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Louis Eugene Félix Néel (22 November 1904 — 17 November 2000) was a French physicist
born in Lyon. He studied at the Lycée du Parc in Lyon and was accepted at the Ecole Normale
Supérieure in Paris. He obtained the degree of Doctor of Science at the University of Strasbourg.
He was corecipient (with the Swedish astrophysicist Hannes Alfvén) of the Nobel Prize for
Physics in 1970 for his pioneering studies of the magnetic properties of solids. His contributions
to solid state physics have found numerous useful applications, particularly in the development
of improved computer memory units. About 1930 he suggested that a new form of magnetic
behavior might exist; called antiferromagnetism, as opposed to ferromagnetism. Above a certain
temperature (the Néel temperature) this behaviour stops. Néel pointed out (1947) that materials
could also exist showing ferrimagnetism. Néel has also given an explanation of the weak
magnetism of certain rocks, making possible the study of the history of Earth's magnetic field.

http://en.wikipedia.org/wiki/Louis N%C3%A9el

Here we discuss the molecular field theory of antiferromagnet. We show that the
experimental results of MnF; (typical 3D antiferromagnet) can be well explained in terms of this
molecular field theory.

1. Molecular field in antiferromagnet



Fig. 2D Ising antiferromagnet on the square lattice, forming two sublattices.
The mean exchange fields acting on the sublattices 1 and 2 may be written as
H, (1)=-4AM, + BM,,
H, (2)=-4AM, + BM,,
(4>0 and B>0)

Spins in the sublattice 1 are parallel to each other. Spins in the sublattice 2 are antiparallel to
those in the sublattice 1.

M, and M- are the sublattice magnetization.

M, =-M,,
for H=0.
The net magnetization: M_ =M +M,.
The staggered magnetizarion M,, =M -M,.
For H=0,



with

2 Néel temperature (7~)
When H = 0, the effective fields are given by

H (1)=-4AM, + BM, =(4+ B)M,,

H (2)=—AM,+BM, = (A+B)M, .

where
M,=-M,
Hard axis
A
Sublattice 2 Sublattice 1
M2 « » M1
BM2 » B M1
-A M1 « »> -A M2
Easy axis !




The sublattice magnetization is
N
M, = 51, B, (3).
with

x=85 44 ByM,.
k,T

B
We put y as

M 2M
V= L= L =SB (x).
EAS Ngpty
) 8ty

The value of y can be rewritten as

2k, Tx
y= 2 2 *
Ng’u,’S(A+ B)

When T is a fixed parameter, the intersection of the curve
y = SB@ (x) b

and a straight line, leads to the value of y at the fixed temperature 7 below the Néel temperature
.

3. Determination of Néel temperature 7.
We use the property of Brillouin function such that

lingSBS (x)= %(S +Dx.
At T = T, the tangential line of y =SB (x) atx =0 is given by

y=%(S+l)x.

This line should coincide with the straight line given by

4



= 2k, Ty x
Ng*u,’S(A+B)

Then the value of 7T is obtained as

2 2
T, =N g [ AFB ]
3k 2

B
4. Temperature dependence of the sublattice magnetization

_x(S+1)
3

b

where ¢ is a reduced temperature,

T
t=—,
TN
25+1 . 25+1 1 1
B = coth ———coth(—x).
s(0) =g coth(— o) =2 s coth(ex)

The solution of the equation

_ 3y
y_SBS(t(S+1)),

leads to the temperature dependence of the sublattice magnetization.

((Mathematica))
Here we use the ContourPlot, in order to get the value of y as a function of ¢.

3y )
HS+1)

y=SBS(
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Fig. Magnetization y vs reduced temperature ¢ for S = 3/2. The ContourPlot of the

Mathematica is used for the curve.

S. Perpendicular susceptibility y,

We consider the case when the magnetic field is applied along the hard axis.



M1+M2

M,
H
o 0 0 - .
’» — O T7aSy—axts 7
Hg

Hap
The field acting on the sublattice 1 is given by
H (1)=MH-4M,+H )+BM,=H+H,, +H,)+BM,

which should be parallel to the sublattice magnetization 1, Mi. In other words, the field
(H+H,, +H ) should be parallel to M; since the field BM is already parallel to M1;

(H+H, +H,)xM, =0.
The field acting on the sublattice 2 is given by
H,(2)=(H-4AM,+H,)+BM,=H+H,,+H )+ BM,

which should be parallel to the sublattice magnetization 2, M>. In other words, the field
(H+H,, +H,,) should be parallel to M> since the field BM: is already parallel to M.

