (6.2)

where S7(¢) (a=x, y, z) is the localized spin at the site j (=1, 2, ... N) at the time ¢, N is the total

number of localized spins in the system We note that
1

S°(Q=0.)= fzsa(r) T Z SI0=

M*? is the total magnetization and is mdependent of time ¢ (i.e., conserved quantity). Then the

(6.3)

magnetic correlation function can be rewritten as

S (Q,w) = i j dte™ < S%(-Q,0)-S”(Q.t) >

=5 NZexp[zQ (R, —R,)][dre™™ <S%(t=0)-S[ (1) > (6.4)

_ _Zj‘dte—imtefiQ-R/ <S&(t=0)- Sf(;) >
T '
where we use
<S%(t=0)-8/(1)>=<S;(t=0)-8 (1) > (6.5)

because of the translational symmetry in the system. In the inelastic magnetic neutron scattering
measurements, the differential cross section to unpolarized neutrons is closely related to the

magnetic correlation function,’!?
d20' / a
JE, |fM(Q)| Z( s~ 0.0,)57(Q,)

(6.6)
’|fM(Q)| Z( . -0, Qﬁ)S“ﬂ(Q @)

(Izuyama et al.), where Q = ki — k¢ is the scattering vector, and 7w = E, — E . ki and kg are wave

vectors of the incident neutron (initial state) and scattered neutron (final state), and E; and Er are
the energies of incident and scattered neutrons, respectively. fm(Q) is the magnetic form factor.

Qa is the a-component of the unit vector of Q. S (Q,w) is the symmetrized correlation tensor
defined by

57(Q,0) = [S“'B(Q ®)+57(Q, a))] (6.7)

6.2 Static correlation function

12



The integral of the magnetic correlation function over all frequencies @ keeping the
scattering vector Q fixed, leads to the static correlation function;

j dS™ (Q.0) = —— j dt j dwe ™™ < §(-Q,0)-S#(Q,1) >
27
L [ats@) < s“(-Q.0)-8” Q1) > (6.8)
27

< 5°(-Q0)- 5" (Q0) > |
This static correlation function is the Fourier transform of the spin correlation function over all
the space, and is expressed by

<8%(-Q.0)-57(Q,0)>= N _exp(-iQ- Rj)<S(§" (t=0)-87(t= 0)> (6.9)

using Eq.(6.2). Then Eq. (6.8) can be written as
j doS?(Q,w) = Ny exp(=iQ-R )(S; (¢ =0)- S/t = 0)) (5.10)

In a special case where Q@ = 0 and = &, Eq.(6.10) becomes
.[da)S""‘(Q =0,0)=<S5(-Q=0,0)-S“(Q=0,0) >

L1 (=) (6.11)

TN g
1 1 < o o > o 2
=— M*—(M +(M
using Eq.(6.3). Noting that the static susceptibility ;(M(S) and spontaneous magnetization M are
defined as
P — <(M —<M>)Z> M, = (M) 6.12)
Nk, T )
then we obtain the expression,
[dws“(Q=0,w)= 1 21 SNk, Ty, + M, (6.13)
N g uy

This is called the thermodynamic sum rule. The term in Mo> gives a measure of the Bragg
scattering, and the first term gives a measure for the static magnetic susceptibility.
7. Fluctuation-dissipation theorem'*-'¢

The general fluctuation-dissipation theorem tells us that the absorption of the dynamic
complex susceptibility is closely related to the magnetic correlation function. Without proof we
show that the symmetric magnetic correlation function is described by

13



5 hol 1,
S7(Q, w)—;gﬂz o Zaﬂ (Q,w)
B

1 1
2

T g Hp
where 7,,"(Q,®) is the symmetric tensor of absorption, which is defined by (Izuyama et al.
1963)"

70" (Qu0) = %[zaﬁ"(Q,a» + 2,."(Q.0)] (7.2)

(7.1)

~
~

T Xop (Q,0)
@

b

In Eq.(6.2), it is required that %,,"(Q,®) should be symmetric tensor. Then the magnetic

correlation function is proportional to the absorption of the dynamic AC magnetic susceptibility
Zop" (Q, ), which is dependent on Q and @. Using the Kramers-Kronig relation, we have

