
1 

 

AC magnetic susceptibility 

Masatsugu Suzuki  

Department of Physics, State University of New York at Binghamton, 

(Date: September 12, 2009) 

 

Abstract 

This note is written for experimentalists of the condensed matter physics, who want to know 

the fundamental physics of the AC magnetic susceptibility. Experimentally, in recent days one 

can easily measure the AC magnetic susceptibility of various magnetic systems, using the 

SQUID magnetometer (such as the equipment from Quantum Design). However, it is sometime 

hard even for many professional researchers to figure out the physics of the magnetic behavior. 

We have been studying the magnetic phase transitions of low-dimensional magnetism, including 

spin glasses for many years. This note is based on our experience. In spite of many reviews on 

the AC magnetic susceptibility, it seems that there are few reviews on the physics of the AC 

magnetic susceptibility on the magnetic system such as random spin systems (spin glasses, 

superspin glasses, superparamagnets, quasi 2D ferromagnets, and so on). It is hoped that this 

note will be useful for experimentalists and students to understand the physics of magnetism.  

In order to investigate the magnetism of the matters, it is important to observe directly the 

magnetic response of the magnetic systems by the application of external magnetic field. 

Immediately after the application of the magnetic field, the state of the system remains 

unchanged. After some characteristic times, the state of the system will reach a new state in 

thermal equilibrium, leading to the new magnetization. This is called as a magnetic relaxation 

phenomenon. In order to examine the mechanism, we need to know the magnetization in thermal 

equilibrium and also need to know the information concerning the relaxation process into the 

state in thermal equilibrium. The dynamic magnetization measurement is required for one to 

understand the time dependence of magnetic correlations. There are many methods for this 

purpose, including the inelastic magnetic neutron scattering, the relaxation rate measurement of 

the zero-field-cooled susceptibility, and the AC magnetic susceptibility. The most suitable 

dynamic methods should be chosen, depending on the properties of the systems (spin glasses, 

ferromagnetism, superspin glass, superparamagnetism), the condition of the observation, and the 

physical quantities derived. In this note, we present the physics on the AC magnetic 

susceptibility and the magnetic neutron scattering. 
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1. Simple theory of AC magnetic susceptibility 

Suppose that the AC magnetization mac(t) is generated in the magnetic system, when the AC 

magnetic field hac(t) is applied to it. Here mac(t) and hac(t) are expressed in terms of the complex 

numbers as 

])(Re[
)(

])(Re[)(

]Re[)(

tiac

ti

ac

ti

ac

emi
dt

tdm

emtm

heth

















,

 (1.1) 

where  is the angular frequency, Re denotes the real part of the complex number, and () is 

the complex AC magnetic susceptibility. For convenience, we assume that h is real. The complex 

number m() is related to h by the relation  

hihm )](")('[)()(   , (1.2) 

where )('   is called the dispersion and )("   is called the absorption. Then the time 

dependence of hac(t) and mac(t) is expressed by 
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where )('   is also called the in-phase component and )("   is called the out-of-phase 

component. The power absorbed by the system is given by 
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 (1.5) 

where T is the period and is given by T = 2/. Then the power absorbed by the system is 

proportional to the absorption " . 

 

((Units)) 

We have a comment on the cgs units of the AC magnetic susceptibility. The unit of m() is 

emu (=erg/Gauss), where Gauss = Oe, while the unit of h is Oe. Then the unit of )(  is 

emu/Oe. Conventionally we use simply emu instead of emu/Oe as the unit of )( . When the 

weight of the system is given by the unit of g, the unit of the resultant susceptibility is given by 

emu/g. When the number of a specific magnetic atom is given by the unit of moles, the unit of 

the resultant susceptibility is emu/mole. 

 

((Experiment)) 

We use the AC susceptibility option of MPMS SQUID magnetometer (Quantum Design) for 

the measurements of AC magnetic susceptibility, at the Department of Physics, SUNY at 

Binghamton. The frequency ranges between 0.01 Hz and 1000 Hz. When f = 0.01 Hz is used, it 

may take 2 hours for each measurement. The amplitude of the AC magnetic field (h) is between 

1 mOe and 4.0 Oe. One can simultaneously and directly measure the in-phase component [h 

'()] in the units of emu and the out-of-phase component [h "()] in the units of emu. The 

remnant magnetic field is less than 1 mOe using the ultralow field capability option. 