(H+H,,+H,)xM, =0
Note that

H,, =—AM,, H,, =-AM
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and Ha1 and Ha; are directed along the easy axis (either parallel or antiparallel).

The perpendicular susceptibility is defined by

2M,sin@

A :T,

H, =£2Mlz =£2M1 cos@=£cos€= H ,cos0.
Ml Ml Ml

From the condition
(H+H, +H, )xM, =0.

(here for simplicity, we make use of the geometry of the above figure), we have

AB  H-H,sin® sin@
tand = — = =tanf = ,
OB H,cos@+H, cosd
or
Hcos@=2H, cos@sinf@+ H ,sinf =(2H,, cosd+ H ,)sinb,
or
sind = Hcos® B Hcos0 B H
2H, cos@+H, 2H,cos@+H cos® 2H,+H,
Then we get
2M, . 2M, H 2M, 1 1
ZL= Sln@: = = =
H H 2H,+H, 2H,+H, H, H, K
M, 2M, 2M
When K = 0,



1 N :
g === (gﬂg)'

A 4zJ

The total magnetization is given by the condition, sind= 1.

. H
sinf=——— =1,
2H, +H,
or
H =2H,+H,. (Saturation field).
((Mathematica))

Clear["Global %"]; Needs["VectorAnalysis "];

H1 = {0, HO, 0}; M2 = {MO Cos[©], MO Sin[©], 0};

M1l = {-MO Cos[©], MO Sin[6], 0}; HA1l = {-HAO Cos[®©], 0, 0};
Fl =H1 - AM2 +HAl +BM1;

eql = Cross[F1, M1];

eqg2 = Solve[eql[[3]] == 0, Sin[6]] // Simplify
HO

sin[@] » ——————
{{ inl ]%HAO+2AMO}}
2 MO Sin[6]
X=—— /. eq2[[1]]
HO
2 MO
HAQO + 2 A MO

6. Parallel susceptibility y,



Hard axis

> H
HE2 HE1
2 -
HAD -« » HA 1
= - - "z
M> M1 Easy axis
M1 + M2 =M

The field acting on the sublattice 1 is given by

H,(I)=H-AM, + BM, +H ,
=H - AM, + BM,

The field acting on the sublattice 2 is given by

H (2)=H-4AM, +BM, +H ,,
~H- AM, + BM,

For simplicity, we assume that Ha1 and Ha> are negligibly small. We also suppose that

oM oM
M,=(M, +T)ez , M,=(M, _T)(_ez) .

Then we get
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H, (1) =[H + AM, —%HB(MO +57M>]ez

=[H+(A+B)M,—(4 —B)%]ez

H,(2)=[H - A(M, +%> _B(M, —%)Jez

—[H —(A+ B)M, (4 —B)%}ez

or

H, (2)=[-H+(A+B)M,+(4 —B)5TM](—eZ) .

Then
oM N
M0+_:_g,uBSBS(x1)a
2 2
oM N
MO_TZ?gﬂBSBS(xZ)’
where
gHpS oM
=SPE2 [H +(A+ B)M, — (A— B)—
x, T [H +( M, —( ) 5 ]
oy + 8S  4- )M
k,T 2
gHpS oM
==>——[-H+(A+B)M,+(A-—B)—
X, kBT[ ( M +( )2]
x4 85 o a- 32
k,T 2
and

S
X, =gI:‘—BT(A+B)MO.

B
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The net magnetization is

M %guBS[BS(xl)—BS(xz)].

We use the Taylor expansion,
B (x,) = By (xg) + By (x)(x; = X)),
B (x,) = B (xy) + Bs'(%,)(X, = X,) »
and
By (x;) = By (x,) = Bg'(x,)(x; = x,) -

Thus we have
N |
oM = ?g/uBSBS (X)(x, = x,) .

Noting that

xl—xz=2;fL;ﬂ[H—(A—B>57M],
B

we get

NgZuBZS2 oM

M = ot By'()LH — (4= B)=~].