0 —

LpjZ Qo

w—w

Zop'(Q,0) = @, (7.3)

9

—0

for the symmetric tensor %,,'(Q,®), which is defined by

7.5 (Q.0) = %[zaﬂ'(Q,w) + 2,(Q.0)] (7.4)

Noting that
Zoa' Q. 0) = 7,,'(Q, )
Zaa(Q0) = 2,,"(Q.0)
we can calculate the value of y,,'(Q =0, =0) as follows.
Xoo'(Q=0,0=0)
i (99 2o (Q, @)
=lim]

v @

(7.5)

2 2 1 kB aa
—hmfdw” 8 My d=e 1) 5o Q)
Q-0 @ (7.6)

g /LIB aa
= im|de'S

_ gy kT @
KT [ 1]

B

= Z{Za ‘ b
_ho'
for @ =0 and = 0, where we assume that < M“ >=0and (1—e "BT)/a)'z n/(k,T). This means

that y, (Q=0,@=0) coincides with the static susceptibility ;(aa , as is predicted.

14



We note that the averaged power absorbed is related to S““(Q,®) through

P, (Q.0) o wy,,"(0,0) = ”gk—;‘,cos (Q, ) (7.7)

b

using the fluctuation-dissipation theorem.
8. Relaxation rate of the ZFC susceptibility'’"’

In order to appreciate the nature of the spin glass dynamics, a very wide time range has to be
covered in experiments. For the conventional AC magnetic susceptibility measurement (AC
SQUID measurements), the frequency ranges between /= 1 kHz and 0.01 Hz (typically) is used.
Correspondingly, the time scale ranges between 10~ and 10* sec. This is too short for the
measurement of the relaxation phenomena in spin glasses. Here we show that the measurement
of the time-dependent zero-field-cooled (ZFC) susceptibility allows one to probe the AC
magnetic susceptibility of the system with relaxation time ¢ ranging between ¢ = 1 sec and 10° or
10° sec.

Recently the aging phenomena have been the subject of many experimental studies on slow
dynamics in a variety of spin glass (SG) systems. Typically it can be observed in the evolution of
a zero-field cooled (ZFC) magnetization Mzrc(f) with time ¢ after the ZFC aging protocol for a
wait time #w. The detail of such an experiment is as follows. During the ZFC protocol, the system
is quickly quenched from high temperatures well above the spin freezing temperature 7sg to a
low temperature (7)) below 7sg in the absence of external magnetic field. After the system is kept
at T for a wait time #y ( = 10° sec - 10° sec), the magnetic field H (very small, typically 1 Oe) is
applied at # =0. The ZFC susceptibility is measured at the same 7 as a function of 7, where ¢ is the
observation time after the field application. The ZFC susceptibility yzrc thus obtained is
expressed by

Xaret,t,) =M 4 (8,8,) 1 H (8.1)
where Mzrc(t, tw) is the ZFC magnetization. In the regime of linear response, these experiments
reflect the time dependence of the dynamic spin correlation function. The fundamental relations
are given by

Xae(bty) = ' (@ =1/1,1,)

8.2
W):M:EZ"(Q)=1/Z‘,Z‘W) -2
dInt s

b

SZFC (tat

with

t=t,=2r/o, (8.3)
where Szrc is the relaxation rate and is related to the imaginary part of the complex susceptibility.
There is a simple relation (so-called, 772 relation) between y’(@, tw) and y (@, tw),

_rox'(e.t,) (8.4)

"(w,t,) =
1" (w,t,) > o
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9. Relaxation rate and the density of relaxation times'’->

An usual way to describe the slow relaxation of the ZFC magnetization is to postulate a
statistical distribution of the relaxation times and to assume additive contributions. According to
Lundgren et al,'”"®, Vincent,?® and Suzuki and Suzuki,?' the ZFC magnetization M ,,.(t,,?)is

described by a sum of exponential decay exp(-#/7) with the relaxation time 7 multiplied by the
density of relaxation times g(tw, 7),

M (1,0 =M1 = (0,0 = [ 8t D)exp(-D)dr ©.1)
T .

where H is the magnitude of an external magnetic field, Mo is the ZFC magnetization at ¢ = 0,
and 7y is a microscopic relaxation time. The relaxation rate Szrc(tw, f) can be defined as

idMZFC(twﬂt) — dq(twﬂt) = J.g(tw"[)iexp(_i)dz- (92)
T T .

