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What holds a crystal together? The attractive interaction between the negative charges of the 

electrobns and the positive charges of the nuclei is responsible for the cohesion of solids. Here we 

discuss the following topics; 

Covalent bonding  

Hydrogen molecules, hydrogen molecule ion 

Ionic bonding 

Metallic bonding 

Van der Waals interaction (weak interaction) 

Hydrogen bonding 

 

The difference between the mechanism of the bonding are caused mainly by the difference in the 

distribution of the outermost electrons and the ion cores. 

 

   
 

Van der Waals interaction for inert gas  Ionic bonding for NaCl 



   
 

Metallic Na      Covalent bonding for diamond 

 

1. van der Waals interaction for inert gas 

Electric potential and the electric field distribution 
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which is the electric potential from a positive charge (+e) at 2/dx   and a negative charge (-e) 

at 2/dx  . 



 
 

Interaction between electric dipole and electric dipole 

 



 
 

Fig. ContourPlot and StreamPlot of the electric field direction and equi-potential energy from 

the electric dipole. 



 
 

Fig. edp  . dAB  . ROP  .  rDPBP .  rAP . 
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The electric potential due to the electric dipole ( elp  ) is  

 

p ed
O

P

A B

C D

rr R













cos

)]cos
2

1(cos
2

1[

)
cos

2
1

1

cos
2

1

1
(

)
cos

2

1

cos
2

1
(

2R

ed

R

d

R

d

R

e

R

d

R

dR

e

d
R

d
R

e

r

e

r

e




















 

 

or 
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The electric field E is given by 
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We consider the interaction between the electric dipoles 1p  and 2p . The electric dipole 1p  at 

the origin leads to the electric potential E for the electric dipole 2p  at the position vector R, is 
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The electric field E is  
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Using the Mathematica, we show the equivalence between Eqs.(1) and (2). 

 

((Mathematica)) 

 

 
 

Clear "Gobal`" ;

R x2 y2 z2 ;

r x, y, z ;

p1 p1x, p1y, p1z ;

p2 p2x, p2y, p2z ;

f1 x , y , z :
p1.r

R3
;

E1 Grad f1 x, y, z , x, y, z Simplify;

U1 p2.E1 Expand FullSimplify

U2
p1.p2

R3
3

p1.r p2.r

R5
FullSimplify;

U1 U2 Simplify

0



 
 

For specified configuration, the interation energy is obtrained as 
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(b) 
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(c) 

 

 
 

(d) 

 

 
 

 

2. Van der Waals interaction (attractive) 

 

 
 

An electric dipole moment p1 produces an electric field E of magnitude  
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This electric field 2E  will induces an instantaneous electric dipole moment 2p  which is given by 
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where  is the electric polarizability. Thus we have 
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The electric polarizability and electric dipole moment are approximated by 
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This interaction is called a van der Waals interaction which is attractive. 

 

6

5
011

6

5
0

2

)]([

)]([
1022832.9

4

AR

Ar

R

re   erg 

 

or 

 

6

5
0

6

5
0

2

)]([

)]([
5986.57

4

AR

Ar

R

re
  eV 

 

((Example)) metallic copper 

 

55.2R  Å, 10 r  Å 
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3. Electric polarization (quantum mechanics) 

((Polarizability)) 

Electric polarizability is the relative tendency of a charge distribution, like the electron cloud 

of an atom or molecule, to be distorted from its normal shape by an external electric field, which 

is applied typically by inserting the molecule in a charged parallel-plate capacitor, but may also be 

caused by the presence of a nearby ion or dipole. 



The electronic polarizability  is defined as the ratio of the induced dipole moment P of an atom 

to the electric field  that produces this dipole moment. 
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The work done on the system as  slightly changes to  +d,  
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4. Polarizability of the 1s-state 
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Under the perturbation, the energy shift is given by 
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((Note-1)) 
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The electric field  causes an induced dipole moment to appear, proportional to . 

 

((Note-2)) 
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Here 
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Then we have 
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which is consistent with the experimentally observed value:  = 4.5 a0
3. 
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5. Repulsive interaction (the inert gas) 

 

 
 

The Pauli exclusion principle prevents two electrons from occupying the same quantum state:. The 

electron distributions of atoms with closed shells can overlap only if accompanied by the partial 

promotion of electrons to unoccupied higher energy states of the atoms. Thus the electron overlap 

increases the total energy of the system, giving a repulsive contribution to the interaction. An 

extreme example in which the overlap is complete is shown in the above figure (Kittel, ISSP, 4-th 

edition). 

