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Louis Eugène Félix Néel (22 November 1904 – 17 November 2000) was a French physicist 
born in Lyon. He studied at the Lycée du Parc in Lyon and was accepted at the École Normale 
Supérieure in Paris. He obtained the degree of Doctor of Science at the University of Strasbourg. 
He was corecipient (with the Swedish astrophysicist Hannes Alfvén) of the Nobel Prize for 
Physics in 1970 for his pioneering studies of the magnetic properties of solids. His contributions 
to solid state physics have found numerous useful applications, particularly in the development 
of improved computer memory units. About 1930 he suggested that a new form of magnetic 
behavior might exist; called antiferromagnetism, as opposed to ferromagnetism. Above a certain 
temperature (the Néel temperature) this behaviour stops. Néel pointed out (1947) that materials 
could also exist showing ferrimagnetism. Néel has also given an explanation of the weak 
magnetism of certain rocks, making possible the study of the history of Earth's magnetic field.  
 

 
 
http://en.wikipedia.org/wiki/Louis_N%C3%A9el 
_____________________________________________________________________________ 

Here we discuss the molecular field theory of antiferromagnet. We show that the 
experimental results of MnF2 (typical 3D antiferromagnet) can be well explained in terms of this 
molecular field theory. 
 
___________________________________________________________________________ 
1. Molecular field in antiferromagnet 
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Fig. 2D Ising antiferromagnet on the square lattice, forming two sublattices. 
 
The mean exchange fields acting on the sublattices 1 and 2 may be written as 
 

12)1( MMH BAm  , 

 

21)2( MMH BAm  , 

 
(A>0 and B>0) 

 
Spins in the sublattice 1 are parallel to each other. Spins in the sublattice 2 are antiparallel to 
those in the sublattice 1. 
 
M1 and M2 are the sublattice magnetization. 
 

21 MM  , 

 
for H = 0. 
 

The net magnetization:  21 MMM net . 

The staggered magnetizarion  21 MMM stag . 

 
For H = 0, 
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12MM stag , 

 
with 
 

21 MM  . 

 
2. Néel temperature (TN) 

When H = 0, the effective fields are given by 
 

112 )()1( MMMH BABAm  , 

 

221 )()2( MMMH BABAm  . 

 
where 
 

12 MM   
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The sublattice magnetization is 
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The value of y can be rewritten as 
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When T is a fixed parameter, the intersection of the curve 
 

)(xSBy s , 

 
and a straight line, leads to the value of y at the fixed temperature T below the Néel temperature 
TN. 
 
3. Determination of Néel temperature TN. 

We use the property of Brillouin function such that 
 

xSxSBs
x

)1(
3

1
)(lim

0



. 

 

At T = TN, the tangential line of )(xSBy s  at x = 0 is given by 

 

xSy )1(
3

1
 . 

This line should coincide with the straight line given by 
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Then the value of TN is obtained as 
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4. Temperature dependence of the sublattice magnetization 
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where t is a reduced temperature, 
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The solution of the equation 
 

)
)1(

3
(




St

y
SBy S , 

 
leads to the temperature dependence of the sublattice magnetization. 
 
((Mathematica)) 
Here we use the ContourPlot, in order to get the value of y as a function of t. 
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Fig. S = 3/2. 

 
 
 
Fig. Magnetization y vs reduced temperature t for S = 3/2. The ContourPlot of the 

Mathematica is used for the curve. 
 

5. Perpendicular susceptibility   

We consider the case when the magnetic field is applied along the hard axis. 
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The field acting on the sublattice 1 is given by 
 

111112 )()()1( MHHHMHMHH BBA AEAm   

 
which should be parallel to the sublattice magnetization 1, M1. In other words, the field 

)( 11 AE HHH   should be parallel to M1 since the field BM1 is already parallel to M1; 

 

0)( 111  MHHH AE . 

 
The field acting on the sublattice 2 is given by 
 

222221 )()()2( MHHHMHMHH BBA AEAm   

 
which should be parallel to the sublattice magnetization 2, M2. In other words, the field 

)( 22 AE HHH   should be parallel to M2 since the field BM2 is already parallel to M2. 