S t ,t)=
v (t,51) H dlnt dlnt

Here it is noted that a part of the integrand expressed by f(x) = (1/x)exp(—1/x) has a maximum

at x = 1.0, where x = 7/¢. Using an assumption that f{7/¢) is approximated by a Dirac-delta
function [= A - 7)], we get

Sype(t) = [ 20,005~ ) = g(t,01) 93)

Experimentally it is well known that Szrc(z, #w) has a relatively flat peak centered around ¢ =
tw,. This implies that the density of the relaxation time g(tw, 7) also exhibits a broad peak around
T = tw, because of g(tw, 7) = Szrc(tw, 7). The aging behavior can be understood based on a
phenomelogical domain model. In this picture, the aging involves the growth of the domain
(denoted by R) during the ZFC protocol for a wait time #v. The domain grows with time. The size
of the domain R becomes equal to R(tw) after the wait time #,. Through this process, only the
relaxation time 7z, which is nearly equal to #w, can be selected since g(tw, 7) has a broad peak
around 7= tw. At ¢ = 0 just after the ZFC protocol, a magnetic field is turned on. Then the ZFC
magnetization is measured as a function of the observation time z. The size of the domain (R)
remains constant R(tw) for 0<t<ty. In contrast, the probing length scale (L) of the domain grows
with the time ¢, starting from ¢ = 0 in a similar way such that the domain (size R) grows for the
wait time #y during the ZFC protocol. The equilibrium dynamics is probed since L<R(tw) for
0<t<tw, while the non-equilibrium dynamics is probed for £~#y. The relaxation rate Szrc(tw, ?)
exhibits a peak around ¢ = #w, reflecting the crossover of the aging behavior between these two
relaxation regimes. The density of relaxation time g(tw, 7) marked with #y is nearly equal to
Szrc(tw, 7). Here the label ¢ is used for the notation of Mzrc (tw, f) and g(tw, £), in order to
emphasize that each relaxation rate Szrc(tw, ?) [(= g(tw, ?)] after the ZFC protocol for the wait
time #w represents the dominant feature of the aging dynamics for a specific domain which grows
for the wait time #w during the ZFC protocol. A set of data on Szrc(tw, f) as a function of ¢, for
various tw (=10? — 10° sec) provides an information on the snap shots of the aging behavior of
domains whose size depends on the wait time. For short #y, one can get the snap shot of the aging
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behavior for small domains, while for long #w, one can get the snap shot of the aging behavior for
large domains. The relaxation mechanism for the small size domains is considered to be rather
different from that for the large size domain. There is a crossover between the thermal-
equilibrium dynamics inside the domains and the non-equilibrium dynamics in domain walls.

10.  Formulation by Komori, Yoshino, and Takayama*?

The formula for the ZFC relaxation rate which are derived by Lundgren et al qualitatively, is
derived theoretically by Komori and Takayama (2000).>> The overview of the theory by them is
as follows. One can see more detail of their paper. The autocorrelation function for the Ising spin
glass system is defined by

C(e,)=C(5t,) (10.1)

with

C,(t;1,)=<S,(t+1,)S,(,) > (10.2)
where Sj(7) is the sign of the Ising spin at the site j at time . The over-line denotes the average
over sites and different realization of interactions. The bracket denotes the average over thermal

noises. At time ¢ = 0, the system is prepared in a random initial configuration and we let the
system relax at 7 below 7sg. The absorption of the AC magnetic susceptibility is given by

a) A
"(w5t,) =~ —C(w;t, 10.3
X" (ost,) o7 ( )’ (10.3)

where é’(w;tw) is the Fourier component of C(#; #w). The latter is estimated, to a good

approximation, as
7 dC(;t,) |
lw| dlnz "

b

Clast,) ~— (10.4)

with 7, =27/ @ . Hence we obtain the expression for the absorption,

7 0C(;t,) |
2T ot ™,
The ZFC susceptibility is given by

Lo (t:2,) =%[1—C(r;rw)] (10.6)