 

2. Debye relaxation with a single relaxation time1-5 

We consider a Debye relaxation with a single relaxation time . We start with the Casimir-du 

Prè equations4 given by 
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Here S  (=  ) is the adiabatic susceptibility and T  (= 0 ) is the isothermal susceptibility. 

These susceptibilities are defined by 
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where M is the DC magnetization of the system and H is the DC magnetic field. Then we have 
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The dispersion and absorption are obtained as 
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We assume that 0  (high frequency limit of susceptibility). Then we get 
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We note that 0'    and 0"  in the limit of →0. Figure shows the plots of ’/0 and ”/0 

as a function of . At  = 1, the absorption has a maximum, while the dispersion has an 

inflection point. The maximum of the absorption provides a method of determining an average 

relaxation time. 
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Fig.1 Plot of ’/0 and ”/0 as a function of x (= ) for the Debye relaxation. 

 

From the above equation, we find that ’/0 and ”/0 satisfy the equation 
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The Argand diagram (the plot of real part and imaginary part of () in the x-y plane (x = ’/0 

and y = ”/0,) shows a circle (radius )2/1  centered at (1/2, 0) in the plane of ’/0 vs ”/0. 

This plot is called a Cole-Cole plot. The deviation of the Cole-Cole plot from a semicircle 

suggests that the system does not follow the Debye relaxation. This indicates that there are more 

than two relaxation times in the system. 

 

 

Fig.2 Cole-Cole plot of the real part ’/0 (= x) vs the imaginary part ”/0 (= y) for the Debye 

relaxation. 

 

((Note)) Definition 

(1) Argand diagram 

A way of representing complex numbers as points on a coordinate plane, also known as the 

Argand plane or the complex plane, using the x-axis as the real axis and the y-axis as the 
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imaginary axis. It is named for the French amateur mathematician Jean Robert Argand (1768-

1822) who described it in a paper in 1806. 

 

(2) Cole-Cole Plot 

The Cole-Cole plot presents complex material parameters such as impedance or permittivity 

of dielectric materials as a locus in the Gaussian number plane as a function of frequency. The 

Cole-Cole diagram is named after two brothers, Kenneth S. Cole and Robert H. Cole, in 1931, 

the experimental investigations on the impedance of biological tissue conducted. 

 

3. Relaxation with a distribution of relaxation times 

Suppose that there is a broad distribution of the relaxation time  between min and max. In 

this case we need to modify the Casimir-du Prè equations.4 The probability distribution of 

relaxation times g() is supposed to be slowly varying in ln. Let the number of magnetic entities 

with relaxation times between ln and ln + dlnbe g()dln. According to Lundgren et 

al.(1981)6 and Wenger (1986)7 (developed for spin glasses) the dispersion ' can be described by 
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with the normalization condition 
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where min and max are the minimum and maximum values of relaxation times in the system, and 

m0() is the magnetic moment of clusters. In the following we denote the system to be in the state 

when min <<m<<max, where m = 1/.  
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Suppose that g() of ln is approximately constant in a range (lnmin, lnmax). Then g() in the 

integrant may be replaced by g(m). Then we have 
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The absorption is also evaluated as 
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Then we have a so-called the /2 relation  
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which is a very useful relation for the analysis of experimental data. 

