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Spin echo method is one of the elegant and most useful features in pulsed nuclear 

magnetic resonance (NMR). In the Phys.427, 429 (Senior laboratory) and Phys.527 

(Graduate laboratory) of Binghamton University (we call simply Advanced laboratory 

hereafter), both undergraduate and graduate students studies the longitudinal relaxation 

time T1 and the transverse relaxation time T2 of mineral oil and water solution of CuSO4 

using the spin echo method. The instrument we use in the Advanced laboratory is a 

TeachSpin PS1-A, a pulsed NMR apparatus. It focuses on the spin echo method using the 

CPMG (Carr-Purcell-Meiboom-Gill) sequence with the combinations of 90 and 180 
pulses for the measurement of T1 and T2. Through these studies students will understand 

the fundamental physics underlying in NMR. From a theoretical view point, the dynamics 

of nuclear spins is uniquely determined by the Bloch equation. This equations are formed 

of the first order differential equations. The solutions of these equations with appropriate 

initial conditions can be exactly solved. The motions of the nuclear spin during the 

application of the 90 pulse and 180 pulse for the Carr-Purcell (CP) sequence, and Carr-

Purcell-Meiboom-Gill (CPMG) sequence, can be visualized using the Mathematica.  

Here we present a lecture note on the principle of the spin echo method in pulsed NMR, 

which has been given in the class of the Advanced laboratory. This note may be useful to 

students who start to do the spin echo experiment of pulsed NMR in the Advanced 

laboratory. One of the authors (MS) has been teaching the Advanced Laboratory course 

since 2005. He observes very carefully how the students come to understand the principle 

of the spin echo method and subsequently succeed in doing their experiment. Our students 

of this course obtained a lot of nice data during the classes. Typical data obtained by them 

are also shown for T1 and T2 measurements for the samples of mineral oil and water solution 

of CuSO4. It is our hope that this note may be useful to their understanding of the 

underlying physics. Note that the authors are not an expert of the research using the NMR 

measurements in the condensed matter physics.  

 

________________________________________________________________________ 

Felix Bloch (October 23, 1905 – September 10, 1983) was a Swiss physicist, working 

mainly in the U.S. Bloch was born in Zürich, Switzerland to Jewish parents Gustav and 

Agnes Bloch. He was educated there and at the Eidgenössische Technische Hochschule, 

also in Zürich. Initially studying engineering he soon changed to physics. During this time 

he attended lectures and seminars given by Peter Debye and Hermann Weyl at ETH Zürich 

and Erwin Schrödinger at the neighboring University of Zürich. A fellow student in these 

seminars was John von Neumann. Graduating in 1927 he continued his physics studies at 

the University of Leipzig with Werner Heisenberg, gaining his doctorate in 1928. His 

doctoral thesis established the quantum theory of solids, using Bloch waves to describe the 

electrons. 

He remained in European academia, studying with Wolfgang Pauli in Zürich, Niels 

Bohr in Copenhagen and Enrico Fermi in Rome before he went back to Leipzig assuming 

a position as privatdozent (lecturer). In 1933, immediately after Hitler came to power, he 
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left Germany, emigrating to work at Stanford University in 1934. In the fall of 1938, Bloch 

began working with the University of California at Berkeley 37" cyclotron to determine 

the magnetic moment of the neutron. Bloch went on to become the first professor for 

theoretical physics at Stanford. In 1939, he became a naturalized citizen of the United 

States. During WW II he worked on nuclear power at Los Alamos National Laboratory, 

before resigning to join the radar project at Harvard University. 

After the war he concentrated on investigations into nuclear induction and nuclear 

magnetic resonance, which are the underlying principles of MRI. In 1946 he proposed the 

Bloch equations which determine the time evolution of nuclear magnetization. He and 

Edward Mills Purcell were awarded the 1952 Nobel Prize for "their development of new 

ways and methods for nuclear magnetic precision measurements." In 1954–1955, he served 

for one year as the first Director-General of CERN. In 1961, he was made Max Stein 

Professor of Physics at Stanford University. 

 

 
 

http://en.wikipedia.org/wiki/Felix_Bloch 

 

________________________________________________________________________ 

Edward Mills Purcell (August 30, 1912 – March 7, 1997) was an American physicist who 

shared the 1952 Nobel Prize for Physics for his independent discovery (published 1946) of 

nuclear magnetic resonance in liquids and in solids. Nuclear magnetic resonance (NMR) 

has become widely used to study the molecular structure of pure materials and the 

composition of mixtures.  
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http://en.wikipedia.org/wiki/Edward_Mills_Purcell 

________________________________________________________________________ 

Erwin L. Hahn (born 1921) is a U.S. physicist, best known for his work on nuclear 

magnetic resonance (NMR). In 1950 he discovered the spin echo. He received his B.S. in 

Physics from Juniata College. He has been Professor Emeritus at the University of 

California, Berkeley since 1991 and was professor of physics, 1955-91. In 1999 Hahn was 

awarded the Comstock Prize in Physics from the National Academy of Sciences. 

http://en.wikipedia.org/wiki/Erwin_Hahn 

 

________________________________________________________________________ 

1. The gyromagnetic ratio and the magnetic moment 

We consider a nucleus that possesses a magnetic moment  and an angular momentum.

Iℏ . 

 

Iμ ℏ , 

 

where  is the gyromagnetic ratio and is defined by 

 

Iℏ


  . 

 

2. Magnetic moment of proton (1H) 

The magnetic moment of the proton P is given by 

 

P 2.792 N = 1.410606662 x 10-23 emu  

(NIST, Fundamental Physics constants) 

 

where emu = erg/Oe and N is the nuclear magneton, given by 
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 =5.05079 x 10-24 emu 

 

Note that MP is the mass of the proton, e is the charge of proton, and c is the velocity of 

light. Note that the value of N is much smaller than the Bohr magneton for electron, 

 

mc

e
B

2

ℏ
 =9.27400915(23) x 10-21 emu. 

 

The nuclear spin I of the proton is I = 1/2. The gyromagnetic ratio is positive and is given 

by 
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(NIST, Fundamental Physics constants) 

 

Since >0 for proton, the direction of the magnetic moment p is the same as that of the 

angular momentum (or nuclear spin I).  

 

3.  Zeeman energy 

The energy of interaction with the applied magnetic field H is 

 

Bμ U . 

 

If B is applied along the z axis and is given by zB ˆ
0B , then we have 

 

zz IBBU 00 ℏ   

 

The allowed values of Iz are 

 

IIIImI  ,...,2,1, ,  

 

leading to the splitting of the (2I+1) energy levels. If 0ℏ  denotes the energy difference 

between these levels, then we have 

 

00 Bℏℏ    
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or 

 

00 )2( Bℏℏℏ    

 

or 

 





2

0H
  

 

 

 
 

Fig.1 Zeeman splitting of the energy level 

 

 

For proton, we have 
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Hz 
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or 
 

)(25775.4)( 0 kOeBMHz  . 