1" (o;t,) = — (10.5)

b

The ZFC relaxation rate is given by

a t’ tw 2 "
SZFC (t = t(u;tw) = % |t:t,u = ;Z (a);tw) (107)

Here the relation in Eq.(10.7)

b

n 72. al (t; tw)
K(oit,) w2
2  Olnt .
is equivalent to the /2 rotation relation, since

(10.8)
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T Oy (t = twit,) (10.9)
2 Ohw )

x"(o5t,) =~ —

and
X' (o5t,) = Yyt =1,1,) (10.10)

11. Experimental window

Any experiment has characteristic timescale (or characteristic frequency) associated with it.
For a static magnetization measurement, for example, it is just the length of time over which the
experiment is carried out (typically 107 sec).
(1) For the conventional AC magnetic susceptibility measurement (AC SQUID
measurements), the time scale fobs ranges between 107 and 107 sec.

oa [24 [24 l n
S(Q=0,1,,) =< S (-Q0) 5" (@) >% — 10" (Q=0.0) s, - (111)

(i)  For the ZFC relaxation rate, the time scale zobs ranges between 1 sec and 10° or 10° sec.
n 72.
Y'(o=2rx/t, t,)= ESZFC(tobS,tW) . (11.2)
(iii)  The characteristic time of a conventional neutron scattering experiments allows one to
view process in magnetic systems on time scales 7obs between 101! — 10713 sec. This is ideal for
most magnetic systems, but in spin glasses it misses the most of the action, which lies at much
lower frequencies.

5% (Q, ) o« *2L

2 a"(Q, @), (11.3)
w

with @ =27/t .

(iv) For neutron spin echo experiments one can measures the evolution of the spin correlation
function

<8*(-Q.0)-$"(Q.1,,) >, (11.4)
directly as a function of time, ¢ rather than through its Fourier transform as in conventional
neutron scattering. The time scale Zobs ranges between 1072 and 107 sec.

12. Example of AC magnetic susceptibility

Here we show typical examples of the AC magnetic susceptibility (the absorption). These
results are obtained by us using the MPMS SQUID magnetometer at the Department of Physics,
State University of New York.

) Stage-2 CoClL, GIC (quasi 2D XY-like ferromagnet)*

Stage-2 CoClL» GIC (graphite intercalation compound) magnetically behaves like a quasi two
dimensional XY-like ferromagnet. There is a very weak antiferromagnetic interaction between
the adjacent intercalate layers. The system consists of the paramagnetic phase, 2D ferromagnetic
phase (the intermediate phase), and spin glass phase (the low temperature phase).
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stage-2 CoCl, GIC
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Fig.7 T dependence of the absorption y (@, T) of stage-2 CoCl, GIC at various frequencies: f =
0. 1—-1000 Hz. & = 50 mQOe. hlc. The c axis is perpendicular to the basal plane of the
system. H = 0 (no external DC magnetic field). Ref.[23].

(ii)  Spin glass phase in CugsCo0o.sCl-FeCl; GBIC**

The system Cug 5Co00.5ChL-FeCls GBIC (graphite bi-intercalation compound) is a typical spin
glass system. It consists of the paramagnetic phase and the spin glass phase (low temperature
phase).
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Fig.8 T dependence of the absorption y”(@, T) of CuosCoosCh-FeCls GBIC at various
frequencies: f = 0.01 — 1000 Hz . 2 = 50 mOe. hLlc. The c axis is perpendicular to the
basal plane of the system. H = 0 (no external DC magnetic field). Ref.[24].