The parallel susceptibility is

2 2 a2
Ne“ s 5™ g iy
4, = oM ky
a - 2, 22 .
H _
EELEUER RIS Bj
k, 2
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A x

1 LA
T/7Y

perpendicular

(1) At T=0K, xo—o. B'(x,)=0

(i) AtT=Tx

, S+1
Bg'(x,) = B;'(0) T

because of My = 0.

Using the value of 7n (obtained from the previous section)

we have

%, monotonically increases from 0 to 1/4 with increasing 7.

(i) T>Tx
13



SM = % g, S[B(x,) - Bs(x,)],

where
x = &S 14—y M,
k,T 2
5= -84 p)O,
k,T 2
where

X, =gk“—BTS(A+B)MO 0.

B

Then we have
N
OM ==~ g115S[Bs (x) = By (—x)] = Ng1,SB;(x,),

since By(—x,) = Bg(x,) (odd function of H). Since

S+1
Bs(x1)=qu

the above equation can be rewritten as

S+1  Ng’u,’ S

oM
oM = Ngu,SB ~ Nou,S S+1)[H—-(A4-B)—].
g1SBs (x;) = Ngpy 35 WT (S+DH - ( ) 5]
Then the susceptibility for 7>7x is
Ng’ " S(S+1)
e oM 3k,
H Ng’u,’S(S+1) A-B_
T+ ( )
3k, 2
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(Curie-Weiss type susceptibility)

The susceptibility obeys the Curie-Weiss law

_ Ng’u,’S(S +1) (A —B)
3k, 2 7

®N

2 2
C=MS(S+1),
3k

B

_ C
T+0,

V4

The expression of ®, is different from that of 7.

7 _ Ng*u,"S(S+1)( 4+ B
N 3k, 2 )

_ Ng’u,’S(S +1) (A —B)

)
N 3k, 2

7/ Simple expression of ©

For simplicity we assume that B = 0.

E, |=2zJ<8S,>S,=—(-gu,S,))-H, (1)

or

H,0=--L s>

Hp

The magnetization
N
M, :_g,u33< S,>

Then the exchange field is
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H ()= =- M, =—AM
gty _ o, N guN ’
8Hyg
2
where
4z]
A=—=_.
g My N

Using this expression of 4, 6\ is expressed by

22JS(S +1)
Q,="—"——".
3k,
Table
System In(K) 6k (K)
FeCl, 24 48 K
CoClL, 25 38.1
NiCl, 50 68.2
MnF, 67 82
MnO 116 610
((Note)) In the molecular field, 7n/6k = 1.

8. Magnetic properties of MnF>

MnF; is one of the most thoroughly investigated antiferromagnetic compounds. MnF: has a
simple tetragonal crystal structure with the Mn?" ions (S = 5/2) forming a body-centered lattice.
Below 7w, the Mn spins at the body-center and corner sites align antiferromagnetically with the
weak anisotropy, due to dipole-dipole interactions orienting the spins along the c axis.
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Fig.

Antiferromagnetic structure of MnF» [TiO: (rutile) type structure] below Tn. a = b
=4.8734 A and ¢ = 3.3099 A.. The exchange interactions in MnF, are also shown.
J> is the main exchange interaction between the nearest neighbor Mn?" spins in
MnF; and is antiferromagnetic. S = 5/2. There are two Mn atoms and 4 F atoms in
the conventional unit cell (a x b x ¢). The position vectors of Mn atoms are (000)
and (0.5, 0.5, 0.5). The position vectors of F atoms are (0.5, 0.5, 0.5), (0.305,
0.305,0), (0.305, 0.305,1),(0.695, 0.695, 0), (0.695, 0.695,1), (0.805, 0.195, 0.5),
and (0.195, 0.805, 0.5).
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s A (red) and B (green) in MnF>



Fig. Structure of MnF>. Mn (red) and F (purple). The direction of spins is the ¢ axis
(the z axis). The x and y axes are also shown. These axes are parallel to the
straight lines connecting Mn atoms.
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Fig. Structure of MnF». This figure is drawn using the Mathematica (Graphics3D).

The exchange interactions Ji, J>, and J3 are given by
J1=0.028 meV =0.324926 K
J>=-0.152 meV =1.76388 K (between the nearest neighbor Mn?" spins)
J3 =-0.004 meV =-0.046418 K

((Note)) I meV =11.6045 K.

The important parameters of MnF; are given as follows.