 
Note that 1T (tesla) = 10 kOe = 104 Oe. The earth magnetic field at Binghamton, NY is 

0.3 Oe. 
 

((Mathematica)) The physics constants from NIST Physics constant (cgs units) 
 

kB  Boltzmann constant   (erg/K) 

N  nuclear magneton   (emu) 
c  velocity of light   (cm/s) 

ℏ   Planck's constant   (erg s) 
M  mass of proton    (g) 

  magnetic moment of proton  (emu) 

  gyromagnetic ratio of proton  (s-1Oe-1) 
 

emu=erg/Oe 

1

2
ÑgB0 Hm=-

1

2
L

-
1

2
ÑgB0 Hm=

1

2
L

Ñw0=ÑgB0

B0=0 B0=0
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http://physics.nist.gov/cuu/Constants/ 

 
((Mathematica)) 

 

 
_______________________________________________________________________ 

 
4. Bloch equation 

A. Equation of motion 

The rate of change of the angular momentum is equal to the torque that acts on the 

system 
 

Bμ
I


dt

d
ℏ  

 
where B is the magnetic field. This equation can be rewritten as 

 

Bμ
I

 
dt

d
ℏ  

 
or 

 

Bμ
μ

 
dt

d
 

Clear@"Global`∗"D;

Physconst = 9µN → 5.05079× 10−24, kB → 1.3806504× 10
−16

,

c → 2.99792 × 1010, — → 1.054571628 10−27, M → 1.672621637 × 10−24,

γ → 2.675222099 × 104=;

µ = γ — H1ê 2L ê. Physconst

1.41061× 10−23

f0 =
γ

2 π
B0 ê. Physconst

4257.75 B0

∆EB = — Hγ B0L ê. Physconst

2.82121× 10−23 B0

∆EB = kB T ê. Physconst

1.38065× 10−16 T
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The nuclear magnetization is the sum  

 


i

iμm  

 

where 

 

ii Iμ ℏ  

 

over all the nuclei in a unit volume. 

 

Bm
m

 
dt

d
 

 

Larmor precession of magnetization  

 

 
Fig.2 The precession motion of the magnetization M (or spin) around the z axis. 

The static magnetic field B0 is applied along the z axis. When >0, the 

magnetization M rotates in clockwise. 
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or 
 

00 B   

 

For >0, the rotation is clockwise and for <0, the rotation is counterclockwise. Hereafter 

we discuss only on the case of >0. 
 
B. Rotating reference frame 

 

Fig.3 x1 = m1. x2 = m2. x1' = m1'. x2 = m2'. Note that OP  is fixed. The relation 

between {e1, e2} and {e1', e2'}. 
 

 
We consider the two coordinate systems. 

 

'''' 22112211 eeeem mmmm  , 
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We now calculate the time derivative of m such that 

 

)'()''''(

''''''''

32211

221122112211

meee

eeeeeem








mm

mmmmmm
 

 
((Proof)) 

 

e1'  (cos,sin,0) , 

 

e2'  (sin,cos ,0) , 

 

e1'

 (


sin,


cos,0) , 

 

e2'

 (


cos ,


sin,0) , 

 

Then 
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This can be rewritten as 
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)'('''' 31221 meee 


 mm , 

 

 

where 

'''

100

'''

'

321

321

3

mmm

eee

me  . 

 

Thus we have the following form, 

 

)'()( 3 me
mm




rel
dt

d

dt

d
, 

 

where 

 

'''')( 2211 ee
m 

 mm
dt

d
rel , 

 

and 

 

2211 ee
m 

 mm
dt

d
. 

 

 
 

Fig.4 The rotating coordinates (X, Y) and non-rotating coordinates (x, y). The case 

for <0. 

 

(c) Equation of the motion 
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We consider the equation of motion of the magnetic moment in the presence of 

magnetic fields B given by 

 

rfBBB  0 , 

 

),0,0( 00 BB . 

 

where B0 is a static magnetic field along the z axis. We apply the AC magnetic field along 

the x axis. It is interesting to note that in most experiments the time dependent field is not 

realized as a rotating field but as a field oscillating in the x direction. It can, however, be 

expressed as a sum 

 

)0,sin,cos()0,sin,cos(

)0,0,(cos22

1111

21

111

tBtBtBtB

tBB

rfrf

rf











BB

eB

 

 

 
 

Fig.5 1rfB  rotates clockwise. The direction of 1rfB  coincides with that of the X 

axis. The case for <0. 

 

The fields Brf1(t) and Brf2(t) rotate in opposite directions. We define a magnetic field Brf1 

as 
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)0,sin,cos(' 11111 tBtBBrf  eB , 

 

with 

 

  t . 

 

where we assume that  is negative, which means that the rotation in clockwise for <0 

(along the X-axis direction). Then we have an equation of motion, 

 

)()(
)(

10 rft
dt

td
BBm

m
  , 

 

011

321

321

10

)sin()cos(

)()(
)(

BtBtB

mmmt
dt

td
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


eee

BBm
m

 . 

 

As a more general case, we use the Bloch equations defined by 

 

2
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dt
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rf  BBm , 
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1
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T
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t

dt

tdm
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
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, 

or, in the vector form, we get 

 

3

1

30
2211

2

10 )(
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)(

eeeBBm
m

T

mM
mm

T
t

dt

td
rf


  , 

 

where T1 is a longitudinal relaxation time (or spin-lattice relaxation time), T2 is a transverse 

relaxation time (or spin-spin relaxation time), and M0 is a saturation magnetization. The 

above equation can be rewritten as 

 

1

330

2

2211
11303

')'()''''(
)''(')''()(

T
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T

mm
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dt

d

dt
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eee
eemme

mm 



  . 

 

in the rotating coordinates, where 

 

'''' 22112211 eeee mmmm  ,  '' 3333 ee mm   
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'30300 eeB BB  , and '111 eB Brf  . 

 

Then we have 
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We introduce definitions: 

 

0  B0 , 11 B  , 
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((Note)) The sign of 0 and 1 is negative for >0 (clock-wise). For convenience, we 

assume >0 hereafter. 

 

Then we have 
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where  

 

  0 , 

 

and 
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We introduce 

 

2
1

2)(   . 
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Then Beff is related to , 

 



effB  
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. 0  B0 . 

11 B  .   0 . In this rotating reference frame, B1 along the X 

direction is a DC magnetic field. The case for <0. 

