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1. Magnetic moment of neutron
The neutron has a magnetic moment given by

H=—YUy0o,
M+ the nuclear magneton,

eh

2m e

=5.05079 x 10?* emu (cgs units)

Hy =

1y =5.05078324x10** emu (cgs units),  emu = erg/Gauss=emu/Oe
1y, =5.05078324 %1077 J/T (SI units)

% gyromagnetic ratio, y= 1.913 for neutron
mp: the proton rest mass.
o: the Pauli spin operator for the neutron (= £1).
e: the charge of proton (e>0)

2. Spin magnetic moment of electrons

The operator corresponding to the magnetic dipole moment of the electron is

S@
Ho==2Hp "= —HyO,.

s, the spin angular momentum,
h
s, =—0,
2
O the Pauli spin operator for the electron (= +1).

B the Bohr magneton



_ 027400915 x 102! emu (cgs)

H 2m,c
Me the mass of electron
-e: the charge of electron (we assume e>0).
3. Interaction between nutron spin and electron spin

This scattering arises from the interaction of the neutron magnetic moment £ with the
local magnetic field B. The local field due to an electron at position R with momentum p.
and magnetic moment g arising from the electron spin is

Electron spin

Nucleus

Nuetron
B=B,+B,.

The first term ( By ): electron spin angular moment
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where R is the distance from the electron to the point at which the field is measured.



The second term ( B, ):electron orbital angular momentum

B _ridlxR -e(p,xR)  2uy, p,xR
BL_J-dBL_J- cR®  mecR’ h R’

b

(Biot-Savart law)

where i is the current due to the orbital motion of electron,

§idl = (_—evjbﬂ” =—ev= —iPe = —2&p€,
27 m h

e

Then we get

B=—2ﬂB[V>< se><3R +pe><3R]
h R R
=V x ﬂe><3R _ZluB pe><3R]
R h R




The interaction potential with the neutron is given by

V=-u-B
2 s XR x R
:—(—)/,uNO')(—%)[VX[ eRz j'i_ P

R R
— [G,Vx[%jﬂ,.(&j]

1 s, xR 1 xR
:_7/,u1v2/u3[%0"vx[ R j_gpe'[ j]

The first term is arising from the spin of the electron. The second term is arising from its
orbital motion. In order to take proper account of the operator of the momentum of the
electron (quantum mechanically), ¥ should be changed as follows.

1 s XR 1 xR oxR
V==2 —0-Vx| =< - . +—
mvug[ha [ g j 2h[pe 7 7 pej]

where

pe:zv'
1

4. Differential cross section
The cross section for the scattering of neutrons through the interaction potential V" is
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where we assume that m, = mp. ro is defined as

and

2

e
=~ 7=2.81795x 10" cm (classical radius of electron)
0

7,=0.539 x 102 ¢cm

|/1> : initial state of the target.

Ey:  the energy of initial state of the target

|/1'> :the final state of the target

Eyn:  the energy of final state of the target

Si the spin angular momentum of the i-th electron
Di the linear momentum of the i-th electron

P incident neutron spin probability
b

probability distribution for initial target states



P, has the Boltzmann form

exp(~ )
P k,T
2 Eﬂ
D exp(-—=%)
7 k,T
5. Matrix calculation (I)

We use the formula

and
1 1 1 .
R =2—7Z2.[dq?exp(zq -R)
where

R=|R|

and we need to apply the Cauchy theorem for the upper half-plane of the complex plane
and use the residue theorem).
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Then we get



V x siX3R =-Vx sl.><Vl
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1
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Then the matrix element can be evaluated as
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where
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Fig. Neutron and electron position vectors. Neutron (r). i-th electron (r;). R =r -
ri.

* 1 —ik-r
(k|r)=(r|k) “ o ¢

and
k=k-k'
<rv| ru> — 5(1"'—1"")
[dre 7 = 27) 5(q+k—k') = (27) (g +¥)

6. Matrix calculation (II)
Next we calculate another matrix element,
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7. Matrix calculation (III)
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since we use the commutation relation
{p..exp(—iq 1)} =—hq-exp(-iq-r,)
and the relation

(6xq)-q=0.