 

0)( 222  MHHH AE  

 
Note that 
 

12 MH AE  ,  21 MH AE  , 

M1
M2

M1+M2
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Easy axis
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H

z
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and HA1 and HA2 are directed along the easy axis (either parallel or antiparallel). 
 
The perpendicular susceptibility is defined by 
 

H
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From the condition 
 

0)( 111  MHHH AE . 

 
(here for simplicity, we make use of the geometry of the above figure), we have 
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Then we get 
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When K ≈ 0, 
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The total magnetization is given by the condition, sin = 1. 
 

1
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or 
 

AEs HHH  12 .  (Saturation field). 

 
_______________________________________________________________________ 
((Mathematica)) 
 

 
 
_____________________________________________________________________ 

6. Parallel susceptibility //  

 

Clear@"Global`∗"D; Needs@"VectorAnalysis`"D;

H1 = 80, H0, 0<; M2 = 8M0 Cos@θD, M0 Sin@θD, 0<;

M1 = 8−M0 Cos@θD, M0 Sin@θD, 0<; HA1 = 8−HA0 Cos@θD, 0, 0<;

F1 = H1 − A M2 + HA1 + B M1;

eq1 = Cross@F1, M1D;

eq2 = Solve@eq1@@3DD � 0, Sin@θDD êê Simplify

99Sin@θD →
H0

HA0 + 2 A M0
==

X =
2 M0 Sin@θD

H0
ê. eq2@@1DD

2 M0

HA0 + 2 A M0
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The field acting on the sublattice 1 is given by 
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The field acting on the sublattice 2 is given by 
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For simplicity, we assume that HA1 and HA2 are negligibly small. We also suppose that 
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Then we get 
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The net magnetization is 
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We use the Taylor expansion, 
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The parallel susceptibility is 
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(i) At T = 0 K, x0→∞. )(' 0xBS 0 

 

0//   

 
(ii) At T = TN 
 

S

S
BxB SS 3

1
)0(')(' 0


  

 
because of M0 = 0. 
 
Using the value of TN (obtained from the previous section) 
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//  monotonically increases from 0 to 1/A with increasing T. 

 
(iii) T>TN 
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Then the susceptibility for T>TN is 
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(Curie-Weiss type susceptibility) 

 
The susceptibility obeys the Curie-Weiss law 
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The expression of N  is different from that of TN. 
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7. Simple expression of N  

For simplicity we assume that B = 0. 
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Then the exchange field is 
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Using this expression of A, N is expressed by 
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_____________________________________________________________________ 
Table 
 

System TN(K) N (K) 
 

FeCl2 24 48 K 
CoCl2 25 38.1 
NiCl2 50 68.2 
MnF2 67 82 
MnO 116 610 

 

((Note)) In the molecular field, TN/N = 1. 
 
8. Magnetic properties of MnF2 

MnF2 is one of the most thoroughly investigated antiferromagnetic compounds. MnF2 has a 
simple tetragonal crystal structure with the Mn2+ ions (S = 5/2) forming a body-centered lattice. 
Below TN, the Mn spins at the body-center and corner sites align antiferromagnetically with the 
weak anisotropy, due to dipole-dipole interactions orienting the spins along the c axis. 
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Fig. Antiferromagnetic structure of MnF2 [TiO2 (rutile) type structure] below TN. a = b 
= 4.8734 Å and c = 3.3099 Å.. The exchange interactions in MnF2 are also shown. 
J2 is the main exchange interaction between the nearest neighbor Mn2+ spins in 
MnF2 and is antiferromagnetic. S = 5/2. There are two Mn atoms and 4 F atoms in 
the conventional unit cell (a x b x c). The position vectors of Mn atoms are (000) 
and (0.5, 0.5, 0.5). The position vectors of F atoms are (0.5, 0.5, 0.5), (0.305, 
0.305,0), (0.305, 0.305,1),(0.695, 0.695, 0), (0.695, 0.695,1), (0.805, 0.195, 0.5), 
and (0.195, 0.805, 0.5). 