 

4. Yoshimitsu-Matsubara method 

It is known that for many dielectric substances, the presence of the distribution of relaxation 

times can be described by a fairly simple empirical law. We consider the case when the Cole-

Cole plot is deviated from the circle. According to Yoshimitsu and Matsubara (1968),8 the 

complex susceptibility may be described by 
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where  is between 0 and 1. The real part (dispersion) is obtained as 
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The imaginary part (absorption) is obtained as 
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The susceptibility can be rewritten in a form given by  
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where G(1) is the distribution function of the relaxation times. An explicit form of G(1) is given 

by Yoshimitsu and Matsubara8 as 
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with x = 1/. Figures 3 and 4 show a plot of y(x) as a function of x. The parameter  is a measure 

of the width of the distribution. For  = 1, y(x) is a Dirac delta function and gives the Debye 

relaxation. As  is decreased, the peak of the distribution moves toward smaller x and finally y(x) 

concentrates around x = 0 (≤1/2). Figure 5 shows the Cole-Cole plot of x vs y, where x = 

0/),('   and y = 0/),("  . It is found that the circle with  = 1 is distorted as  is 

decreased. 

 

 

Fig.3 Plot of the distribution function of the relaxation, y(x) as a function of x (= /) for  = 

0.1 – 0.9. 
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Fig.4 Plot of y(x) as a function of x (= /) for  = 0.95 – 0.99. 

 

 

Fig.5 the Cole-Cole plot of x vs y, where x = 0/),('   and y = 0/),("  . The pamater  

is changed between 0.1 and 1. 

 

5. Kramers-Kronig relation 

The relation between the absorption and the dispersion is established though the Kramers-

Kronig relation 
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 (5.1) 

where P denotes the principal value of the integral. The Kramers–Kronig relations have a 

physical interpretation. The Kramers–Kronig relations imply that observing the dissipative 

response (out-of-phase) of a system is sufficient to determine its in-phase (reactive) response, 

and vice versa. The formulas above are not useful for reconstructing physical responses, as the 

integrals run from -∞ to ∞, implying we need to know the response at negative frequencies. 
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Fortunately, in most systems, the positive frequency-response determines the negative-frequency 

response because of )()( *   . This means that )('   is an even function of frequency 

and )("   is an odd function of . Using these properties, we have 
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 (5.2) 

 

((Example)) We now apply the Kramers-Kronig relation to the case of the Debye relaxation with 

0)(  . The dispersion can be derived from the absorption, 
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We use the Residue theorem to solve this. To this end, we consider the contour integral around 

the closed loop C (semicircle with radius infinity) in the upper-half complex plane. C1 is the semi 

circle (radius , in the limit of  →0) centered at z = in the real axis. Then we have 

 

 
Fig.6  The path of the contour integral in the complex plane. The path consists of the three parts, 

the semicircle (counter clock-wise) with radius of ∞ centered at the origin, the semicircle 

(clockwise) with radius  (in the limit of  →0) centered at z = , and the straight line of 

the real axis from -∞ to +∞, except for a region around the small semi circle C1. 
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So we obtain the expression for )('   as 

22

0

1
)('








.
 (5.6) 

Similarly, the absorption can be derived from the dispersion through the Kramers-Kronig 

relation 
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Using the Residue theorem for the contour integral around the path shown in Fig.6, we have 
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Then we have 
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6. Magnetic correlation function9-12 

The magnetic correlation function can be measured by inelastic neutron scattering 

measurement. It is closely related to the dynamic magnetic susceptibility through the fluctuation-

dissipation theorem. 

 

6.1 Definition of the magnetic correlation function 

The magnetic correlation function is the time and spatial Fourier transform of spin-spin 

correlation  )()0(0 tt j


SS , 
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where )(tS j


 ( = x, y, z) is the localized spin at the site j (=1, 2, … N) at the time t, N is the total 

number of localized spins in the system. We note that 
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M is the total magnetization and is independent of time t (i.e., conserved quantity). Then the 

magnetic correlation function can be rewritten as 
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where we use  

  )()0()()0( 0 tttt jkkj
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SSSS

,
 (6.5) 

because of the translational symmetry in the system. In the inelastic magnetic neutron scattering 

measurements, the differential cross section to unpolarized neutrons is closely related to the 

magnetic correlation function,9-12 
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 (6.6) 

(Izuyama et al.), where Q = ki – kf is the scattering vector, and fi EE ℏ . ki and kf are wave 

vectors of the incident neutron (initial state) and scattered neutron (final state), and Ei and Ef are 

the energies of incident and scattered neutrons, respectively. fM(Q) is the magnetic form factor. 