 

When 0  (the resonance condition is satisfied), we have only the magnetic field B1 

along the X direction. 
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z
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Fig.7  The configuration where  = 0 is satisfied. Only the magnetic field B1 is 

applied along the X direction. 

 

5. Bloch equation in the rotating reference frame 

For simplicity we introduce M defined by 

 
m'M  MXe1' MYe2' MZe3'  

 

M Beff 

e1' e2' e3'

MX MY MZ

1 0 
 (MY,MX MZ1, MY1) 

 

Thus we have the following Bloch equation 
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Note that 
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Furthermore we use the following non-dimensional notation, 
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M

M

M

M

M

M

Z

Y

X













 

 

Then we get the equations 

 

)1(
1

1
)(

1
)(

1

1

2

1

2

















Tdt

d

Td

d

Tdt

d

 

 

These equations can be solved under appropriate conditions. 

 

6. The case of  =  and B1 = 0 (thermal equilibrium) 

We consider the case for  =  (resonance condition). We aslso suppose that 1 = 0 

(B1=0). 

 

)1(
1

1

1

1

2

2
















Tdt

d

Tdt

d

Tdt

d

 

 

or 

 

)(
1

)(

)1(
1

2

1






i
T

i
dt

d

Tdt

d





 

 

The stationary state of these equations is given by 

 

1,0,0   . 

 
in thermal equilibrium. The saturated magnetization is directed along the z axis. 
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Fig.8  = 0 and B1 = 0. The magnetization M0 is directed along the z axis in 

thermal equilibrium. 

 

7. The case of  =  and B1 ≠ 0 (90º pulse and 180º pulse) 

Let M is parallel to the z axis at t = 0. We have the initial condition such that (0) = 1, 

(0) = 0, (0) = 0. 

 










1

1)(

)(







dt

d

dt

d

dt

d

 

 

Note that 

 

0
dt

d

dt

d

dt

d 






 . 

 

or 

 

1)0()0()0( 222222    (conserved) 
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In other words, (, , ) is located on the unit sphere. Furthermore we assume that 

1/ 0   (the resonance condition). Then we have 

 










1

1

0







d

d

dt

d

dt

d

 

 
or 

 

)(1 


ii
dt

d
i

dt

d
  

 

or 
 

ti
constei 1   

 
0  

 
This means that the magnetization M (or spin) rotates in the YZ plane with an angular 

frequency 1 (= -B1)<0. The application of the magnetic field B1 along the X axis leads 
to the rotation of the magnetization M0 in clock-wise. 

 

(i) 90 pulse. At t = /(2|1|), the magnetization M is parallel to the Y axis. The 
system is in the excited state. This implies the transition of the system from the 

ground state at t = 0 to the excited state at t = /(2|1|). (90 pulse). 
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Fig.9 The spin is directed along the Z axis in the thermal equilibrium. When the 

90 pulse is applied, the spin rotates in clockwise from the Z axis to the Y 

axis. The case for 1<0. 

 

(ii) 180 pulse. At t = /|1|, the magnetization M is antiparallel to the Z axis. All spins 

are antiparallel to B0 (//Z). The system is in the excited state. This implies the 

transition of the system from the ground state at t = 0 to the excited state at t = /1.

  (180 pulse). 
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Fig.10 The spin is directed along the Z axis in the thermal equilibrium. When 180 
pulse is applied, the spin rotates in clockwise from the Z axis to the -Y axis. 

The case for 1<0. 

 

8. 1 = 0 and  ≠ 0 

Suppose that   is very close to zero (near the resonance condition). When the field 

B1 is switched on,, the magnetization is directed along the z (or Z) axis. Then we apply a 

90º pulse. The magnetization rotates from the z axis to the Y axis. After the field B1 is 

switched off, the free induction decay (FID) takes place and the individual vectors in the 

XY plane fan out. 

 

 



 22

 
 

Fig.11 The 90pulse leads to the rotation of the spin from the Z axis to the Y axis 

around the Z axis. Then spin fans out in the X-Y plane, in counter-

clockwise for <0 or in clock-wise for >0. 

 

(a) The 90 pulse. 

(b) The spin rotates in the counter-clockwise for <0 and in the clockwise for 

>0. 

 

We consider the motion such that 

 







2

2

1

1

Tdt

d

Tdt

d





 

 

with the initial condition, 

 

(0) = 0, and (0) = 1. 
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where 

 

0    and 01   (since B1 = 0). 

 

The solution of the differential equation is obtained as 
 

)sin()exp()(
2

t
T

t
t   , and )cos()exp()(

2

t
T

t
t    

 
or 

 

]
2

)(exp[)exp(

)sin()[cos()exp(

)]cos())[sin(exp()()(

2

2

2








iti
T

t

titi
T

t

tit
T

t
tit







 

 

This means that 
 

(1) The spin is at 0  and  = 1 (t = 0). 

(2) The spin fans out in counter-clockwise for the case of  <0. 

(3) The spin fans out in clockwise for the case of  >0 

 

((Mathematica)) 
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We make a ParametricPlot of )}(),({ tt   as a function of t in the (X, Y) plane. 

 

Clear@"Global`∗"D;

f1 = D@ξ@tD, tD � ∆ω η@tD −
1

T2
ξ@tD;

f2 = D@η@tD, tD � −∆ω ξ@tD −
1

T2
η@tD; f3 = 8ξ@0D � 0, η@0D � 1<;

eq1 = DSolve@Join@8f1, f2<, f3D, 8ξ@tD, η@tD<, tD êê Simplify

::η@tD → �
− t

T2 Cos@t ∆ωD, ξ@tD → �
− t

T2 Sin@t ∆ωD>>

η@t_D = η@tD ê. eq1@@1DD

�
− t

T2 Cos@t ∆ωD

ξ@t_D = ξ@tD ê. eq1@@1DD

�
− t

T2 Sin@t ∆ωD
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Fig.12 The time dependence of {(t), (t)} in the units of T2, where {(0), (0)} = 

{1,0}. We choose the value of  as  = ||T2 = 6.0. The red arrows 

(clockwise) for >0. The blue arrows (counterclockwise) for <0. The 

spin rotates around the Z axis. The spins starts to rotate at t = 0 from the Y 
axis and fans out in the XY plane. 

 

In the limit of 0  (the resonance condition is satisfied), 

 

0)()sin()exp()( 0

2

 tt
T

t
t  , 

 
and 
 

)exp()()cos()exp()(
2

0

2 T

t
tt

T

t
t    

 
9. Spin rotation during the 180° pulse for the CP (Carr-Purcell) sequence 
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We consider the motion of spins during the 180 pulse for the CP(Carr-Purcell) sequence, 
which is governed by the following differential equations, 

 

 

 

)1(
1

1

1

1

1

2

1

2
















Tdt

d

Tdt

d

Tdt

d

 

 

with initial condition, 
 

0sin)0(   , 0cos)0(   , and  0)0(  . 