 

a

a

c

J1

J2

J3
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Fig. Sublattices A (red) and B (green) in MnF2 
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Fig. Structure of MnF2. Mn (red) and F (purple). The direction of spins is the c axis 

(the z axis). The x and y axes are also shown. These axes are parallel to the 
straight lines connecting Mn atoms.  
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Fig. Structure of MnF2. This figure is drawn using the Mathematica (Graphics3D). 
 
The exchange interactions J1, J2, and J3 are given by 
 

J1 = 0.028 meV =0.324926 K 
J2 =-0.152 meV = 1.76388 K  (between the nearest neighbor Mn2+ spins) 
J3 = -0.004 meV = -0.046418 K 

 
((Note)) 1 meV = 11.6045 K. 
 
The important parameters of MnF2 are given as follows. 
 

TN = 67.459 K   (Néel temperature) 
HSF = 92 kOe at 4.2 K  (Spin flop magnetic field, which will be discussed later)  
HE = 525.19 kOe  (exchange field) 

 
The exchange field is defined by 
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where J2 (<0) is the antiferromagnetic interaction between Mn2+ spins in MnF2. The anisotropy 
field HA can be calculated from the relation (which will be discussed later) as 
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The perpendicular susceptibility at T = 0 K an be evaluated 
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where z is the number of the nearest neighbor Mn atoms, z = 8. This value of   is in very 

good agreement with the experimental value 
 

)/(934855.92)/(10250 6 molggemuM
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The exchange field is evaluated as 
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(i) According to Keffer (F. Keffer, Phys. Rev.B 87, 608 (1952). "Anisotropy in the 
antiferromagnetic MnF2.", the single ion anisotropy of MnF2 is given by 
 

D = -0.012 cm-1 =-0.0172653 K. 
 
Then the anisotropy field is evaluated as 
 

B

A
g

DS
H


2

  = 642.584 Oe. 

 
where 
 

B
B

A
g

DS

NSg

NDS
H



2

2

1

2

 . 

 
 
(ii) Using the experimental value of HA (= 8.234 kOe), the value of D is calculated as 
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This value of D is rather different from that reported by Keffer. The negative value of D 
indicates that the spin symmetry of MnF2 is Ising. In other words, the easy direction of spins is 
the c axis (z axis). Note that the single ion anisotropy D is given by 
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2 ac ggD 


 

 

where  is the spin orbit coupling constant, gc and ga are the g-factors along the c axis and the a 
axis. 
 
___________________________________________________________________________ 
9. Dipole-dipole interaction in MnF2 

 

 
 
The magnetic dipolar interaction is given by 
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where a is the lattice constant. This means that the antiferromagnetic spin configuration is 
favorable in energy. 
 
(ii) 
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This means that the ferromagnet spin configuration is favorable in energy. For MnF2, we 
calculate the magnitude of the dipole interaction; 
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When S = 5/2, g = 2 and a = a0 (in the units of Å), 
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3
0

1474.31

a
 [K]. 

 
where a = a0 (in the units of Å). From Fig. (below), the dipole interaction is of the order of 0.5 K 
when a = 4 Å. 
 

 
 
Fig.  dipole-dipole interaction as a function of the lattice constant a. 
 
10. Comment on the anisotropy field in MnF2 (L.J. de Jongh and A.R. Miedema) 

The (uniaxial ) anisotropy may be calculated from the spin-wave gap as measured by zero-

field, zero-temperature AFMR by Johnson and Nethercot (1959). They found / = (9.33 ± 
0.05)x104 Oe, in excellent agreement with the value (9.3 ± 0.2) x 104 Oe obtained by Jacobs 

(1961) for the spin-flop field. With the aid of the formula (/)2 = 2HEHA -HA
2 and the above-

mentioned value for the antiferromagnetic exchange, one deduces HA = 8220 Oe (HA=HE = 1:6 
10-2), which should be accurate within 2%. It turns out that the anisotropy is for the most part of 
dipolar origin. Keffer (1952) calculated the dipolar contribution to be 8300 Oe. Correction for 
zero-point reduction (2.4%) reduces this to 8100 Oe. The remaining part of about 100 Oe, due to 
crystal-field effects, is considerably smaller than Keffer’s estimate of 500 Oe, yet it is about 
twice as large as that reported for K2MnF4 (Folen 1972). 
(from  
L.J. de Jongh and A.R. Miedema, Adv. Phys. 23, 947-1170 (1974). "Experiments on simple 
magnetic model systems."). 
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((Note)) 
 