 

 



 
 

 
 

Fig. Electronic charge distributions overlap as atoms approach. The solid circles denote the 

nuclei (the origin of the repulsive interaction, due to the Pauli’s exclusion principle). 

 

6. Lennard-Jones interaction 

The Lennard-Jones interaction consist of the attractive potential (van der Waals weak 

interaction) and the repulsive interaction; 
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Fig. Lennard-Jones potential. The value of U at the minimum is   at 12246.1R . 

 

7. Ionic crystal: NaCl 

In ionic bonding, electrons are transferred from one atom to another resulting in the formation 

of positive and negative ions. The electrostatic attractions between the positive and negative ions 

hold the compound together.  
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Fig. Electron density distribution in the base plane of NaCl,  after x-ray studies (C. Kittel, 

ISSP 4-th edition). 

 



 
 

Fig. Crystal structure of NaCl. The lattice constant of the conventional cubic cell is a = 5.6402 

Å 

 

In the ionic crystal (typically NaCl), the van der Waals part of the attractive interaction in ionic 

crystal can be neglected. The potential energy can be expressed by 
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where z is the number of the nearest neighbors of any ion and  is the Madelung constant. For 

NaCl,  is given by 

 

  1.747565. 

 
Note that the interaction between the nearest neighbor ions is given by 
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The first term is repulsive interaction, while the second term is attractive interaction. From the 

condition that 0/ dRdU  at 0RR  , we have 
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The minimum value of U at 0RR   is 
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((Example)) NaCl 

 

321.0 Å,  z = 1. 05 Å,    1.747565.  cal=4.184 J. 

 

Using these values, we get  0R  2.81463 Å 

 

)( 0RU  = -182.53 kcal/mol= -763.70 kJ/mol 

 


N

RU )( 0 -7.92091 eV. 
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Fig.  Energy per molecule of NaCl crystal. The minimum of NU /  is -7.92091 eV at R

2.81463 Å. 

 

((Note)) Calculation of Madelung constant a (see the Appendix). We use the Evjen’s method. 

 

  1.747565. for NaCl 

 

8. Hydrogen molecule 


2H : covalent bonding 

(a) Definition of 


2H  

The hydrogen molecular ion, or H2
+, is the simplest molecular ion. It is composed of two 

positively charged protons and one negatively charged electron, and can be formed from ionization 
of a neutral hydrogen molecule. It is of great historical and theoretical interest because, having 
only one electron, the Schrödinger equation for the system can be solved in a relatively 
straightforward way due to the lack of electron–electron repulsion (electron correlation). 

We now consider the hydrogen molecule formed of one electron and two protons, where these 

two protons are widely separated. What is the lowest energy of this system? There are two possible 

states. 

(i) The electron is close to one of the proton, forming a hydrogen atom in the ground state. (ii) The 

electron is close to the other proton, forming a hydrogen atom in the ground state. 
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Fig. The co-ordinates of the two protons and one electron used in the discussion of hydrogen 

molecule ion. R is the distance between two protons. 

 

(i) When R becomes very large and the electron is close to one of the proton, the total energy 

of the electron is close to the energy of the hydrogen atom.  

 

6.130 E  eV. 

 

(ii) When R becomes very small, the total energy of the electron is close to the energy of the 

He atom (system of the two protons and one electron), 

 

4.540 E  eV. 

 

 
Fig. Rough prediction of E0 vs R. R increases with increasing R from -54.4 eV at R = 0 [He 

atom (system of the two protons and one electron)) to -13.6 eV at R = ∞ (hydrogen atom) 

 

(b) Wave function and Hamiltonian 

We consider the wave function of the system of one electron and two protons. 

