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There is a hyperfine interaction between the nuclear magnetic moment and electron magnetic 

moment. The magnetic moments (or electron spins) are magnetically ordered below a critical 

temperatures, forming the ordered phase (ferromagnets, antiferromagnets, and so on). The spin 

dynamics can be detected through the magnetic resonance of nuclear magnetic moment through 

the hyperfine interaction. The nuclear magnetic resonance (NMR) has several advantages 

(i) The atomic sites can be specifically selected for the observation of the resonance. 

(ii) The spin dynamics can be observed through the measurement of the characteristic relaxation 

times (T1 and T2). The NMR as well as the magnetic neutron scattering provides tools for the direct 

observation of the Fourier transform of the time-dependent spin-spin correlation function. 

 

1. Longitudinal relaxation time 

We assume that the operator of the hyperfine interaction is expressed by 
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The characteristic time T1 (longitudinal relaxation time) given by 
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where Z is the partition function, and 0 is the resonance frequency, 

 

))()((
2

1
)}(,{

  hfhfhfhfhfhf HtHtHHtHH  

 

ℏℏ

iHt

hf

iHt

hf eHetH
 )(   (Heisenberg representation) 

 
y

hf

x

hfhf iHHH 
 

 

yv iIII   

 

Using the fluctuation-dissipation theorem, we have 

 

0

02

0
0

2

00

2

2

1

)(Im

)(Im)
2

coth(
2

)()0(
2

)
2

coth(
2

)}(),0({
2

1

0

0











































loc
B

loc

B

hfhf

ti

B

hfhf

ti

Tk

Tk

tHHdte
Tk

tHHdte
T

ℏ
ℏ

ℏ
ℏ

 

 

 

Note that 
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(Moriya) 

 

2. Fluctuation of local field: frequency spectrum 

 

 
 

Fig. Fluctuation of the local magnetic field and the relaxation time c. 
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where   22
)0( lochf HH , Hloc is an instantraneous Larmor frequency for the nuclear spin, c is 

the correlation time of the fluctuation. Note that 0<<1/c. So we can assume that 0 = 0. Then we 

get 
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As c becomes shorter, 1/T1 becomes small (motional narrowing). 

 

4. Physical meaning for motional narrowing (Brownian motion) 

4.1 One dimensional model of Brown motion (MacDonald) 

We consider a simple model of Brownian movement, or so called random walk model, in one 

dimension. Consider a particle starting at x = 0 at t = 0, which suffers impacts at a steady rate per 

second. Each impact causes the particle to jump a small distance l, of constant magnitude, either 

in the positive or negative direction of x, and we assume that these steps of +l or –l are uncorrelated 

with one another. 

Let us denote the n-th step by ln (ln = ±l), and consequently the total displacement x after N 

steps will be given by 
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It is obvious that if each and every ln is equally likely to be either positive or negative, then on the 

average we have 
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The brackets < > signify an average taken over a large group of many similar observations of the 

displacement x. 

We consider next the behavior of x2, 
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We note that 
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On the other hand, in the second summation for cases are possible for each product, namely, 
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If these products are supposed to occur with equal probability – and this corresponds to a complete 

lack of correlation between individual steps- then evidently the average of this type of term will 

be zero; mnll . Thus for a random walk with no correlation between successive steps,  
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or 

 

lNx 2 . 

 

4.2 Line-width 

T2 is a measure of the time in which an individual spin becomes dephased by one radian 

because of a local perturbation in the magnetic field intensity. Let nh  denote the local frequency 

deviation due to a perturbation hn. Suppose that the local field has either a positive value h or a 

negative value –h for an average time t or –h. In the time  the spin will process by an extra phase 

angle 
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relative to the phase angle of the steady precession in the applied field H0, 
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After the N intervals of duration , the mean square dephasing angle in the field H0 will be 
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by analogy with a random walk process. The average number of steps necessary to depahe a spin 

by one radian is 
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(spins dephased by much more than one radian do not contribute to the absorption signal). The 

number of steps takes place in a time T2, 

 




222

1

h
NT   

 

or 

 

2

2

)(
1

h
T

  

 

This means that the shorter is  (rapid motion), the narrower is the resonance line width 1/T2. 

 

 
 

Fig. Motional narrowing effect 

 

5. 1/T1 and Spin correlation 

Here we show that 1/T1 can be closely related to the Fourier transform of the spin-spin 

correlation function. We start with the expression given by 
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Here we assume that the hyperfine field can be expressed by 
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where qA  is the tensor. We use the Fourier transform 
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For simplicity we assume that the anisotropy of tensor qA  is neglected. 
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Note that 
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Using the fluctuation-dissipation theorem, we get 
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where ),("),(Im  qq   is the imaginary part of the dynamics susceptibility. From the 

measurement of 1/T2, we may get the information of the dynamics susceptibility in the limit of low 

frequency. Here we note that 
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with the Lorentz distribution 
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where )0,(q  is the wave-vector dependent susceptibility and q  is the characteristic relaxation 

rate. We assume that 
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5. The expression of T2 
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