HA = 8220 Oe →0.5521 K 
 

HA = 8300 Oe →0.5575 K 
 
 
11. Magnetic susceptibility of MnF2 

According to the spin wave thoery of antiferromagnet [R. Kubo, Phys. Rev. B 87, 568 
(1952)], the parallel susceptibility is expressed by 
 

2
// )(

NT

T
  . 
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Fig. Parallel (//c) and perpendicular ( )c  susceptibility of MnF2 as a function of 

temperature. [H. Ikeda and K. Kikuta, J. Phys. C Solid State Physics, 16, L445, 
1983].  

M(molar mass) = 92.934855 g/mol. )/()/()/( gemumolgMmolemu gM  
.
 

 

 
 
Fig. Susceptibility of MnF2 (from Phys.927, Prof. Tsymbal, University of Nebraska, 

Lincoln) 
http://physics.unl.edu/~tsymbal/teaching/SSP-
927/Section%2016_Magnetic_Properties_2.pdf 

 
((Note)) 
The saturation magnetization of MnF2 is 
 

SgN BA   = 27924.7 emu/Mn mol. 

 
for S = 5/2. 
_____________________________________________________________________________ 
12. Magnetization of antiferromagnet 

We define the anisotropy of antiferromagnet FA as 
 

)(
2

2
2

2
1 zzA

K
F     (K>0). 

 

where 1z and 2z are the directional cosine. 
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(a) The case when H is applied along the z axis (easy axis, weak field) 

 

 
 
The magnetic field is applied along the z axis. The free energy of this system is 
 

KHF  2
//// 2

1
 , 

 

where // is the susceptibility along the z axis. 
 
(b) The case when H is applied along the z axis (stronger field) 
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The free energy of this system is 
 

2'
2

1
HF    , 

 

where '  is the susceptibility along the z axis when M1 and M2 are parallel to the x axis. 

 

When  FF// , the case (b) is favorable compared to the case (a). This condition can be 

rewritten as 
 

22
// '

2
1

2
1

HKH   , 

 
or 
 

KH 2)'( 2
//   . 

 

For 
//'

2

 




K
HH f , 

 
the spins rotates from the z-axis to the x-axis (spin flipping transition). 
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At T = 0 K,  
 

0//  , and 
A

1
' . 

 
Then we have 
 

AEf HHAM
M

K
KAH 222 1

1

 . 

 
Note that 
 

Ng

zJ
A

B

22

4


 ,  Sg

N
M B21  . 

 
Then the fields HE and HA are given by 
 

B

B

B

E
g

zJS
Sg

N

Ng

zJ
AMH





2

2

4
221   

 

1M

K
H A   

 
where M1 is the sublattice magnetization. Usually we assume the single ion anisotropy  
 

2DS  
 
as an anisotropy;  
 

2DSK   
 
The anisotropy field is expressed by 
 

BBA

AA
A

g

DS

SgN

DSN

M

DSN
H


22 2

1

2

  

 
13. More general case 
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At T = 0 K,  
 

0//  , and 

2
12

1
'

M

K
A 

  (Kanamori, exercise 6-3) 

 
Then the spin-flop field is  
 

)2()2()
2

(2
'

2

1
1

1
2

1

AEAf HHH
M

K
AM

M

K

M

K
AK

K
H 


 

 
14. Saturation field 

 

12' MH s   

 
Then Hs is expressed by 
 

AEs HH
M

K
AM

M

K
AM

M
H 



22)
2

(2
'

2

1
12

1

1
1


 

 
15. Condition of the spin flop transition 

 

))(2(2

)2()2( 222

AEAE

AEAAEfs

HHHH

HHHHHHH




 

 

If AE HH  , we have 

 

fs HH   

 



31 
 

 
 
Fig. Magnetization curve during the spin-flop behavior in the presence of external 

magnetic field. Hf is the spin-flop field and Hs is the saturation field. 
 