 

where 0 is the angle from the Y axis to the -X axis side. Further we assume that 

 
T1 = ∞.  T2 = ∞. 

 
for simplicity. Then we have 

 

 

 










1

1







dt

d

dt

d

dt

d

 

 
We note that 

 

0
dt

d

dt

d

dt

d 






 , 

 
or 

 

1)]([)]([)]([ 222  ttt  . (conservative) 

 

When c  is newly defined as 

 
2

1

2)(  c  (>0), 

 
Using the Mathematica, we get 
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)sincoscossinsin(sinsincos)( 000

2    

 

 sinsinsincoscos)( 00   

 

)sincos
2

sinsinsin2(cos)( 0

2

0 


   

 

where 

 

tc  , 

 

and 

 





 cos1 
c

,  



 sin



c

 

 

 
 

Fig.13 (, ) diagram. We are interested in the regions where >0 and B1>0 (red 

region) and <0 and B1>0 (green region). 

 

When 00  , we have 

 

 sinsin)(  ,  )cos()(    
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)sin(cos)(    

 

_______________________________________________________________________ 

(i) B1>0, <0 

 

 
 

Fig.14(a) The spin fans out from the Y axis in clockwise around the Z axis. At the 

angle 0 (>0), the 180 pulse is applied. The spin undergoes a rotation from 
the position (denoted by the red arrow) to the position (denoted by blue 

arrow) around the X axis in clock-wise. B1>0. <0. 
 

Dw0

q0>0
Y

X



 29

 
 

Fig.14(b) B1>0. <0. The spin rotates from an angle (denoted by red point, near the 

Y axis) to an angle (denoted by blue point, near the –Y axis) in the Y-Z plane 

in clock-wise around the X axis.  = -/120.  = -0.02 - 0.98 )(   . 

 

(ii) B1>0, >0 
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Fig.15(a) The spin fans out from the Y axis around the Z axis in counterclockwise. At 

the angle 0 (<0), the 180 pulse is applied. The spin undergoes a rotation 
from the position (denoted by the red arrow) to the positions (denoted by 

blue arrow) around the X axis in clock-wise. B1>0. >0. 
 

 

Dw>0

q00
Y

X
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Fig.15(b) B1>0. >0. The spin rotates from a angle (denoted by red, near the Y axis) 

to an angle (denoted by blue point, near the –Y axis) in clock-wise around 

the X axis.  = /120.  = -0.02  - 0.98  . )(    

 

((Mathematica)) 
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10. Spin rotation during the 180° pulse: the MG (Meiboom-Gill) sequence 

Clear@"Global`∗"D;

f1 = D@ξ@tD, tD � ∆ω η@tD ;

f2 = D@η@tD, tD � −∆ω ξ@tD − ω1 ζ@tD ;

f3 = D@ζ@tD, tD � ω1 η@tD;
f4 = 8ξ@0D � −Sin@θ0D, η@0D � Cos@θ0D, ζ@0D � 0<;
eq1 = DSolve@Join@8f1, f2, f3<, f4D,

8ξ@tD, η@tD, ζ@tD<, tD êê Simplify;

rule1 = : −∆ω2 − ω12 → � ωc,
1

−∆ω2 − ω12

→ − �
1

ωc
, ∆ω2 + ω12 → ωc2>;

eq11 = eq1 ê. rule1 êê FullSimplify;

rule1 = :ω1 → − Cos@δD ωc, ∆ω → Sin@δD ωc, t →
φ

ωc
>;

ξ1@τ_D = ξ@tD ê. eq11@@1DD ê. rule1 êê Simplify

−Cos@δD2 Sin@θ0D + Sin@δD H−Cos@φD Sin@δD Sin@θ0D + Cos@θ0D Sin@φDL

η1@τ_D = η@tD ê. eq11@@1DD ê. rule1 êê Simplify

Cos@θ0D Cos@φD + Sin@δD Sin@θ0D Sin@φD

ζ1@τ_D = ζ@tD ê. eq11@@1DD ê. rule1 êê Simplify

−Cos@δD K2 Sin@δD Sin@θ0D SinAφ

2
E2 + Cos@θ0D Sin@φDO

ξ1@τD ê. θ0 → 0

Sin@δD Sin@φD

η1@τD ê. θ0 → 0

Cos@φD

ζ1@τD ê. θ0 → 0

−Cos@δD Sin@φD
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We now consider the phase change in Brf by /2, which is required for the MG 

sequence. Mathematically, under such a phase change, rfB  can be rewritten as 

 

)0),cos(),(sin()0),cos(),(sin(

)0),cos(),sin(()0),cos(),sin((

]0,0),
2

[cos(2

11
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

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

B

 

 

We pick up only the magnetic field B1 along the Y axis, 
 

')0),cos(),sin(( 2111 eB BttBrf    

 
Using 
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we get the equation of motion 
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When T1 = T2 = ∞ (for simplicity) 
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with initial condition; 

 

0sin)0(   , 0cos)0(   , and  0)0(  . 

 

We note that 
 

0
dt

d

dt

d

dt

d 






  

 

or 
 

1)]([)]([)]([ 222  ttt    (conserved). 

 
The solution of the above differential equations is given by 

 

 sincossin)cos(sin)( 00  , 

 

 sinsinsin]coscossincoscos)( 00

22

0  ,  

 

]sinsin)cos1(cos[sincos)( 00    

 

where  
 

2

1

2)(  c >0, 

 





 cos1 
c

,  



 sin



c

 

 
________________________________________________________________________ 

(i) B1>0, <0 
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Fig.16(a) The spin fans out from the Y axis in counterclockwise around the Z axis. At 

the angle 0, the 180 pulse is applied. The spin undergoes a rotation from 
the position (denoted by the red arrow) to the positions (denoted by blue 

arrow) around the Y axis in clock-wise. B1>0. <0 

 
 

Dw0

q0>0
Y

X
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Fig.16(b) B1>0. <0. The spin rotates from the red point (near Y axis) to the blue 

point (near the Y axis) in clock-wise around the Y axis. 0 = /6 (red point) 

and /4 (red point).  = -/120>0.  = 0 - . 

 

(ii) B1>0, >0 
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Fig.17(a) The spin fans out from the Y axis in clockwise around the Z axis. At the 

angle 0 (<0), the 180 pulse is applied. The spin undergoes a rotation from 

the position (denoted by the red arrow) to the positions (denoted by blue 

arrow) around the Y axis in clock-wise. 

 

 

Dw>0

q00
Y

X
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Fig.17(b) B1>0. >0. The spin rotates from the red point (near the Y axis to the blue 

point (near the  X axis) in clock-wise around the Y axis. 0 = -/6 (red point) 

and -/4 (blue point).  = /120.  = 0 - . 
 