In=67.459 K (Néel temperature)
Hsr=92kOe at 4.2 K (Spin flop magnetic field, which will be discussed later)
Hg =525.19 kOe (exchange field)

The exchange field is defined by

_2zJ,8
EHp

H, =525.190 kOe.

where J, (<0) is the antiferromagnetic interaction between Mn?* spins in MnF». The anisotropy
field Ha can be calculated from the relation (which will be discussed later) as
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2
H, =Hs _ 823410
2H

E

The perpendicular susceptibility at 7= 0 K an be evaluated

1 g*us'N
;ﬁ:_:gﬂ 4

=0.0266873 (emu/Mn mol),
A 42

where z is the number of the nearest neighbor Mn atoms, z = 8. This value of y, is in very
good agreement with the experimental value
Z=250x10"(emu/ g)92.934855(g / mol) = 0.0232337 emu/mol at 7.

The exchange field is evaluated as

EAN
SHp

H, = 525.190 kOe.

(1) According to Keffer (F. Keffer, Phys. Rev.B 87, 608 (1952). "Anisotropy in the
antiferromagnetic MnF.", the single ion anisotropy of MnF: is given by

D =-0.012 cm™ =-0.0172653 K.

Then the anisotropy field is evaluated as

H, =ﬁ = 642.584 Oe.
SHp
where
2
H, - lNDS _2DS
S8HNS S

(i)  Using the experimental value of Ha (= 8.234 kOe), the value of D is calculated as
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_8Hty ooy

This value of D is rather different from that reported by Keffer. The negative value of D
indicates that the spin symmetry of MnF> is Ising. In other words, the easy direction of spins is
the c axis (z axis). Note that the single ion anisotropy D is given by

A
D=2(g. —g).
2(gc g.)

where A is the spin orbit coupling constant, g. and g. are the g-factors along the ¢ axis and the a

axis.

9. Dipole-dipole interaction in MnF;

11

1%,

r12

The magnetic dipolar interaction is given by

H

_ (p, - !ﬂlz)rlz2 —3(p, 1), ryy)
dipole — l" 5
12

with

N =—guS,, B, =—gu,S,

22



A

r12

H

(TR P A T A
5

dipole — 3 3

D) Y a

where a is the lattice constant. This means that the antiferromagnetic spin configuration is
favorable in energy.

(i)
11 1%,
e r >
r2

2 2 2

o MLty S 3ty =2
dipole — 5 - 3
4P a

This means that the ferromagnet spin configuration is favorable in energy. For MnF>, we
calculate the magnitude of the dipole interaction;

3 3
a a

£ o 2ty _ 28%u,'S’

When S =5/2, g =2 and a = ao (in the units of A),

~2.68408
- 3

¢ [meV]

a,

or
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£= 31.143174 K],

a,

where a = ap (in the units of A). From Fig. (below), the dipole interaction is of the order of 0.5 K
whena =4 A.

£(K)

I . . . . I . . . . I . . . n a(A)
3.5 4.0 4.5 5.0

Fig. dipole-dipole interaction as a function of the lattice constant a.

10. Comment on the anisotropy field in MnF; (L.J. de Jongh and A.R. Miedema)

The (uniaxial ) anisotropy may be calculated from the spin-wave gap as measured by zero-
field, zero-temperature AFMR by Johnson and Nethercot (1959). They found @'y = (9.33 +
0.05)x10* Oe, in excellent agreement with the value (9.3 + 0.2) x 10* Oe obtained by Jacobs
(1961) for the spin-flop field. With the aid of the formula (@/y)* = 2HeHx -Ha® and the above-
mentioned value for the antiferromagnetic exchange, one deduces Ha = 8220 Oe (Ha=HEt = 1:6
102), which should be accurate within 2%. It turns out that the anisotropy is for the most part of
dipolar origin. Keffer (1952) calculated the dipolar contribution to be 8300 Oe. Correction for
zero-point reduction (2.4%) reduces this to 8100 Oe. The remaining part of about 100 Oe, due to
crystal-field effects, is considerably smaller than Keffer’s estimate of 500 Oe, yet it is about
twice as large as that reported for KzMnF4 (Folen 1972).