16. Néel temperature derivation 

When H = 0, M = 0. Then 
 

zm MBA eH 0)()1(   

 

)(
2 10 xSBg
N

M SB  

 
where 
 

0)( MBA
Tk

Sg
x

B

B 


 

 

)(

2

0 xSB

g
N

M
y S

B




 

 
The value of y can be written as 
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)(

22
22

0

BASNg

Txk

Ng

M
y

B

B

B 



 

 

At T = TN, xSy )1(
3

1
  

 








 


23

)1(22 BA

k

SSNg
T

B

B
N


 

___________________________________________________________________________ 
17. 

We consider the case when the magnetic field is applied along the easy axis (z axis) . 
What is the magnetic susceptibility along the z axis. 
 

 
 
In the above figure, we get 
 

sin11 MM z  , sin22 MM z   

 

M1

M2

M1+M2

qq

Easy axis

HA1

HA1+H

HE1

HA1+H

z

A

B
O
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 sinsin
1

12
1

12
1

1
M

K
M

M

K
M

M

K
H zA   

 

 sinsin
2

22
2

22
2

2
M

K
M

M

K
M

M

K
H zA   

 
where 
 

21 MM  . 21 MH AE  ,  12 MH AE  . 

 
The susceptibility along the easy axis is 
 

H

M

H

MM zz 


sin2
' 121 


 . 

 
In the above figure, we have the relation 
 





cos

sin
tan

1

11

E

EA

H

HHH

OB

AB 
 , 

 
or 
 

 sinsin2 11 AAE HHHHH  , 

 
or 
 
since 
 

 sinsinsin
1

1 AA H
M

K

M

K
H  , 

 
and 
 

M

K
H A  . 

 
Thus we have 
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 sinsin2 AE HHH  ,  
AE HH

H




2
sin  

 
where 
 

AMHH EE 1  

 
Then we get 
 

2

1

2

1

22

sin2
'

M

K
A

M

K
AM

M

H
H

M

H

M

A
E 










  

 
The saturation field is given by 
 

1
2

sin 



AE HH

H
 ,  AEc HHH  2  

 
18. The physical principles of magnetism 

A.H. Morrish (John Wiley & Sons, New York, 1965) 
 

If, on the application of H, the sublattice magtnetization remains collinear with the easy 
direction, the change in free energy per unit volume is 
 

2
//2

1
HFT  . 

 
Suppose, however, the sublattice magnetization lie perpendicular to the easy direction. If K ≈ 0, 
this change in free energy is 
 

2

2

1
HFT   . 

 

Now, for an antiferromagnetic material, //   for T<TN. Therefore, under these conditions, 

the perpendicular orientation would be the ground state. 
 



35 
 

For K = 0, 2

2

1
HKFT    for the perpendicular orientation: the parallel orientation is in the 

state of the lowest energy provided H is not too large. At a critical field Hf, defined by the 
equation 
 

22
// 2

1

2

1
HKH    

 
or 
 

//

2

 




K
H  

 
the energy of the two states are equal. Hence, for H<Hf, the sublattice magnetization will be 
parallel to the easy direction, whereas for H>Hf, they will be perpendicular. The change from the 
parallel to the perpendicular orientation is usually called spin flopping. 

 
 
Fig. Magnetic phase diagram of MnF2 between 63 and 67.5 K and with H//c axis (easy 

axis) [Y. Shapira and S. Foner, Phys. Rev. B 1, 3083 (1969)).  
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19. Spin wave in the antiferromagnet 

 

 
 

Let spins with even indices -2p compose sublattice A, that with spin up ( SS
z

p 2 )., and let 

spins with odd indices 2p+1 compose sublattice B, that with spin down ( SS
z

p 12 ). We 

consider only nearest-neighbor interactions with J. For spins on the sublattice A (J>0), 
 

)](2[
2

12122
2 y

p

y

p

y

p

x

p
SSS

JS

dt

dS
 

ℏ
 

 