((Mathematica)) 
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Clear@"Global`∗"D;

f1 = D@ξ@tD, tD � ∆ω η@tD + ω1 ζ@tD;
f2 = D@η@tD, tD � −∆ω ξ@tD ;
f3 = D@ζ@tD, tD � −ω1 ξ@tD;
f4 = 8ξ@0D � −Sin@θ0D, η@0D � Cos@θ0D, ζ@0D � 0<;
eq1 = DSolve@Join@8f1, f2, f3<, f4D,

8ξ@tD, η@tD, ζ@tD<, tD êê Simplify;

rule1 = : −∆ω2 − ω12 → � ωc,
1

−∆ω2 − ω12

→ − �
1

ωc
, ∆ω2 + ω12 → ωc2>;

eq11 = eq1 ê. rule1 êê FullSimplify;

eq11

99ζ@tD →
ω1 H∆ω Cos@θ0D H−1 + Cos@t ωcDL + ωc Sin@θ0D Sin@t ωcDL

ωc2
,

η@tD →
Cos@θ0D Iω12 + ∆ω2 Cos@t ωcDM + ∆ω ωc Sin@θ0D Sin@t ωcD

ωc2
,

ξ@tD → −Cos@t ωcD Sin@θ0D +
∆ω Cos@θ0D Sin@t ωcD

ωc
==

rule2 = :ω1 → − Cos@δD ωc, ∆ω → Sin@δD ωc, t →
φ

ωc
>;

ξ@φ_D = ξ@tD ê. eq11@@1DD ê. rule2 êê Simplify

−Cos@φD Sin@θ0D + Cos@θ0D Sin@δD Sin@φD

η@φ_D = η@tD ê. eq11@@1DD ê. rule2 êê Simplify

Cos@δD2 Cos@θ0D + Sin@δD HCos@θ0D Cos@φD Sin@δD + Sin@θ0D Sin@φDL

ζ@φ_D = ζ@tD ê. eq11@@1DD ê. rule2 êê Simplify

−Cos@δD HCos@θ0D H−1 + Cos@φDL Sin@δD + Sin@θ0D Sin@φDL

ξ@φD ê. θ0 → −π ê 2
Cos@φD

η@φD ê. θ0 → −π ê 2
−Sin@δD Sin@φD

ζ@τD ê. θ0 → −π ê 2
Cos@δD Sin@τD
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11. The expression of signal obtained from picking coil along the x axis 

We know that 
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Experimentally, we detect the mx component since the axis of the detecting coil is the x 
axis. 
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since 00    and <0 in the present case.  

 

Suppose that f0 = 15 MHz. The value of T2 is assume to be ≈ 15 ms for the mineral oil. 

Then we have 
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since 120 T , where k1 is a constant parameter. 

 

12. The expression for the mixer signal 

A mixer is a nonlinear device that effectively multiplies the CW (continuous wave) rf 

signal from the oscillator with rf signals from the precessing nuclear magnetization. The 

frequency output of the mixer is proportional to the difference frequencies between the two 

rf signals.  
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We neglect the second term which has a frequency of ( + 0). Then we get the expression 

for the mixer signal as 
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If the oscillator properly tuned to the resonance, the signal output of the mixer should no 

beats, but if the two rf signals have different frequencies a beat structure will be 

superimposed on the signal.  
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Fig.18 Signals of the mixer as a function of t/T2.   2T   is changed as a 

parameter.  = - 2, -4, -6, -8, -10, -12, -14, -16 and -18.  = 0 corresponds 

to the resonance condition. The case for 0 . 

 

13. How to find the resonance condition in TeachSpin pulsed NMR 

In the pulsed NMR experiment, we use the mineral oil. It is placed in the carriage and 

the mixer out and detector out outputs are plugged into the oscilloscope channels. The 

frequency generator is set around 15 MHz. Using the formula f = γB0/2π, it is found that a 

magnetic field of 3.55888 kOe will correspond to a resonant frequency of 15.1516 MHz. 

After the 90 rf pulse is applied at t = 0, the resonance can be seen on the oscilloscope 

when the mixer out (denoted by orange lines) and detector out (denoted by the blue lines) 

show approximately the same thing. If the circuit is out of resonance, beats will be seen on 

the mixer’s signal. Below are three pictures, each getting closer to resonant frequency. The 

first one is fairly far out of resonance and the beats are very close together. The second is 

getting closer and only a few beats can be seen in the signal. The third one shows the 

resonance. 

The Free Induction Decay (the blue line) is the due to the pulse pushing the 

magnetization down to the X–Y plane, then they are slowly fanning out in the the X–Y 

plane. 

 

 
 

Fig.19 (Far from resonance, too many beats): The 90 rf pulse is applied at t = 0. 

The output of the detector (blue). The output of mixer (orange). The data 

are obtained from the Report of G. Parks (Binghamton University). 

 

_______________________________________________________________________ 
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Fig.20 (Closer, only a few beats seen). The 90 rf pulse is applied at t = 0. The data 

are obtained from the Report of G. Parks (Binghamton University). 

 

_______________________________________________________________________ 

 
 

Fig.21 (Resonance Found). The 90 rf pulse is applied at t = 0. The data are 

obtained from the Report of G. Parks (Binghamton University). 

 

________________________________________________________________________ 

14. CP process for spin echo method: measurement of T2 

(a) Initially (t = 0) the system is in thermal equilibrium and all the spin vectors are lined 

up in the Z direction parallel to the static magnetic field. 

(b) During the application of the 90º pulse (the B1 field is turned on for tw/2), the vectors 

are tipped away from the Z direction toward the Y direction in the rotating frame by the 

rf field in the X direction. 2/2/1  wtB . 

(c) At the end of the 90º pulse the magnetic moments are all in the equatorial plane in the 

Y direction. If the pulse duration tw is sufficiently short, there will have been no 

relaxation of fanning out due to field inhomegenities. 
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(d) After the field B1 is switched off, free induction decay (FID) takes place and the 

individual spins in the XY plane fan out. 

(e) After a time , a second 180º pulse is applied, lasting for a period 2tw.  wtB1 . This 

turns the whole fanned system of spins through 180º about the X axis. After the second 

pulse, each individual spin continues to move in the rotating frame in the same direction 

as before. Now, however, this fanning motion will lead to a closing up of the spins. 

(f) At time 2, the set of vectors in the XY plane will be completely re-clustered, leading to 

a strong resultant moment in the negative Y direction. This will lead to a signal in the 

detector coil and is the echo. 

(g) After the echo, the vectors again fan out and a normal decay is observed. 

(h). These processes are repeated to get the spin echo pattern. 