. . xR
This expression 1s exactly the same as that of p, - i Then we have

R

xR dri
’ i|k>
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8. Definition of O,

Then we have
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Here we define Q, as

0, =Zei”"'[fx(%xf)+£(%xf)]

= iK-T; K X ix_ _L _X&
—Ze [x (h K) K('f h)]

= QLS + QLL

Then we have

el s, xR 1 xR xR
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and the differential cross section is

d’c _E(Wo)z 2 ol ) B
0ds K 16r " A;,fﬂp L |20l QulkAo) [ S(ho+E, ~E;)
kl
=—(m) Y. PP |{Ace-0.|10)] S(hw+E, ~E,)

k A A 0,0

9. Quenching of the orbital angular momentum
Here we consider the case when the orbital angular momentum is quenched. Therefoe
we consider only the spin angular momentum.



iK-r == Sj —
0, = "k (Crxi)]
iK-r 1 —_ = — N\
= ze ' E[(” ‘K)s; — (s, K)K]
1 iK-F; —\=
:Eze '[s; = (s, - K)K]
where we use the vector formula,
Ax(BxC)=(A-C)B—-(A-B)C
We define the spin density as
Z s,o(r—r,).
and its Fourier transform as

Q=S(-x)=) s, = Je"‘"ersﬁ(r -r)

The spin magnetization operator is given by

2 2 iK-F; Si
M, =—=00 Q=2 5(K) = 3" (241,)

((Note)) We define the Fourier transform as

S)=>e""s,

Then we have
0 =0-(Q - K)k

We note
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(S(—x)K)K
S(—«)
Y
/\ KX(S(—A)XK)
S(—x)XK X
0=8(-x¥)=0,+0,
0, =k x(QxK)
=0-(Q-K)k’
Q//:’?(Q"?)

Using these expressions, we get

d*c
1
dQde Adeo

Here we note that

k'
:(74/'0)2 ZPAPJ;

|(Ao'le-0Q,|A0) [ S(hw+E, —E,.)
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The energy of the system does not depend on the neutron polarization. We may sum over &'
to obtain

dg;g' z(%)z;%%
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Then we have

d’c
dQde'

=(m P D010, 120, ot £, - E,)
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=(m, ZP </’L|Q —(Q" - ©)K|A)- (20— (Q - ¥)K|A)S(hw+ E, — E,.)
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Here we note that
(20" =@ )| 1) (2|Q - (Q- K| A) = } (8, — K, K, )(A]Q." | ) A']0y] 2)
a.p

where « and £ stand for x, y, z, and &g is the Kronecker delta.

((Proof))
(2@ -(@"-w)w| 1) (@ - (Q- 1| 1) = > {(AQ"|2) - K, (A|Q, | 1)} {A|Q] 4) — iy (4|0, A}
a.p
= ;{%@IQJI ANA|Op| ) = K4 (4|0, | A N4 |0 4)
— K, K ( 210, | )10y ) + &,5,( 2|0, | )40, 23
= Z( s~ KN AQ, | AN, 2)
Then we have

d’c _
Ods =(m, ZP Z(&aﬂ — 16,15, (A[S, ()| AN XS 4 (—K)| A)S (hw + E, — E,)
a,ﬁ

since

0=S(-k) and Q" =S(x)



10. Formulation
Using the formula for the Dirac function,

—jdzexp[ l[hmi -E, J] §(ha)+l;7;—El,)

=hé(hw+E, —E,)

or
1 T —iot . t
S(hw+E,—E,)= %jw dte™™ expli(E; ~ ;)]

we have

d’ - . 1 ho+E,~E,
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=(m)12ﬂ&%2(5aﬂ— j dte ™ (2]5, 0| AN AIEDS, (00 2)

A)

=(m)y 2P Z( KRS jdz (]S, ()| AN A

or

2)

d’c k' 15, N Ay
a0 2B 2Oy R [die (218, (o) A A1S,

where the Heisenberg operator is defined by

S, (—.1) = exp(%)sa (=) exp(—%)



and
H|A)=E,|2),

where H is the Hamiltonian of the scattering system. We define the Fourier transform of the
spin correlation function as

17 l T —iot ' '
S ,0) = [ate ™ (45, () AN A, (~1.)

—00

A)

Then we have

d’c k' — — cun
AR O)ZE%;;(é‘“ﬂ_KaKﬂ)S (1, 0)

11. Calculationof Q
We now calculate Q defined by

S(-Kk)=0=) ""s,
with
r,=(R, +d)+r, :Rj +r,

The sum runs over all sites in the crystal.