Q̂  is the -component of the unit vector of Q. ),( 
QS  is the symmetrized correlation tensor 

defined by 

)],(),([
2

1
),(   QQQ SSS 

.
 (6.7) 

 

6.2 Static correlation function 
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The integral of the magnetic correlation function over all frequencies  keeping the 

scattering vector Q fixed, leads to the static correlation function; 
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 (6.8) 

This static correlation function is the Fourier transform of the spin correlation function over all 

the space, and is expressed by 

 
j
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 (6.9) 

using Eq.(6.2). Then Eq. (6.8) can be written as 
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In a special case where Q = 0 and  = , Eq.(6.10) becomes 
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 (6.11) 

using Eq.(6.3). Noting that the static susceptibility 
)(s

  and spontaneous magnetization M0 are 

defined as 
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MM 0 ,
 (6.12) 

then we obtain the expression, 
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 (6.13) 

This is called the thermodynamic sum rule. The term in M0
2 gives a measure of the Bragg 

scattering, and the first term gives a measure for the static magnetic susceptibility. 

 

7. Fluctuation-dissipation theorem13-16 

The general fluctuation-dissipation theorem tells us that the absorption of the dynamic 

complex susceptibility is closely related to the magnetic correlation function. Without proof we 

show that the symmetric magnetic correlation function is described by 
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 (7.1) 

where ),("  Q  is the symmetric tensor of absorption, which is defined by (Izuyama et al. 

1963)15 
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In Eq.(6.2), it is required that ),("  Q  should be symmetric tensor. Then the magnetic 

correlation function is proportional to the absorption of the dynamic AC magnetic susceptibility 

),("  Q , which is dependent on Q and . Using the Kramers-Kronig relation, we have 
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for the symmetric tensor ),('  Q , which is defined by 
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Noting that 
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we can calculate the value of )0,0('   Q  as follows. 
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 (7.6) 

for Q = 0 and  = 0, where we assume that 0 M and )/('/)1(

'

Tke B

Tk B ℏ

ℏ







. This means 

that )0,0('   Q  coincides with the static susceptibility 
)(s

 , as is predicted. 
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We note that the averaged power absorbed is related to ),( 
QS  through 
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using the fluctuation-dissipation theorem. 

 

8. Relaxation rate of the ZFC susceptibility17-19 

In order to appreciate the nature of the spin glass dynamics, a very wide time range has to be 

covered in experiments. For the conventional AC magnetic susceptibility measurement (AC 

SQUID measurements), the frequency ranges between f = 1 kHz and 0.01 Hz (typically) is used. 

Correspondingly, the time scale ranges between 10-3 and 102 sec. This is too short for the 

measurement of the relaxation phenomena in spin glasses. Here we show that the measurement 

of the time-dependent zero-field-cooled (ZFC) susceptibility allows one to probe the AC 

magnetic susceptibility of the system with relaxation time t ranging between t = 1 sec and 105 or 

106 sec.  

Recently the aging phenomena have been the subject of many experimental studies on slow 

dynamics in a variety of spin glass (SG) systems. Typically it can be observed in the evolution of 

a zero-field cooled (ZFC) magnetization MZFC(t) with time t after the ZFC aging protocol for a 

wait time tw. The detail of such an experiment is as follows. During the ZFC protocol, the system 

is quickly quenched from high temperatures well above the spin freezing temperature TSG to a 

low temperature (T) below TSG in the absence of external magnetic field. After the system is kept 

at T for a wait time tw ( = 103 sec - 106 sec), the magnetic field H (very small, typically 1 Oe) is 

applied at t =0. The ZFC susceptibility is measured at the same T as a function of t, where t is the 

observation time after the field application. The ZFC susceptibility ZFC thus obtained is 

expressed by 

HttMtt WZFCwZFC /),(),(  , (8.1) 

where MZFC(t, tw) is the ZFC magnetization. In the regime of linear response, these experiments 

reflect the time dependence of the dynamic spin correlation function. The fundamental relations 

are given by 
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 (8.2) 

with  

,/2  mtt  (8.3) 

where SZFC is the relaxation rate and is related to the imaginary part of the complex susceptibility. 