 

 

   
t = 0 (90 pulse) t = 0 - . 
 

_____________________________________________________________ 

    
t =  (180 pulse) t =  - 2. 
_____________________________________________________________ 
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t = 2 - 3 t = 3 (180 pulse) 

______________________________________________________________ 

   
 

t = 3 - 4 t = 4 - 5 
 

_____________________________________________________________________ 

    
 

t = 5 (180º pulse) t = 5 - 6 
 

___________________________________________________________________ 
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t = 6 - 7 t = 7  (180 pulse) 

 

 

Fig.22 CP (Carr-Purcell) sequence for the measurement of T2. t = 0 (90 pulse). t 

= , 3, 5, 7, 9...(180 pulse). 

 

 

 

 

Fig.23 Spin echo in the CP sequence. Application of a 90º pulse at t = 0, followed 

by successive 180º pulse (X-axis) at t = , 3, 5, 7, 9... The width of 180 
pulse is twice longer than that of 90 pulse. The resultant exponential decay 

(dotted green line) of the echoes (free induction decay). The unit of the time 

axis (horizontal) is t/. The peaks appear at t/ = 0, 2, 4, 6, .... 

 

15. Intrinsic transverse relaxation time 

Two factors contribute to the decay of transverse magnetization. 

(1) Spin-spin interactions (said to lead to an intrinsic T2). 
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(2) variations in Bo (said to lead to an inhomogeneous T2 effect.  

The combination of these two factors is what actually results in the decay of transverse 

magnetization. The combined time constant is called T2 star and is given the symbol T2*. 

The relationship between the T2 from molecular processes and that from inhomogeneities 

in the magnetic field is as follows. 

 

hom222

11

*

1

inTTT
 . 

 

We note that 

 

2hom222

111
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1

TTTT in

  

 

or 

 

*22 TT 
 

 

This implies that the measured value T2* is smaller than the intrinsic value T2. 

 

16. Physical meaning on the 180 pulse 

The 180 pulse allows the X-Y spin to re-phase to the value it would have had with 

perfect magnet. This is analogous to an egalitarian foot race for the kindergarten class, the 

race that makes everyone in the class a winner. Suppose that you made the following rules. 

Each kid would run in a straight line as fast as he or she could and when the teacher blows 

the whistle, every child would turn around and run back to the finish line at the same time. 

The 180 pulse is like that whistle. The spins in the larger field get out of phase by + in 

a time . After the 180 pulse, they continue to precess faster than M but at 2 they return 

to the in-phase condition. The slower precessing spins do just the opposite, but again 

rephase after a time 2. (Teachspin instruction manual). 
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Fig.24 Consider the spins 1 (denoted by red arrow) and 2 (denoted by blue arrow) 

[spatially separated, that have slightly different frequencies 

[  
ii 0)(    for spins 1 and 2, respectively (i = 1, 2)]. After a 90 

pulse, the two spins are parallel, pointing along the Y axis. After some time 

0, the two spins are no longer in phase. Now a 180 pulse is applied at 0. 
This leads to a rotation of 180 of both spins about the X axis. So that the 

phase difference is reversed. The spin 1 (denoted by red arrow), which is 

ahead of the spin 2 (denoted by blue arrow), is now behind. Another interval 

0, the two spins becomes back in phase.  
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Fig.25 CP sequence for the 180 pulse. We assume that at t = 0 the spin is directed 

along the Y axis (at the point A). For <0, the spin fans out in counter-

clockwise from the point A to B. At t = , we apply the 180 pulse (X axis). 

The spin rotates through the points B, C, and D in clockwise. The point D 

is in the X-Y plane. The spin starts to fan out from the point D to the point 

E, leading to the peak in the observed spin echo intensity (t = 2). After that 

it further fans out from the point E to the point F. Then we again apply the 

175 pulse (X axis). The spin rotates through the points F, G, and H in 

clockwise. Note that the point H is in the X-Y plane. The spin fans out from 

the point H to the point E, leading to the peak of the spin echo intensity at t 

= 4. This process is repeated. 
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Fig.26 CP sequence for the 175 pulse. What happens to the above behavior when 

the 175 pulse is applied, instead of the 180 pulse along the X axis. We 

assume that at t = 0 the spin is directed along the Y axis (at the point A). The 

spin rotates in counter-clockwise from the point A to B. At t = , we apply 

the 175 pulse X axis). The spin rotates through the points B, C, and D. The 

point D is not in the X-Y plane and is slightly above the point D1 in the X-Y 

plane. The spin starts to rotate from the point D to the point E just above the 

point E1 in the X-Y plane, leading to the peak in the observed spin echo 

intensity (t = 2), Aftr that it further rotates from the point E to the point F 

(just above the point F1 in the X-Y plane). Then we again apply the 175 
pulse (X axis). The spin rotates through the points F, G, and H. Note that 

the point H is below the X-Y plane. The spin rotates from the point A1 which 

is well below the point A, leading to the peak of the spin echo intensity at t 

= 4. This process is repeated. 

 

17. Example for the measurement of T2 using TeachSpin (CPMG sequence) 

The spin echo is created when the phases of the magnetic moments rephrase. When the 

moments are pushed down to the X–Y plane, they begin to precess around the origin. There 
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moments have a slow and fast precession, so when the 180o pulse flips the moments back 

around they will rephrase. They then create the echo that can be seen and measured. To do 

this experimentally, the pulse programmer is set to make a 90o pulse, then an 180o pulse. 

The distance between the echo and the second pulse is the same as the distance between 

the first and second pulses. The picture below shows the pulse sequence then the pulse. 

 

 

 

Fig.27 The spin echo method. 90º pulse and 180º pulse.  The data are obtained 

from the Report of G. Parks (Binghamton University). 

 

The measurement of T2 can be made by changing the delay time measuring the height 

of the echo. The easier way of measuring T2 is by creating a pulse train. This is known as 

a Carr–Purcell train. It is a 90o pulse followed by at least twenty 180o pulses. This creates 

an echo train, and the peaks of the echoes can be quickly measured and plotted. The picture 

below is a screen shot of the Carr–Purcell train. This gives a quick measurement of T2, but 

it can be fairly in accurate. If the 180o pulse is off by just a few degrees, after 20 pulses the 

train can be off by 60o or more. Also when the B pulse width is changed slightly the whole 

decay changes a lot. To correct this problem Meiboom and Gill created a method of 

cancelling out the error that can accumulate using the Carr–Purcell train. The Meiboom–

Gill train uses an 180o pulse followed by a -180o pulse, this way the error will not be carried 

through out the entire train. This method creates less error in the answer and gives a more 

accurate measurement of T2. The measurement is made the same way as the previous part. 