Q — Zeix-r,si — Zeik-(R,er)zeiK-rv sv
i 1,d v
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We show that
(A']e™ R Z‘el‘“"«v A)=F, (k)" S | 1) (1)
where
12.  Proof

A. Furrer, J. Mesort, and T. Stréssle, Neutron scattering in condensed matter physics

The unpaired electrons on a given site will form a total spin Si.s according to the Hund's
rule. The Wigner-Eckart theorem tells us that a matrix of the form <A'|sv| A> is proportional

to (A'S,|2).



(A[S(=)| Ay = (A" > s,

)= F,(e)(A|e*"S,,| 1)
l,d

where F4(x) is the Fourier transform of the normalized spin density nominated with the nth
site and is referred to as the magnetic form factor.

Projection theorem (Wigner-Eckart theorem)

N N <a';j,m'j-l} a;j,m'>
V J
' R G

(a5 jmlV,|a jom') =(j.m|J | j,m!

where J -V is a scalar so its expectation value is independent of m.
5 iKr, A 7 _ O _ A
PeYers  i=§-Y4
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<j,m'|2e""'v§v S j,m’>

S v
Ry +1)

jsm')=(j,m|S| j,m)

J

(ol
The last term of this equation does not depend on the quantum number m. It does not
depend on the direction of the spin and serves as a characteristic value for the magnetic
scattering strength of the atom. This quantity is called the magnetic form factor Fj(x),

which is obtained by the Fourier transform of the normalized spin density at the site j (or
denoted by /, d)

. (ADe""8, -8, 4)
/1> = </1'|S,d| /1> -

(2]80]2) = (28¢5,

= F,(1)(A'[S ;| 1)

B2S(S +1)

where
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13. Proof given by de Gennes

Ar 2 2 iK-r; 2
S A KON -2 Fo)s,
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Zﬁsi =F(k‘)z s, =F(K)S,

i

14. Proof given by Squire
We put

jpv — eilc-r‘, , gld — eiK-RM
Then the left-hand side of Eq.(1)

<ﬂ,’|€iK‘RM Z eiK-r‘, s,
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Note that the matrix element < "7, /1”> is independent of v, since the electron space states
are symmetric or anti-symmetric. f, depends only on the space variables of the electrons.

Since the electron spin states and the nuclear position states are orthogonal, we have
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15.  Magnetic form factor F, (x)

F,(x) is the Fourier transform of the electron spin density around atom at R;,

1 iK-r
Fd (k) = E.[ drpm (r)e

where p, (r)/Z is the normalized spin density of the unpaired electrons and r =r, .

16. Differential cross section (II)

dcsi);'z ZP Z( w5~ KKy ]S, (1) ANAS (=10 A)5(hew + E, — E,.)

Here we use

()85 (—0)|A) =D F,()(A'e"™S /| 1)

(2|8, )| A) =(2'[S, (—x)| z>* =Y Fy() (Ae™" 8, “|2)

Then we have the partial differential cross-section for the magnetic scattering by ions with
only spin magnetic moment



Here we note that
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0

Here we use the closure relation
Saal-1

The quantity < > in the last line is the thermal average of the operator enclosed at
temperature 7. The orientation of the electron spins have only a small effect on the
interatomic force, and hence on the motion of the nuclei. Then we get

< e—ix-Rlvd,(O)Sl'd'a (O)ei"'Rl" (z)Sldﬂ(t) S=< e—ix-R,,d,(O)em-RM (1) S< Sl'd'a (O)S,dﬂ(l‘) >
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17. Bravais lattice
For a Bravais crystal, we have

o _(m) K : e S o
N gF 0 ,— "

X

j < e mmOmu®) 50§ “(0)S,” (1) > e dt

where u/(?) is the displacement of nucleus / from its equilibrium position.

18. Elastic magnetic scattering
In the limit of #—oo0,

<8,°(0)8(t)>=<S,°S’ >

d_ZU —(W )2 a ! - = = K- ag B
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W is the Debye-Waller factor. Integrating of the differential cross section with respect to
£.we get
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Note that

2s,+1) . .
My z(’—’) is the total magnetic moment of electrons.
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ellcr,_(’?x&)z_l(rlxpl)_ .