(from
L.J. de Jongh and A.R. Miedema, Adv. Phys. 23, 947-1170 (1974). "Experiments on simple
magnetic model systems.").
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((Note))
Ha =8220 Oe —0.5521 K
Hx = 8300 Oe —0.5575 K
11. Magnetic susceptibility of MnF>

According to the spin wave thoery of antiferromagnet [R. Kubo, Phys. Rev. B 87, 568
(1952)], the parallel susceptibility is expressed by

T
Xy = ZL(T_)Z .

N

=1
)

o o S5
= .. 2
5 " o o S =1
3
e
=< e 4
/
.‘/e ;
/ Tw
1 = o -
SHne
/
o I e
0 S0 100 150
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Fig. Parallel (//c) and perpendicular ( L c) susceptibility of MnF> as a function of

temperature. [H. Ikeda and K. Kikuta, J. Phys. C Solid State Physics, 16, 1445,
1983].

M(molar mass) = 92.934855 g/mol. y,,(emu/mol) =M (g/mol)y,(emu/g)

200

150
X||

100

y in units 107° per gram

50

0 40 80 120 160 200 240 280 320
T, in K

Fig. Susceptibility of MnF> (from Phys.927, Prof. Tsymbal, University of Nebraska,
Lincoln)
http://physics.unl.edu/~tsymbal/teaching/SSP-
927/Section%2016_Magnetic Properties 2.pdf

((Note))
The saturation magnetization of MnF; is

N ,gu,S =27924.7 emu/Mn mol.

for §=5/2.

12. Magnetization of antiferromagnet
We define the anisotropy of antiferromagnet Fa as

F = _§ (0"122 + 0!222) (K>0).

where a1, and o, are the directional cosine.
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(a) The case when H is applied along the 7 axis (easy axis, weak field)

H//z

M2 M1

il

The magnetic field is applied along the z axis. The free energy of this system is

1
AF), =_EZ//H2 -K,

where y/ is the susceptibility along the z axis.

(b)  The case when H is applied along the 7 axis (stronger field)

27



M1

H//z

¥

M2
11

The free energy of this system is

1,
AFLz_EZL Hza

where y ' is the susceptibility along the z axis when M) and M- are parallel to the x axis.

When AF), > AF |, the case (b) is favorable compared to the case (a). This condition can be

rewritten as

1 |
_5)(//1_[2 -K2 _EZL Hz’
or
(ZL'_Z//)HZ 22K .
For HZH/ = Z'K )
' X=X

the spins rotates from the z-axis to the x-axis (spin flipping transition).
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AtT=0K,

Q

| —

X, =0, and A

Then we have

[ / K [ra—
Hf = 21(14 = 2VAM1 = 2HEHA .
1

Note that

Ao 4zJ

N
= : M, =—gu,sS.
gZIL[BzN 1 gﬂB

2

Then the fields Hr and Ha are given by

4zJ N 2zJS
Hp =AM, = ————gu;S =
gy N 2 B
K
HA:V

where M; is the sublattice magnetization. Usually we assume the single ion anisotropy
- DS’

as an anisotropy;
K = DS’

The anisotropy field is expressed by

_N,DS* 2N,DS* 2DS

H =
Y M, NS g

13. More general case

29



AtT=0K,

x,=0, and y,'= (Kanamori, exercise 6-3)

Then the spin-flop field is

2K K K K
H, = |— = [2K(4- = [—QAM,——)=H ,(2H, - H
f \/ZL' \/ ( 2M12) \/M1( 1 M1) \/ A( E A)

14. Saturation field

ZL'HS :2M1
Then H; is expressed by
K
H, = 2M'1 =2M,(4- K 5)=2M A-—=2H,-H,
ya M, M,

15.  Condition of the spin flop transition

Hsz _H_/'z =(2H, _HA)Z -H,2H,-H),)
=2(2H, -H )(H;—-H,)

If H, > H,, we have

H >H,

30



Hf Hs

Fig. Magnetization curve during the spin-flop behavior in the presence of external
magnetic field. Hris the spin-flop field and H; is the saturation field.