)](2[
2

12122
2 x

p

x

p

x

p

y

p
SSS

JS

dt

dS
 

ℏ
 

 
The corresponding equations for a spin on the sublattice B, 
 

)](2[
2

22212
12 y

p

y

p

y

p

x

p
SSS

JS

dt

dS


 
ℏ

 

 

)](2[
2

22212
12 x

p

x

p

x

p

y

p
SSS

JS

dt

dS


 
ℏ

 

 
We define anew parameter, 
 

xx iSSS   
 
Then we get 
 

)](2[
2

12122
2 









 ppp

p
SSS

iJS

dt

dS

ℏ
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)](2[
2

22212
12 







  ppp

p
SSS

iJS

dt

dS

ℏ
 

 
We look for solutions of the form 
 

)(exp[2 tpkaiuS p   

 

)(exp[12 tpkaivS p 
  

 
with  
 

ℏ

JS
ex

4
  

 
Then 
 

)]cos([)2(
2

1
kavuveveuu exex

ikaika     

 

)]cos([)2(
2

1
kauvueuevv exex

ikaika     

 
or 
 





















v

u

ka

ka

exex

exex




)cos(

)cos(
 

 
These have nontrivial solution if 
 

0
)cos(

)cos(









exex

exex

ka

ka
 

 
Then we have 
 

)sin(kaex   

 
For ka<<1,  
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kaex   

 
This dispersion relation is different from that of ferromagnet. 
 

 
 
Fig. The dispersion relation of magnon for the 1D antiferromagnetic chain. a is the 

lattice constant. The size of the magnetic unit cell is twice larger than the lattice 
spacing.  

 
20. Quantization of spin waves (antiferromagnet) 

We use the Holstein-Primakoff method. 

(a) SS
z

j   (+ sublattice) 

 

jj

z

j aaSS
* , jj aSS 2 ,  *2 jj aSS   

 

(b) SS
z

l   (-sublattice) 

 

ll

z

l bbSS
* , *2 ll bSS  ,  jl bSS 2  

 
Hamiltonian 
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where z is the number of the nearest-neighbor pairs. Only the exchange interaction between spins 
in different sublattices is not equal to zero. We have 
 

 
q

rq

q

ji

j ea
N

a
2/

1
 

 
and 
 

 
q

rq

q

ji

l eb
N

b
2/

1
 

 
where N/2 is the number of spins in the sublattice. Then H can be rewritten as 
 









q

ABAB bbaaSHgSHNg

bababbaaSzJSJNzH

)(

)])(()[(2

**

****2

qqqq

q

qqqqqqqq q





 

 
where 
 

 
ρ

ρqq ie
z

1
)(  

 
q is the vector connecting between nearest neighbor spins. We have a transformation 
(Bogolyubov transformation) 
 

*sinhcosh qq baA qqq   ,  *sinhcosh qq abB qqq    

 
or 
 

*sinhcosh qq BAa qqq   ,  *sinhcosh qq ABb qqq    

 
When we choose 
 








1

)(
2tanh

q
q  

 
with 
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zSJ

Hg AB

2


   

 
we have H as 
 









q

qqqqq

q

q

)(

])]([)1(1[2

**

222

BBAA

SzJSJNzH





ℏ

 

 

where the first term 2SJNz  is the ground state of the classical spin system, the second term is 

the lowering of the energy due to the zero-point oscillation of spins, the third term is the 
excitation of magnons, 
 

22 )]([)1(2 qq   zSJℏ  

 
In the presence of an external magnetic field 
 

HgzSJ B  22 )]([)1(2 qqℏ  

 
21. Energy of ground state 

In the ground state  
 

0**  qqqq BBAA . 

 
the energy of the ground state is given by 
 

])]([)1(1[2 222  
q

qSzJSJNzEG , 

 
which is lower than the classical energy (corresponding to the first term). This means that the 
Neel state does not correspond to the ground state. 
 
We consider the case when  = 0 (HA = 0, and H = 0). 
 

])]([11[2 22  
q

qSzJSJNzEG  
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(a) 1D chain 

 

)cos()( qaq   

)
363.0

1(2 2

S
SJNEG   

 

EG is lower than the eneygy of the classical Néel state (= 22 SJN ). 