A Ra L |

3 h 3n

This shows that the forward scattering cross section is proportional to the total magnetic
moment of the electron.
((Note-1))

(S L
ICX(; k)_h[si (k S[)k]
— L5, (3R]

1 1 2
r—(s,—=8,)=—s5,
h(l 3 2 3n

Suppose that s, =(0,0,s;) and & = (sindcos¢@,sindsin@,cos ).

(r - s;)k =5, cos B(sin @ cos @,sin @sin ¢, cos 0)
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1
K-5)Kk > —5.(0,01)=—s,
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((Note-2))

er 1 — !
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We take the mean value of the limit as k¥ — 0. In this limit,

o 1 1 L.
em‘ri _(EX p[) ~ _i(r[ x p[) :l_l
K 3 3

where L; is the orbital angular momentum.

((Note-3))
Suppose that . =(0,0,7) and x = x(sin & cos@,sin &sin @,cos ) .
()
k 1 . . .
— =—(sin@cos ¢, sin Jsin ¢, cos &)
K K
tends to
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K
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i

2
K
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b

= r:(sin @ cos @ cos ¢, sin @ cos @sin ¢, cos” )

tends to
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For N identical spins (un-polarized neutron), the cross section is given by

d*oc
dQde'

. %N(m)z (8P (0P X (8,5~ k,)5 (6,0)
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and F(x) is the magnetic form factor.
S (k,w) = —Z J.dz'e”’“”e""'('*")<$'ff (O)S'rﬁ (t)>

1
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Here we use the Heisenberg representation. We also introduce the Fourier transform,

Qo 1 —igr Qa
S, (t)=ﬁ2e S, (1),
q

Se(t) = ﬁzem"ﬁf (t).



Then we get

z eix-(r—r')<$‘v:7': (O)Sf (t)> _ %z eix-(r—r') z efiq'-r'e—iq.r<§;{ (O)quﬁ (t)>
rr' 7.4
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74" r r .
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9.4’
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Therefore we have
S (0, ) = —— Tdre"”"dr<5“ (0)S” (z‘)>
271_ J K K
It is clear from this equation that

.[ S (k,w)dw = <§f’k (O)Sf (0)> . (static correlation function)

It is quite possible to measure the neutron scattering cross section as a function of @
keeping « fixed, so we can derive the static correlation function by integrating over @ of the
measured magnetic scattering function.

3. Measure of static correlation functions
The static approximation

There is a problem with this process, however, in that the measurements cannot in practice

be taken over an infinite range of @. So that we cannot evaluate the contribution to the

integral for all values of .

(1) Accurate measurements can only be taken if there is a good signal-to-noise ratio and
if the weight of the integral is concentrated over a relatively narrow range of @.
There is reason to hope that this latter condition might be reasonably satisfied near



the critical point, since the characteristic frequency a tends to zero at the critical
point.

(2) There is a second way in which we can attempt to extract the static correlation
function from neutron-scattering measurements. This involves measuring the
differential magnetic cross section rather than the partial differential magnetic cross
section.

That is, we measure all the neutrons scattered into solid angle d£2 without regard to energy.
This is easy to do in practice since it just involves using a detector with angular size d.2.

do,
dQ

N K 1 N
= ;(%)Zjda'k'{EgF(k)}ZZ(% —K,&5)SY (K, )
0 a.p

This integral involves &°, k, and @ that vary with &’.

. Rk” . 2M &'
E = ) k = 2
2M h

n

g=¢-hw, hw=¢c—¢'

k=k—-Fk
Clearly we cannot, in general, evaluate this integral unless we know the scattering function,
and this is what we are trying to measure! There is one circumstance, however, in which
matters simplify;
This is if all the weight of S% («, @) is at low frequencies such that

o << g

If this is the case, it will be an excellent approximation to evaluate the integral with £* and
k held constant (such that |k'| = |k ),

dO's - 2,1 2 A oA Sa o
o = NOnRY  gF ()} g’;(aaﬁ—xarcﬁ)<s_x<0>sf<0>>




The approximation (fiw << & for all @ that contributes significantly to the scattering in the
pp ) g y g

correlation function is known as the static approximation, because it gives the static
correlation function. This approximation is equivalent to assuming that the spin vectors S
have not have the time to change during the time it takes the neutron to cross an atom, so
that the diffraction pattern corresponds to a “static set of spins.

((Advantage))

d’oc

dQds'

S

can be measured more easily and more accurately than

((Disadvantage))
We do not normally know how good the static approximation is.