There is a simple relation (so-called, /2 relation) between ’(, tw) and ”(, tw), 
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 (8.4) 
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9. Relaxation rate and the density of relaxation times17-20 

An usual way to describe the slow relaxation of the ZFC magnetization is to postulate a 

statistical distribution of the relaxation times and to assume additive contributions. According to 

Lundgren et al,17-19, Vincent,20 and Suzuki and Suzuki,21 the ZFC magnetization ),( ttM wZFC is 

described by a sum of exponential decay exp(-t/) with the relaxation time  multiplied by the 

density of relaxation times g(tw, ), 



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.
 (9.1) 

where H is the magnitude of an external magnetic field, M0 is the ZFC magnetization at t = 0, 

and 0 is a microscopic relaxation time. The relaxation rate SZFC(tw, t) can be defined as 
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 (9.2) 

Here it is noted that a part of the integrand expressed by f(x) = )/1exp()/1( xx   has a maximum 

at x = 1.0, where x = /t. Using an assumption that f(/t) is approximated by a Dirac-delta 

function [= (t - )], we get 

),()(),(),(

0

ttgdttgttS wwwZFC  





.
 (9.3) 

Experimentally it is well known that SZFC(t, tw) has a relatively flat peak centered around t = 

tw,. This implies that the density of the relaxation time g(tw, ) also exhibits a broad peak around 

 = tw, because of g(tw, ) = SZFC(tw, ). The aging behavior can be understood based on a 

phenomelogical domain model. In this picture, the aging involves the growth of the domain 

(denoted by R) during the ZFC protocol for a wait time tw. The domain grows with time. The size 

of the domain R becomes equal to R(tw) after the wait time tw. Through this process, only the 

relaxation time , which is nearly equal to tw, can be selected since g(tw, ) has a broad peak 

around  = tw. At t = 0 just after the ZFC protocol, a magnetic field is turned on. Then the ZFC 

magnetization is measured as a function of the observation time t. The size of the domain (R) 

remains constant R(tw) for 0<t<tw. In contrast, the probing length scale (L) of the domain grows 

with the time t, starting from t = 0 in a similar way such that the domain (size R) grows for the 

wait time tw during the ZFC protocol. The equilibrium dynamics is probed since L<R(tw) for 

0<t<tw, while the non-equilibrium dynamics is probed for t>tw. The relaxation rate SZFC(tw, t) 

exhibits a peak around t = tw, reflecting the crossover of the aging behavior between these two 

relaxation regimes. The density of relaxation time g(tw, ) marked with tw is nearly equal to 

SZFC(tw, ). Here the label tw is used for the notation of MZFC (tw, t) and g(tw, t), in order to 

emphasize that each relaxation rate SZFC(tw, t) [(≈ g(tw, t)] after the ZFC protocol for the wait 

time tw represents the dominant feature of the aging dynamics for a specific domain which grows 

for the wait time tw during the ZFC protocol. A set of data on SZFC(tw, t) as a function of t, for 

various tw (=102 – 105 sec) provides an information on the snap shots of the aging behavior of 

domains whose size depends on the wait time. For short tw, one can get the snap shot of the aging 
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behavior for small domains, while for long tw, one can get the snap shot of the aging behavior for 

large domains. The relaxation mechanism for the small size domains is considered to be rather 

different from that for the large size domain. There is a crossover between the thermal-

equilibrium dynamics inside the domains and the non-equilibrium dynamics in domain walls. 

 

10. Formulation by Komori, Yoshino, and Takayama22 

The formula for the ZFC relaxation rate which are derived by Lundgren et al qualitatively, is 

derived theoretically by Komori and Takayama (2000).22 The overview of the theory by them is 

as follows. One can see more detail of their paper. The autocorrelation function for the Ising spin 

glass system is defined by 

);();( wjw ttCttC 
,
 (10.1) 

with 

 )()();( wjwjwj tSttSttC
,
 (10.2) 

where Sj(t) is the sign of the Ising spin at the site j at time t. The over-line denotes the average 

over sites and different realization of interactions. The bracket denotes the average over thermal 

noises. At time t = 0, the system is prepared in a random initial configuration and we let the 

system relax at T below TSG. The absorption of the AC magnetic susceptibility is given by 
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where );(ˆ
wtC   is the Fourier component of C(t; tw). The latter is estimated, to a good 

approximation, as 
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with  /2t . Hence we obtain the expression for the absorption, 
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The ZFC susceptibility is given by 
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The ZFC relaxation rate is given by 
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Here the relation in Eq.(10.7) 
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is equivalent to the /2 rotation relation, since 
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and 