The picture below shows the train with the Meiboom–Gill correction. It is easy to see the 

echo train is smoother and thus more accurate. 
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Fig.28 The spin echo method for the measurement of T2 under the Carr-Purcell-

Meiboon-Gill (CPMG) sequence. The data are obtained from the Report of 

J. Berger (Binghamton University). 

 

18. Carr-Purcell-Meiboom-Gill (CPMG) sequence 

 

 

  
 

(a) 90 pulse (X axis) (b) 
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(c) Rotation of spins (f and s) (d) 180 pulse (Y axis) 

 

  
 

(e) (f) 

 

Fig.29 

 

 

The Carr-Purcell-Meiboom-Gill (CPMG) sequence as shown above is derived from the 

Hahn spin-echo sequence. This sequence is equipped with a "built-in" procedure to self-

correct pulse accuracy error. For a description of the first half of the sequence, look above 

in the Hahn echo section. In the picture above, only the first shift is shown but with field 

inhomogeneity. The letters f and s means that those spins affected by the inhomogeneity of 

the magnet precess faster and slower than the chemical shift respectively. If the first 

inversion pulse applied is shorter (e.g. 175) than a 180 pulse, a systematic error is 

introduced in the measurement. The echo will form above the XY plane (e.g. 5) and 

therefore the signal will be smaller than expected. To correct that error, instead of sampling 

immediately the echo, a third tau delay is introduced, during which, the magnetization 
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evolve as before but slightly above the XY plane (see figure above). If the second inversion 

pulse, also shorter than a 180 degree pulse (e.g. 175 degree), is applied, as the spin is 

already above the plane, this shorter inversion pulse will put the spin exactly in the X-Y 

plane. At the end of the last tau delay, the echo will form exactly in the XY plane self 

correcting the pulse error! 

 

 
 

Fig.30 MG sequence for the ideal 180 pulse. Just after the 90 pulse (t = 0), the 

spins are directed along the Y axis. Mainly due to the magnetic field 

inhomogenity, we assume that the spin (f) will rotates fast in counter-

clockwise and that the spin (s) rotates slowly. After a time  (t = ), the 180 
pulse is applied along the (-Y axis), the spins rotates around the Y axis. After 

that, both the spin (f) and spin (s) starts to rotates in counter-clockwise and 

reach at the Y axis at the same time (t = 2). The observed spin echo 

intensity drastically increases. This process is repeated, leading to the peak 

of the intensity at t = 2n (n - 1, 2, 3, ...). 
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Fig.31 MG sequence for the 175 pulse. What happens to the above behavior when 

the 175 pulse is applied, instead of the 180 pulse along the Y axis. We 

assume that at t = 0 the spin is directed along the Y axis (at the point A). The 

spin rotates in counter-clockwise from the point A to B (path-1). At t = , 
we apply the 175 pulse (Y axis). The spin rotates through the points B, C, 

and D (paths 2 and 3). The point D is not in the X-Y plane and is slightly 

above the point H. The spin starts to rotate from the point D to the point E 

(just above the point A) leading to the peak in the observed spin echo 

intensity (t = 2) and further rotates from the point E to the point F (just 

above the point B). We again apply the 175 pulse (Y axis). Then the spin 

rotates through the points F, G, and H. Note that the point H is in the X-Y 

plane. The spin rotates from the point H to the point A, leading to the peak 

of the spin echo intensity at t = 4. This process (ML) is repeated. 
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Fig.32 CPMG. Application of a 90º pulse at t = 0, followed by successive 180º 

pulse (Y-axis). The width of 180 pulse is twice longer than that of 90 
pulse. The resultant exponential decay (dotted green line) of the echoes (free 

induction decay). The unit of the time axis (horizontal) is t/. The peaks 

appear at t/ = 0, 2, 4, 6, .... 

 

19.  Spin echo method: the measurement of T1 

We assume the initial condition such that (0) = -1, (0) = 0, (0) = 0. The resonance 

condition is also satisfied. Here 1 = 0 (B1 = 0 after the operation of 180 pulse). 

 

or 
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Fig.33 The tangential line at t = 0 (blue line) for (t) vs t becomes 1 at t/T1 = 1. 

 

 

 
 

Fig.34 Time dependence of Mz to measure the longitudinal relaxation time T1. We 

need to apply the 90 pulse to measure the value of Mz. 
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After the nuclear magnetization has reached its equilibrium value M0, a 180º pulse gives 

to it the value Mz = -M0. From then on the time-dependent value of Mz, resulting from the 

equation 

 

1

0

T

MM

dt

dM zz 
 , 

 

is given by 

 

)21( 1/

0

Tt

z eMM
  

 

and can be measured by the size of the signal following a 90º pulse applied a time t after 

the first 180º pulse.  

 

(i) To obtain the curve Mz(t), one must wait a time several times T1 after each 90º 

pulse, before again applying a 180º pulse and a 90º pulse a time t later (one-by one 

measurement) 

 

(ii) First, application of the 180o pulse inverts the macroscopic magnetization. During 

the inversion time, the macroscopic magnetization shrinks along the negative z axis, 

eventually passes through z = 0 and re-grows along the positive along the positive thermal 

equilibrium. Before the macroscopic magnetization is fully relaxed, the 90o pulse flips the 

partially relaxed longitudinal magnetization into the transverse plane in order to measure 

the signal induced in an RF coil (sequential measurement). 

 

20. Measurement of T1 (TeachSpin) 

The relaxation time T1 is measured using the FID. Since no direct measurements can 

be made of the magnetization along the z axis, so a series of pulses is used to indirectly 

measure the magnetization. First a 180o pulse knocks the magnetization into the –z axis, 

then a time later a 90o pulse pushes the magnetization that are left in the -z axis into the x–

y plane to be measured. The figure below shows the pulse sequence that allows the 

measurement of T1. The 180o pulse can be seen by a little blip on the scope, then the 90o 

pulse that is follows creating the FID. Note that the 180o pulse should create no FID as is 

seen in the picture. In order to get a measurement of T1 the delay time must be changed and 

the peak voltage of the decay is measured. 
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Fig.35 The measurement of T1. 180º pulse (not clearly seen) and 90 º pulse. The 

data are obtained from the Report of G. Parks (Binghamton University). 

 

_________________________________________________________________ 

21. CW (continuous wave method) 
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Then we have 
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We define the dispersion and absorption by 
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The complex susceptibility is defined by 
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and the absorption 
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The absorption energy is 
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The energy generated by the system is 
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The time average over the period 2π/  is  
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The frequency dependence of the dispersion and absorption is schematically shown in the 

following figure. 
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Fig.36 ' vs  and " vs . 0 = -10. The values of M0, T1, T2, 1, , and so on are 

appropriately chosen. 