To determine the spin correlation from

2
(1) dcz)fi-;' , ho=¢c-¢' (quasi-elastic scattering)
()
do, t doc 1 . .
£ = de'= N H=gF ()} (8, —K,&,)(S“.(0)S”(0
a6 =gt SN G FOF 0, ~.,)(S7 (08 0)
(static approximation)
6. Expression of —=
do, 1 e n S B e A
a0 = VO 58PN T8, ~ ) S 05 0)
Note that

~o 1 iKr, Qo
Se (0)=W2e 'S%(0)
J

and



($5.@5£) = T e e (520137 0)

i,j

=%%“e"""f’-”(SZ“(O)S?‘(O))

S

In this case, can be rewritten as

do, _ 2,1 2 A A (1) | G gy &
10 =(m) {ng(’f)} ;(5aﬂ—KaKﬁ)§e ( )<S,~ (0)S_f(0)>

Here we put
F (0= g 0} 5657 0

which corresponds to the magnetic form factor. Then we have

- S0 =K A(E, 0, 0)

(1) Forklz

Z‘;(aaﬂ —K,&,)F, (1) F, (i)
=3 F, (1)F, (1)~ F, (1) F, (k)

= F(5)F,(k)+ F, (5)F, (1) =2|F, ()

(2) Forklx



zﬁ“(aaﬁ ~ &Ky F, (1)F(K)
=Y F, (5)F, (k) F, (k)F.(x)

=F (k)F,(k)+F, (k)F.(k)’

3)
K, =sing, K =cosg, K, =cos¢
z
A
cosd 1
¢

\ 4
>

sing

Z;, (8,5 — K R)F, (1), (0) = Y | () = kaFa*(lc); £, Fy(K)

Ff +|F,0e) +]F.o)f

—[R.F, (5) + K&_F. (10)][R F.(k) + K.F.(K)]

= (1= RVEGf +(1-&VEG) +F, 0]

£ (k)

where the cross terms are assumed to be equal to zero. Suppose that



Fof =|F,

Then we have

D (8, = Ry E, (1)F, (1) = (2= R0 + (1= &)\ (w0
a.p
= (2-sin? §)|F, (&) +(1-cos? §)|F. ()
= (1+cos’ g F, ()| +sin’ §)|F. ()|’
S. Bragg scattering and diffuse scattering

d 2 1 2 A A ixr | Qa 3
i = N0 G OF T 0, ) T (8057 0)

The spin correlation function

(S5 @87 ) =(8557)
(85 (85 e =(87 ) +(32)(82)

=<A§§’A§f>+<§g><§f>

For convenience, we introduce the notation
C”(r)= <A§§‘ AS? > (spin correlation function)
Then we get

3 e <§g (0)S” (0)> =Y e <§g ><Sﬁ > +3 e C (r)

which consists of the magnetic Bragg scattering and the magnetic diffuse scattering.

6. Expression of the diffuse scattering
What is the expression of the magnetic Bragg scattering in the reciprocal lattice?



=S 55)
Since
§/ :%ZSIJ 2]
L= LT e
roqq

=3 5t —g') Sy )(S7 )}
= 2878

What is the expression of the magnetic diffuse scattering in the reciprocal lattice?
I,= Ze”‘"C“ﬂ (r)
= Z e’”"<A§§A§f>

e 55

Since



7. F (k) for the ferromagnet

For the ferromagnetic systes,
$2(0) =58y

Then we get

F00)=m gl 0155 X" =Ny gf 155 X006 -G),

J
which means that the ferromagnetic reflections appear at
k=G.

8. F (k) for the antiferromagnet

For the antiferromagnetic systems,
Se(0)=Sge™™

Then we get

F00) = gf 1Sy X ™"

J

~ Ny g (0}S: T 0k +4-G)



which means that the antiferromagnetic reflections appear at
k=G=xgq.
9. Perfect paramagnet

do, 1 )2
0 =) {2 gf (x)} 3NS(S+1)

10.  Elastic scattering

First we consider

Q 1 T —iot irc-(j—i Sa &
S ﬂ(f(,a))=ﬁz [errdmev )<Si (O)Sf(r)>

i,] —o0

This s cattering function is a Fourier transform in time and space of a spin correlation

function <§ v (0)S jﬁ (z')> between spins at different times 0 and 7. Now, in the paramagnetic

state all spin correlations will become zero after long times,
; Qo N4 —
lim($5(0)$7 (7)) =0
In the ordered magnetic state this will no longer be true. The ordered state remains ordered
for all time, so that spin correlations remain finite as z—oo. There will be at least one value

of o and f for any sites i and j where

lim( 55 (0)$7 (7)) =0

10.