(iii)  Reentrant spin glass phase in stage-2 Cuo.sC00.2Cl, GIC*

The system stage-2 CuosCo0o2ClL GIC is called a reentrant ferromagnet. It consists of the
paramagnetic phase, the quasi 2D ferromagnetic phase (intermediate phase), and the reentrant
spin glass phase (low temperature phase).
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Fig.9 T dependence of the absorption y”(w, T) of stage-2 CupsCoo2Cl, GIC (graphite
intercalation compound) at various frequencies: /= 0.01 — 1000 Hz . # = 50 mOe. A_lc.
The ¢ axis is perpendicular to the basal plane of the system. H = 0 (no external DC
magnetic field). Ref.[25].

(iv)  ZFC relaxation rate Szrc(Z, #w) in spin glass CugsCoo.5-FeCl; GBIC?®

The ¢ dependence of the ZFC susceptibility is measured. The time t = 0 is a time when the
external DC magnetic field H (= 1 Oe) is applied after th ZFC protocol. The ZFC protocol
consists of (i) quenching of the system from the high temperature well above the spin freezing
temperature TSG to a temperature 7 below Tsg, (ii) annealing of the system at 7 for a wait time
tw (= 2.0 x 10° sec). The ZFC relaxation rate is defined by

dy
S, (t) =2z 12.1
ZFC() dlnt ' ( )
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Fig.10 Time (¢) dependence of the relaxation rate Szrc(¢) at various 7 for CuosCoo.s-FeCls GBIC
(graphite bi-intercalation compound). 7= 3.0 — 4.7 K. H=1 Oe. tw = 2.0 x 10° sec. The
solid lines denote the least-squares fits to the stretched exponential relaxation form.
Ref.[26].

(v)  Griffiths phase in NigsMgo.(OH),*’

The system NiosMgo2(OH), is a 3D Ising random spin system. It consists of the
paramagnetic phase (high temperature phase), the 3D antiferromagnetic phase (the intermediate
phase), and the reentrant spin glass phase (the low temperature phase). Figure 11 shows the T
dependence of y”(w, T, H). With increasing H, the heights of two peaks drastically increases.
The peak in the high temperature side is associated with the occurrence of the Griffiths phase
enhanced by the application of H. The peak in the low temperature side is associated with the 3D
antiferromagnetic long range order.
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Ni Mg, 2(OH)2
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Fig.11 T dependence of the absorption y (@, T, H) of Nip.sMgo.2(OH): in the presence of various
DC magnetic field H (=2 — 40 kOe). f=1Hz. h=3 Oe. T=2 - 30 K. Ref.[27].

(vi)  Superspin glass Fe3Os nanoparticles?®

Fe3;O4 nanoparticles show the superspin glass behavior. The ferromagnetic clusters play a
role of single spin in the conventional spin glasses. The competing interactions among the
ferromagnetic clusters) are mainly dipole-dipole interactions.
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Fig.12 T dependence of the absorption y”(@, T) of FesO4 nanoparticles at various frequencies: f
= 0.1 — 1000 Hz. #=0.5 Oe. T =2 — 100 K. H = 0 (no external DC magnetic field).
Ref.[28].

13.  Link
There are some useful links for the AC magnetic susceptibility including
(1) Introduction to AC susceptibility (Quantum Design)
http://www.qdusa.com/resources/pdf/1078-201.pdf
(1) Magnetic susceptibility Wikipedia
http://en.wikipedia.org/wiki/Magnetic_susceptibility

CONCLUSION
We discussed the several topics of the AC magnetic susceptibility. The absorption of AC
magnetic susceptibility [ 7,.,"(Q =0,®)] is proportional to the magnetic correlation function

§°*(Q =0,w) through the Kramers-Kronig relation. So we can probe the relaxation process at

the time scale of tm = 27/@. Using the conventional method as well as the method of ZFC
relaxation rate, the time scale ranges between 10~ sec and 10° sec (depending on the patience of
experimentalists, including times they can use the equipments). One can examine the relaxation
mechanism for even frustrated spin systems whose relaxation time is extremely large. We think
that this note may be helpful for researchers and graduate students to understand the background
of the physics in the AC magnetic susceptibility.
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