 
(b) 2D square lattice 

 

)]cos()[cos(
2

1
)( aqaqq yx 

 
 

S
SJNEG

158.0
1(4 2  ) 

 
(c) 3D cubic 
 

)
0938.0

1(6 2

S
SJNEG   

 

22. qℏ  at q = 0 

 

qℏ  is given by 

 
22 )]([)1(2 qq   zSJℏ . 

 
At q = 0, )(q =1. Then we have 

 

EABAEAB HHgHHHgzSJ 2)2(1)1(2| 2
0  qqℏ  

 
for HE>>HA, where 
 

B

E
g

zSJ
H


2
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B

A
g

DS
H


2

 . 

 
The spin flop field is defined by 
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EAf HHH 2 . 

 
Then we have 
 

fBHg 0|qqℏ . 

 
23. The magnetization due to the excitation of magnons 

The total number of magnons excited at a temperature T is 
 

  )()(  nDdn
q

q , 

 

where D() is the number of magnon modes per unit frequency range. 
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We use the magnon dispersion relation, 
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q
ℏ

4
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ℏ

JSa
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Then the density of states is given by 
 

2
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2 42
)( 


 





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JSa

V
D

ℏ
. 

 
The integral is taken over the allowed range of q, which is the first Brillouin zone. At T = 0 K, 
we may carry the integral between 0 and ∞, because <n()> →∞ exponentially as →∞. 
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Since V = Na3 and 
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The deviation of the sublattice magnetization is proportional to 
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which is proportional to T3. 
 
24. Heat capacity due to the excitation of magnons 

The heat capacity is given by 
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where  = 1/(kBT), 
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Then we get 
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Here we note that 
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The heat capacity is proportional to T3. 
 
25. Antiferromagnetic resonance of MnF2 at H = 0 

 



45 
 

 
 
Fig. Temperatures at which antiferroamgnetic resonance occurs in MnF2 at H = 0 for 

various frequencies [F.M. Johnson and A.H. Nethercot, Jr. Phys. Rev. 104, 847 
(1957). "Antiferromagnetic resonance in MnF2." 

 
In MnF2, 
 

fBHg =1.07664 meV = 260.33 k MHz = 0.26033 GHz 

 
This value is in good agreement with the result observed by Johnson and Nethercot, Jr.. 
 
26. Magnetic neutron scattering of MnF2 

The magnetic Bragg peaks appear at 
 

lkh  =odd,  
 
where the reciprocal lattice vectors are denoted by 
 

***
cbaGQ lkh  . 
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with 
 

a
a

2*  , 
a

b
2*  , 

c
b

2*  , 

 
since the magnetic structure factor is proportional to 
 

)](exp[1 lkhiSG    

 
The nuclear Bragg peaks appear at  
 

lkh   = even, 
 
since the nuclear structure factor is proportional to 
 

)](exp[1 lkhiSG   . 

 

 
 
Fig. The (h k l) scattering plane of MnF2 with k = 0. The nuclear Bragg reflections 

(h+k+l = even) are shown with blue circles. The magnetic Bragg peaks (h+k+l = 
odd) are shown with red circles. The magnetic moment is parallel to the c axis. 
No magnetic scattering is observed at (001) magnetic Bragg position (Yamani et 
al., 2010). 
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Fig. Neutron diffraction patters for MnF2 in the paramagnetic state (295 K) and in the 

antiferromagnetic state (23 K). The unit cells for antiferromagnetic and nuclear 
scattering are of the same size. (Erickson, 1953). The powdered sample are used. 

 
27. Critical behavior of MnF2 
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Fig. Peak intensity at the magnetic (300) Bragg point as a function of temperature. 

MnF2. The solid lines represent the square of the magnetic order parameter as 
measured by NMR.[A.I. Goldman et al. Phys. Rev. B 36, 5609 (1987)]. 

 
The critical exponents are obtained as 
 

007.025.1  , 003.0643.0  , 
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008.0056.0  . 
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APPENDIX 

Property of the Brillouin function 
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The series expansion around x = 0: 
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