16. Néel temperature derivation
When H =0, oM = 0. Then

Hm (1) = (A + B)Moez

N
M, = Eg:uBSBS (x)

where

gHS
=225 (4+ B)M
X kT( ) 0

B

— MO
YN

5 8Hp

= 8B, (x)

The value of y can be written as
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)= 2M, 2k, Tx
Ngu,  Ng*uy’S(A+ B)

AtT=Tx, y =%(S+l)x

7 Ng?u,’S(S +1) (A + BJ
Y 3k, 2

17.
We consider the case when the magnetic field is applied along the easy axis (z axis) .
What is the magnetic susceptibility along the z axis.

z
Easy| axis
A Mi+M>
H4H
M1 // -
/ HK‘I M
Ha1#H
0 0
B
O
HE)
In the above figure, we get
M, =M,sin@, M, =M,sin@
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- 1‘422 M2 M2
where

M, =M,. H, =—dAM,, H,, =—AM, .

The susceptibility along the easy axis is

M +M, 2M sin0
4 H H .

In the above figure, we have the relation

OB )

H, cos@
or
2H, sm@=H+H,=H+H,sin0@,
or
since
H, :%sinH:%sinH:HAsiné’,
and

K
H, ="

Thus we have
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2H, sin@=H +H ,sind, sin@ =
2H,-H,
where
H, =H,=A4M
Then we get
p , 2M;sm@ M M B 1
= = = =
oo g Moy K, K
2 2M 2M

The saturation field is given by

SinH=2[_[—=1, H 2HE_HA

18. The physical principles of magnetism
A.H. Morrish (John Wiley & Sons, New York, 1965)

If, on the application of H, the sublattice magtnetization remains collinear with the easy
direction, the change in free energy per unit volume is

1
AF; =_EZ//H2-

Suppose, however, the sublattice magnetization lie perpendicular to the easy direction. [f K = 0,
this change in free energy is

1
AFTz_EZLHZ-

Now, for an antiferromagnetic material, y, > y, for 7<In. Therefore, under these conditions,

the perpendicular orientation would be the ground state.
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For K=0, AF, =K —% y,H? for the perpendicular orientation: the parallel orientation is in the

state of the lowest energy provided H is not too large. At a critical field Hy, defined by the
equation

1 1
_5)(//1_12 =K—5;(LH2

or

2K
X=Xy

H =

the energy of the two states are equal. Hence, for H<Hjy, the sublattice magnetization will be
parallel to the easy direction, whereas for H>Hf, they will be perpendicular. The change from the
parallel to the perpendicular orientation is usually called spin flopping.

200! I I I I
180 MnF, -
Hi[ool]

160 |—- SPIN-FLOP —

140 — —
. PARAMAGNETIC
n 120 —
w
2
© |00 =
=
X 80 —
T ANTIFERROMAGNETIC

60—

40+

20 -

oL i I l 1
63 64 65 66 67
TEMPERATURE (°K)
Fig. Magnetic phase diagram of MnF> between 63 and 67.5 K and with H//c axis (easy

axis) [Y. Shapira and S. Foner, Phys. Rev. B 1, 3083 (1969)).
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19.  Spin wave in the antiferromagnet

B A B A B A

HENENEEE
NERREERE

2p-1 2p 2p+1  2p+2
Let spins with even indices -2p compose sublattice A, that with spin up (S, pz =S)., and let

| ||
R

spins with odd indices 2p+1 compose sublattice B, that with spin down (S,,,,” =-S). We

consider only nearest-neighbor interactions with J. For spins on the sublattice A (J>0),

das,” 2Js

R B GRS
dS 7 2JS X X X
T =S8, (8,4 4 5,00

The corresponding equations for a spin on the sublattice B,

as,,..  2JS

;,l; : = h [2S2p+1y + (S2py +‘S’2p+2y)]
dS + g 2JS X X X
% = 7[2S2p+1 + (S2p + S2p+2 )]

We define anew parameter,

ST=8"+iS"
Then we get
ds,,”  2iJS

dt = h [2S2p+ + (S2p71+ + S2p+1+)]
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+

ds,,.." 2iJS
dt h

[2SZp+lJr + (SZpJr + SZerZJr )]

We look for solutions of the form

S, " =uexpli( pka— wt)

2p

Sy .1 = vexpli( pka— or)

with

Then

1
wu = Ea)ex Qu +ve™ +ve*)=w, [u+vcos(ka)]

—ov = %a)ex 2v+ue™ +ue™)=awm,[v+ucos(ka)]
or
o, -0 o,cos(ka)\ u
(a)ex cos(ka) o, +o J(vj
These have nontrivial solution if

o, -0 o, cos(ka)

w, cos(ka) w, +o

Then we have

0=, sin(ka)|

For ka<<l1,
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0=0, ka|

This dispersion relation is different from that of ferromagnet.