How about antiferromagnet?

-
S & =8 +§Sj“

J

with ¢, = %G .

We consider the second term

Elastic neutron scattering

Formulation
Note the identity

Then
(4,B) = fdﬂ@é(ihz)} - ﬂ<21><f}>]

The wave-length dependent susceptibility

1 (x)=g" ;" {8°.(0), 87 (0)}

=g2u32[fdﬁ<§“K(0),§f (ihA)) = B85, (OS2 (0))]

In the limit &= 0 when the total spin is a constant of motion



SP(ihd) = SP(0) .
27 (5= 0) = 32 1y (S0 (0)L.0(0)) = (S0 (0))(SL.0(0))

Since

0 E S"‘ 0
0( ) ( ( ) ( tot
we get

27 (k=0)= fwf‘; (Sest)—(se)(se ).

When «a = z (easy axis) and
M, =gu,S,

tot

we have

K= 0) = [(M,) (1))

We see the classical susceptibility of an assemblage of a large number of N of spins is
proportional to the mean square fluctuation of the magnetization per atom.

2. The power spectrum in terms of the relaxation function (Marshall and Lowde)

S (i, 0) = S, (K, @ ®)=1" Jd e {8 (r =0),8! (0)}

7ha)ﬂ 2

where



S5 (1, 0) = 5(@)( 87, (¢ = 0))($L (1 = 0)) .

,fm,ﬁ 0

[S (k,0) - S (k,w)] =L dwﬁ]idrem (8 (r=0),8%(z)}

'[da)

Bragg

1 - N
=—1{5°(0),57(0
ﬂ{,,f() 0)}

kT,
=—2— 77 (x)
g’

B

S(S N PARCY (k)

Xo

where

)y 2

8 Hp
=222 S§(S+1
Xo 3k ( )

B
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APPENDIX
Al. Born approximation



2m eiik‘rfr"
<r|k> —Fj.dr'

)

V(r')<r"1//(i)>

47z|r — r'|

where

Here we consider the case of <I"l//(+)>.
|r — r'| =r-r'e,

k'= ke,



ikr—r| _ T _ ke ik

e ee for large r.

1

|r —r'| r

| —

Then we have

e P

or

(rlp) = e + )

(272_)3/2

The first term: original plane wave in propagation direction k. The second term: outgoing
spherical wave with amplitude £ (k' k).

f(k',k):—izh—TQ )jdr B -);2 v(r' < v‘w<i>> _%2_’"(2 ) k'|V‘,/,(+)>

differential cross section
' 2
=|f (k' k)|

F, k)——iz—’"(z ¥ (P

(+)> 2 (272’)3<k'|1}‘!//(+)>

where

q = k —k': scattering wave vector.

A.2  magnetic moment of neutron, electron, and proton



(a) Neutron

eh s

N
-2 Zn__9 On o
H, 72mch %uNh Yy

P

. . h
where y=1.913 (gyromagnetic ratio). s, =5

1y, =5.05078324 %1077 J/T (SI units)

or

1y, =5.05078324 x107** emu (cgs units)

(b) Electron

where s, _h
2

15 =9.27400915 x 10! emu
(¢) Proton

s
n, =2(2.79) uy ;" =-2.19u,0,

((Mathematica))



Clear["Global *"];

rulel = {yB » 9.27400915x 1072, kB - 1.3806504 x 107*°,
NA - 6.02214179x 1023, ¢ 5 2.99792 x 107,
h > 1.054571628 10727, me » 9.10938215 10728,
mp » 1.672621637x1072*, mn > 1.674927211x107%,
ge » 4.8032068x10°1°, eV - 1.602176487 x 10712,
meV » 1.602176487 x 107>, keV - 1.602176487 x107°,
MeV - 1.602176487 x107°};

ge h

uel = //. rulel

2 mec

9.27403x 10 21

ge h

up = //. rulel

2mpc

5.05079 %10 %4

qe?

r0 = //. rulel

me C

2.81795%x10 13