);();(' wZFCw tttt  
.
 (10.10) 

 

11. Experimental window 

Any experiment has characteristic timescale (or characteristic frequency) associated with it. 

For a static magnetization measurement, for example, it is just the length of time over which the 

experiment is carried out (typically 102 sec).  

(i) For the conventional AC magnetic susceptibility measurement (AC SQUID 

measurements), the time scale tobs ranges between 10-3 and 102 sec.  

obstobsobs tSStS /2|),0("
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  QQQQ . (11.1) 

(ii) For the ZFC relaxation rate, the time scale tobs ranges between 1 sec and 105 or 106 sec.  

),(
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),/2(" WobsZFCwobs ttStt


  . (11.2) 

 (iii) The characteristic time of a conventional neutron scattering experiments allows one to 

view process in magnetic systems on time scales tobs between 10-11 – 10-13 sec. This is ideal for 

most magnetic systems, but in spin glasses it misses the most of the action, which lies at much 

lower frequencies.  

),("),( 
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 
 QQ

Tk
S B , (11.3) 

with obst/2  . 

(iv) For neutron spin echo experiments one can measures the evolution of the spin correlation 

function  

 ),()0,( obstSS QQ  , (11.4) 

directly as a function of time, t rather than through its Fourier transform as in conventional 

neutron scattering. The time scale tobs ranges between 10-12 and 10-8 sec. 

 

12. Example of AC magnetic susceptibility 

Here we show typical examples of the AC magnetic susceptibility (the absorption). These 

results are obtained by us using the MPMS SQUID magnetometer at the Department of Physics, 

State University of New York.  

 

(i) Stage-2 CoCl2 GIC (quasi 2D XY-like ferromagnet)23 

Stage-2 CoCl2 GIC (graphite intercalation compound) magnetically behaves like a quasi two 

dimensional XY-like ferromagnet. There is a very weak antiferromagnetic interaction between 

the adjacent intercalate layers. The system consists of the paramagnetic phase, 2D ferromagnetic 

phase (the intermediate phase), and spin glass phase (the low temperature phase). 



19 

 

 

1.4

1.6

1.8

2

2.2

2.4

2.6

6 6.5 7 7.5 8 8.5 9 9.5

stage-2 CoCl2 GIC

'
' (

e
m

u
/m

o
l)

T (K)
 

Fig.7 T dependence of the absorption ”(, T) of stage-2 CoCl2 GIC at various frequencies: f = 

0. 1 – 1000 Hz. h = 50 mOe. hc. The c axis is perpendicular to the basal plane of the 

system. H = 0 (no external DC magnetic field). Ref.[23]. 

 

(ii) Spin glass phase in Cu0.5Co0.5Cl2-FeCl3 GBIC24 

The system Cu0.5Co0.5Cl2-FeCl3 GBIC (graphite bi-intercalation compound)  is a typical spin 

glass system. It consists of the paramagnetic phase and the spin glass phase (low temperature 

phase). 
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Fig.8 T dependence of the absorption ”(, T) of Cu0.5Co0.5Cl2-FeCl3 GBIC at various 

frequencies: f = 0.01 – 1000 Hz. h = 50 mOe. hc. The c axis is perpendicular to the 

basal plane of the system. H = 0 (no external DC magnetic field). Ref.[24]. 

 

(iii) Reentrant spin glass phase in stage-2 Cu0.8Co0.2Cl2 GIC25 

The system stage-2 Cu0.8Co0.2Cl2 GIC is called a reentrant ferromagnet. It consists of the 

paramagnetic phase, the quasi 2D ferromagnetic phase (intermediate phase), and the reentrant 

spin glass phase (low temperature phase). 