LOf
L ha)q
L 4JS
0.8}
0.6
0.4]
02}
ak
) : :
Fig. The dispersion relation of magnon for the 1D antiferromagnetic chain. a is the

lattice constant. The size of the magnetic unit cell is twice larger than the lattice
spacing.

20. Quantization of spin waves (antiferromagnet)
We use the Holstein-Primakoff method.

(a) S;7 =S (+ sublattice)

(b) S, ~—S (-sublattice)
S7=-S+bb, S =+/28b,, S, =+/25b
Hamiltonian

H =2|J|ZS_/- S, _g/‘BHA(szZ _ZSIZ)
1

<> J

= —NZ|J|S2 + 2|J|S Z[(nj +n)+ a_/.*b; + a_/.bl] — Ngu,SH , (z n,+ an)
1

<j,I> J
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where z is the number of the nearest-neighbor pairs. Only the exchange interaction between spins
in different sublattices is not equal to zero. We have

T

1
4 =W2aqe
q

and

where N/2 is the number of spins in the sublattice. Then H can be rewritten as
H =-NzlJ|S* +2J|Sz) [(a, a, + b, b,) + 7(@)(a, b, +a,b,)]
q

— Ngu,SH , + guBSILIAZ:(an*aql +bq*bq)
q
where
1 —iq-p
Y@ ==>e
Zp

q is the vector connecting between nearest neighbor spins. We have a transformation
(Bogolyubov transformation)

A, =cosh,a, +sinh6,b,", B, =cosh,b, +sinh6,a,
or

a, =cosh6, 4, —sinh ¢9qu* , b, = cosh@, B, —sinh ¢9qu*
When we choose

tanh 20q = 17/(—(1)
+a

with
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_ guzH
2|J |ZS

we have H as

H = =NzlJ|s* = 2]sz> [1+ @ = /(1 + @) ~[7(@)T ]
+> ho,(A, A, +B,B,)

where the first term —Nz|J |S ® is the ground state of the classical spin system, the second term is

the lowering of the energy due to the zero-point oscillation of spins, the third term is the
excitation of magnons,

ha, =228 1+ @) ~[y(@)F

In the presence of an external magnetic field

ho, =228+ )’ ~[y@) *gu,H

21.  Energy of ground state
In the ground state

A, 4,=B,B,=0.

the energy of the ground state is given by

E, ==NalJ|S* =223 [1+a —/(1+a) ~[1@T ],

which is lower than the classical energy (corresponding to the first term). This means that the
Neel state does not correspond to the ground state.

We consider the case when =0 (Ha =0, and H =0).

Eg ==NzlJ|S* = 2J[Sz) 11 =1 -[y(@)T ]
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(a) 1D chain

7(q) = cos(ga)

E, =-2N|J|S*(1+ %)

(b) 2D square lattice
1
7(q) =7 [eos(q.a) + cos(q,a)]

E, =-4NJ|S*(1+ %)

(©) 3D cubic

0.0938

E; =-6N|J|S*(1+ )
223 ho, atg=0

ha, is given by

ha, =2[z8 (1 + @) ~[7(@)F .

At g =0, y(q)=1. Then we have

for He>>Ha, where

2|J|zS ’ i, =208
8Hy gHy

H, =

The spin flop field is defined by
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H, ~\2H H, .

Then we have
haog |g_o=gusH .

23. The magnetization due to the excitation of magnons
The total number of magnons excited at a temperature 7" is

> (n,) = [ doD(w) < n(w) >,

q

where D(®) is the number of magnon modes per unit frequency range.

V 14 dg
D(w)dw = drg*dg = dmg* L dw.
(@M= 54 da= o s,

We use the magnon dispersion relation,

4JS
C()q == 7aq ,
dw _4JSa
dg h

Then the density of states is given by

v nY ,
D(w)=——| 2| .
(@) 2ﬁ2(4JSaj @

The integral is taken over the allowed range of ¢, which is the first Brillouin zone. At 7= 0 K,
we may carry the integral between 0 and oo, because <n( @)> —o exponentially as @w—oo0.
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Z<n>_ 14 [ h f]'i o’*dw

=\ 2x*\4JSa) § e -1
4 [ h f[kBTj}T x*dx
272\ 4JSa)\ n ) g e -1
4 [kBszszdx
27°a’ \4JS ) 5 e -1

Since V' = Na® and

=2.40411

T x2dx

X
X4 -1

The deviation of the sublattice magnetization is proportional to

N (k,TY
>(ny)= 27:2[4%} 2.40411

q
which is proportional to 7°.