 

______________________________________________________________________ 

REFERENCE 

F. Bloch, Phys. Rev. 70, 460-474 (1946). 

N. Bloembergen, E.M. Purcell, and R.V. Pound, Phys. Rev. 73, 679 (1948). 

N. Bloembergen, E.M. Purcell, and R.V. Pound, Phys. Rev. 73, 679 (1948).  

E.L. Hahn, Phys. Rev. 80, 580 (1950). 

F. Bloch and E.M. Purcell, Nobel Prize Lecture "for their development of new methods for 

nuclear magnetic precision measurements and discoveries in connection 

therewith," (1952). 

E.L. Hahn, Physics Today, 6, November, 4 (1953). 

E.L. Hahn, Oral History Transcript, Niels Bohr Library & Archives with the Center for 

History of Physics, http://www.aip.org/history/ohilist/4652.html 

H.Y. Carr and E.M. Purcell, Phys. Rev. 94, 630-638 (1954). 

S. Meiboom and D.Gill, Rev. Sci. Instr. 29, 688 (1958). See also This Weeks' Citation 

Classic (CC/Number 38 September 22, 1980): 

http://garfield.library.upenn.edu/classics1980/A1980KG03600001.pdf 

R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics, 

(Reading, MA, Addison-Wesley, 1964), "Nuclear Magnetic Resonance", Volume 

II, Section 35-10 to 35-12.  

A. Melissinos, "Magnetic Resonance Experiments", from Techniques in Experimental 

Physics, Chapter 8, pp. 340-361 (1966):  

TeachSpin, PNMR Instructional Pulsed Nuclear Magnetic Resonance Apparatus. 

A. Abragam, The Principles of Nuclear Magnetism, Oxford at the Clarendon Press, 1961 

N. Bloembergen, Nuclear magnetic resonance (W.A. Benjamin, Inc., New York, 1961). 

C.P. Slichter, Principles of magnetic resonance, Harper & Row, New York, 1963). 

C.P. Poole, Jr. and H.A. Farach, Theory of Magnetic Resonance, 2nd edition (John Wiley 

& Sons, New York, 1987). 

Michael Schauber Pulsed nuclear magnetic resonance, Report of the Advanced laboratory 

(Phys.429) (Spring, 2006). (unpublished). 

Jeffrey Berger, Pulsed nuclear magnetic resonance, Report of the Advanced laboratory 

(Phys.429) (Spring, 2007). (unpublished). 

Gregory Parks, Pulsed nuclear magnetic resonance, Report of the Advanced laboratory 

(Phys.429) (May 2008). (unpublished). 

Yong Yan, Pulsed nuclear magnetic resonance, Report of the Advanced laboratory 

(Phys.429) (Spring, 2010). (unpublished). 

 

________________________________________________________________________ 

APPENDIX 

 

A1. APPARATUS (TeachSpin) 

The apparatus that is used in this experiment is supplied by TeachSpin. There are three 

panels used, the receiver, the pulse programmer, and the oscillator amplifier mixer. 



 63

 

 
 

 

Fig.37 TeachSpin apparatus for the pulsed NMR. 

 

These three things work together with the probe to create NMR conditions. Above is a 

picture of the control panel used in the experiment. By following the TeachSpin manual it 

is easy to learn what each of these input, outputs, and switches do. The figure below is a 

block diagram of how the circuit is set up. What is happening is pretty self explanatory. 

 

 
 

Fig.38 TeachSpin. A block diagram of the pulsed NMR apparatus used in the 

Advanced laboratory. 

 

The only other set up that is needed to start running the experiment is to prepare the 

sample. The sample used is mineral oil, it has a fast relaxation time and much is known 

about it. The sample is placed in a small vile that can fit into the carriage, which holds the 

probe circuitry. Placing only about 5 mm of sample into the vile is crucial for producing 



 64

accurate data. This is because if there is too much in the vile the magnetic field will not be 

homogeneous throughout, and fringing effects will cause error. The probe can also only 

make measurements when the spins are in the X–Y plane. This is important to note because 

the only way to take data is if the atoms are in the X–Y plane, so at least one 90o pulse has 

to be used. 

For the mineral oil, we use B0 = 3.55888 kOe and f0 = 15.1516 MHz.  

 

A2. RESULTS 

For the experiment of the mineral oil (TeachSpin) we use the following pulse width for 

the 90º and 180º pulse. 
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(1) 90 pulse 

 

)(4
2

653.2 stw 

   (typically) 

 

(2) 180 pulse 

 

)(8653.2 stw     (typically) 

 

(1) Mineral oil 

The values of T1 and T2 for mineral oil obtained in the Advanced laboratory 

(Binghamton University) 

 

T1 = 25.9 ± 0.1 ms. T2 = 12.1± 0.1 ms (Michael Schauber, Spring 2006) 

T1 = 29.4 ± 0.3 ms T2 = 21.30.7ms (Jeffrey Burger, Spring 2007) 

T1 = 24.0 ± 2.4 ms T2 = 19.4 ± 0.9 ms (Gregory Parks, Spring 2008) 

T1 = 26.9 ± 0.4 ms T2 = 15.4 ± 0.3 ms (Yong Han, Spring 2010) 
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Fig.39 Least squares fit of the data (voltage vs time (ms) for the T1 measurement. 

The data are obtained from the Report of Yong Han (Binghamton 

University).  
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Fig.40 Least squares fit of the data [voltage vs time (ms) for the T2 masurement]. 

The data are obtained from the Report of Yong Han (Binghamton 

University). T2 = 15.4 ± 0.3 ms. 

 

(2) Water solution of CuSO4 

H2O with CuSO4 is a good choice because T1 is shortened to a few ms by the 

paramagnetic Cu+ ions. In the Advanced laboratory, copper sulphate solutions with various 

concentrations are used. The solution’s concentration could be calculated by the following 

equation: 

 

OHCuSO

CuSO

mm

m
ionconcentrat

24

4


 . 

 

For each solution the same procedures were followed to determine spin-lattice relaxation 

time and spin-spin relaxation time. The results were then plotted against the concentration.  
 

 
 

Fig.41 The concentration dependence of T1 (the spin-lattice relaxation time). The 

data are obtained from the Report of Yong Han (Binghamton University). 

 

 



 67

 
 

 

Fig.42 The concentration dependence of T2. The data are obtained from the Report 

of Yong Han (Binghamton University). 

 

We use water solution of CuSO4, where paramagnetic ions Cu2+ ions with large 

electronic magnetic moment profoundly effect the relaxation times of the protons in water. 

Such an effect can be measured over a wide range of concentration. It can be seen that the 

trend is an exponential decay curve, with both T1 and T2 decreasing as the concentration of 

CuSO4 increases. 

 