. 
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Fig.9 T dependence of the absorption ”(, T) of stage-2 Cu0.8Co0.2Cl2 GIC (graphite 

intercalation compound) at various frequencies: f = 0.01 – 1000 Hz. h = 50 mOe. hc. 

The c axis is perpendicular to the basal plane of the system. H = 0 (no external DC 

magnetic field). Ref.[25]. 

 

(iv) ZFC relaxation rate SZFC(t, tw) in spin glass Cu0.5Co0.5-FeCl3 GBIC26 

The t dependence of the ZFC susceptibility is measured. The time t = 0 is a time when the 

external DC magnetic field H (= 1 Oe) is applied after th ZFC protocol. The ZFC protocol 

consists of (i) quenching of the system from the high temperature well above the spin freezing 

temperature TSG to a temperature T below TSG, (ii) annealing of the system at T for a wait time 

tw (= 2.0 x 103 sec). The ZFC relaxation rate is defined by 

td

d
tS ZFC

ZFC
ln

)(



.
 (12.1) 
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Fig.10 Time (t) dependence of the relaxation rate SZFC(t) at various T for Cu0.5Co0.5-FeCl3 GBIC 

(graphite bi-intercalation compound). T = 3.0 – 4.7 K. H = 1 Oe. tw = 2.0 x 103 sec. The 

solid lines denote the least-squares fits to the stretched exponential relaxation form. 

Ref.[26]. 

 

(v) Griffiths phase in Ni0.8Mg0.2(OH)2
27

 

The system Ni0.8Mg0.2(OH)2 is a 3D Ising random spin system. It consists of the 

paramagnetic phase (high temperature phase), the 3D antiferromagnetic phase (the intermediate 

phase), and the reentrant spin glass phase (the low temperature phase). Figure 11 shows the T 

dependence of ”(, T, H). With increasing H, the heights of two peaks drastically increases. 

The peak in the high temperature side is associated with the occurrence of the Griffiths phase 

enhanced by the application of H. The peak in the low temperature side is associated with the 3D 

antiferromagnetic long range order. 
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Fig.11 T dependence of the absorption ”(, T, H) of Ni0.8Mg0.2(OH)2 in the presence of various 

DC magnetic field H (= 2 – 40 kOe). f = 1 Hz. h = 3 Oe. T = 2 – 30 K. Ref.[27]. 

 

(vi) Superspin glass Fe3O4 nanoparticles28 

Fe3O4 nanoparticles show the superspin glass behavior. The ferromagnetic clusters play a 

role of single spin in the conventional spin glasses. The competing interactions among the 

ferromagnetic clusters) are mainly dipole-dipole interactions. 
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Fig.12 T dependence of the absorption ”(, T) of Fe3O4 nanoparticles at various frequencies: f 

= 0.1 – 1000 Hz. h = 0.5 Oe. T = 2 – 100 K. H = 0 (no external DC magnetic field). 

Ref.[28]. 

 

13. Link 

There are some useful links for the AC magnetic susceptibility including 

(i) Introduction to AC susceptibility (Quantum Design) 

http://www.qdusa.com/resources/pdf/1078-201.pdf 

(ii) Magnetic susceptibility Wikipedia 

http://en.wikipedia.org/wiki/Magnetic_susceptibility 

 

CONCLUSION 

We discussed the several topics of the AC magnetic susceptibility. The absorption of AC 

magnetic susceptibility [ ),0("  Q ] is proportional to the magnetic correlation function 

),0(  QS  through the Kramers-Kronig relation. So we can probe the relaxation process at 

the time scale of tm = 2/. Using the conventional method as well as the method of ZFC 

relaxation rate, the time scale ranges between 10-3 sec and 106 sec (depending on the patience of 

experimentalists, including times they can use the equipments). One can examine the relaxation 

mechanism for even frustrated spin systems whose relaxation time is extremely large. We think 

that this note may be helpful for researchers and graduate students to understand the background 

of the physics in the AC magnetic susceptibility.  

_______________________________________________________________________ 
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