24.  Heat capacity due to the excitation of magnons
The heat capacity is given by

dE I/ o’
_ = doD
ar kBTz-[ OD(O) e 1= )

where = 1/(ksT),

E= Zq:h%<”q> - Jd"’D("’)h"’eﬁhw -1

d 1 fiw 1

AT ™ 1 I, T (™ —1)(1-e ™)

Then we get

43



”ov(n Y o'
= .[da) . T
k,T* 27°\ 4JSa (™ —1)(1—e )

o T
ke, T? 277 [4J5aj j { 1)(1 e’)
kT !
e (4JSJ {dx(e)‘—l)(l—e)‘)

Here we note that

T xtdx
0 (e"=D-e)

=25.9758

and V = Na® . Then we have

3 3
C=tk, (kBTj 25.9758 = kBN( kBTj 1.31595
277\ 4JS 4JS

The heat capacity is proportional to 7°.

25.  Antiferromagnetic resonance of MnF; at H=10

44



300

250

200

150

FREQUENCY (kMc /sec)

1

100

50

0 20 40 60 80
TEMPERATURE (°K)

Fig. Temperatures at which antiferroamgnetic resonance occurs in MnF> at H = 0 for
various frequencies [F.M. Johnson and A.H. Nethercot, Jr. Phys. Rev. 104, 847
(1957). "Antiferromagnetic resonance in MnF»."

In MnFa,

guzH ,=1.07664 meV = 260.33 k MHz = 0.26033 GHz

This value is in good agreement with the result observed by Johnson and Nethercot, Jr..

26.  Magnetic neutron scattering of MnkF>
The magnetic Bragg peaks appear at

h+k+1=o0dd,
where the reciprocal lattice vectors are denoted by

Q=G=ha"+kb" +ic"
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with

since the magnetic structure factor is proportional to
S; =1—exp[—iz(h+k+1)]

The nuclear Bragg peaks appear at
h+k+[ =even,

since the nuclear structure factor is proportional to

S, =1+exp[—iz(h+k+1)]

gom
002 0102

(&)
I Ml
© Nuclear peak
© Magnetic peak
Nuclear 201
001R1,,=0 (M||Q) 151 o
Magnetif
[ #0 (M~-Q) h0O
- O—>
100 200
Magnetic
Fig. The (h k [) scattering plane of MnF, with k = 0. The nuclear Bragg reflections

(h+k+l = even) are shown with blue circles. The magnetic Bragg peaks (h+k+[ =
odd) are shown with red circles. The magnetic moment is parallel to the c axis.
No magnetic scattering is observed at (001) magnetic Bragg position (Yamani et

al., 2010).
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Neutron diffraction patters for MnF; in the paramagnetic state (295 K) and in the
antiferromagnetic state (23 K). The unit cells for antiferromagnetic and nuclear
scattering are of the same size. (Erickson, 1953). The powdered sample are used.




MnF, MAGNETIZATION: X-RAY AND NMR DATA
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Fig. Peak intensity at the magnetic (300) Bragg point as a function of temperature.

MnF;. The solid lines represent the square of the magnetic order parameter as
measured by NMR.[A.I. Goldman et al. Phys. Rev. B 36, 5609 (1987)].

The critical exponents are obtained as

y =1.25%£0.007, v =0.643+0.003,
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17 =0.056+0.008
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APPENDIX

Property of the Brillouin function

or

25 +1 25 +1 1
cot

1
B (x)= h —— coth(—x),
s(0) == g ot gm0 = oot g )
285 +1 285 +1 1 1
SBg(x) = coth( oS x)—Ecoth(gx).
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The series expansion around x = 0:

1+ 9[1+2851+5)] N [(1+25)° —l]x5 N

SB¢(x) :é(l +8)x

90S* 30240S°
(i)
}1_1)130 Bg(x)=cothx —% . (Langevin function)
(i)
lim B () =2 lim B,/ () ==+
(iit)
}i_r)gBS(x)=l, }i_r)gBS'(x):O.
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