The wave function of electron is given by 
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where a0 (=0.53 Å) is a Bohr radius, 
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The Hamiltonian of the system is given by 
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We have the commutation relation for the parity operator as 

 

HH ˆˆˆˆ  , or 0]ˆ,ˆ[ H  

 

since 
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(c) Properties of the kets 1  and 2  

A positively ionized hydrogen molecule consists of two protons with one electron worming its 

way around them. If two protons are very far apart, the electron will stay close to one proton and 

form a hydrogen atom in its lowest state, and the other proton will remain alone as a positive ion. 

If the two protons are far apart, we can visualize one physical state in which the electron is attached 

to one of protons. There is another state symmetric to the one, in which the electron is near the 



other proton, and the first proton is the one that is an ion. We will take these two states as our basis 

states, and we call these 1  and 2 . 

 

 
 

Fig. The state 1  for the two protons and one electron.  

 

 
 

Fig. The state 2  for the two protons and one electron 

 

1  and 2  are the eigenkets such that 
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Note that )(11 rr    is the wave function of the hydrogen atom when only proton 1 exists. 

)(22 rr    is the wave function of the hydrogen atom when only proton 2 exists. In practice, 

proton 1 or proton 2 does not exist alone, but the two protons exist with a finite separation. Even 

them if their separation is very large, we can consider either )(1 r  or )(2 r  as the eigenfunction 

of the whole system in a zeroth order approximation. Thus the state of this system is doubly 

degenerate in this approximation. 

 

We have the relation such that 
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Suppose that 1  is the eigenket of 1Ĥ  with the eigenvalue sE1 ; 
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2  is the eigenket of 2Ĥ  with the same eigenvalue sE1 ; 
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In the r  representation, we have 
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When the replacement ( rr  ) is made in Eq.(1), Eq,(1) is changed into 
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The comparison between Eqs.(2) and (3) leads to the relation 
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where we use the parity operator; rr ̂  and rr ̂ . So that we get the final result 
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(d) Even function and odd function 

Since 0]ˆ,ˆ[ H , there is a simultaneous eigenket of Ĥ  and ̂ . 
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We use the relation 
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The eigenkets of ̂  is as follows. 

 

(i) Even parity (the gerade (even) state); eigenvalue (+1) 

 

)( 21   ee C , 

 

or 

 
)]()([)( 21 rrrr   eee C  

 

(ii) Odd parity (the ungerade (odd) state); eigenvalue (-1) 
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Note that constants eC  and oC  can be determined from the normalization condition later. 

 



(e) Correlation function 21)( RS  

We consider the correlation function 
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We make a plot of S(R) as a function of R. 
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Fig. S(R) vs R/a0. a0 = 0.53 Å. 0/)( dRRdS  at R/ a0 = 1.61803 (i.e. R = 0.8575 Å). 

 

(f) Normalization: 111   and 122   
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(g) Calculation of the expectation 
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Fig. Plot3D of the wave function )(re . R/a0 = 2.49283. 

 

 
 



 
Fig. Plot3D of the wave function )(ro . R/a0 = 2.49283. 

 
(h) Matrix element of the Hamiltonian 

The matrix element of the Hamiltonian is given by 
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(i) Bonding orbital and anti-bonding orbital 
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We make a plot of )(REe  and )(REo  below. Ee(R) has a local minimum at R/a0 = 2.49283. R = 

1.3212 Å. The local minimum value is -15.3634 eV.  

(i) For both e  and O  states, the energy at large R is simply the hydrogen atom as is 

expected. At very small R (<<a0), the energy of both states becomes positive and very large 

due to the strong proton-proton Coulomb repulsion. 

(ii) For intermediate inter-nuclear separation, the even-parity and odd-parity states have 

different energies. The minimum in the even-parity state energy is indicative of an 

attraction that leads to a stable molecule with a separation distance t R = 2.49283 a0 (or R 

= 1.3212 Å). The energy of the odd-parity state has no minimum and is repulsive at all 

distances R, implying that a system in this state will dissociate into a bound hydrogen atom 

and an isolated proton. 

 

We call the e  state as a bonding orbital and the odd-parity O  state as an antibonding 

orbital  

 



 
 

Fig. Plot of Ee(R) and Eo(R) as a function of R/a0. Ee(R) has a local minimum at R/a0 = 2.49283. 

R = 1.3212 Å. The local minimum value is -15.3634 eV. The dashed line denotes the 

ground-state energy of the hydrogen atom. 
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Fig. Energy level of several H2
+ electronic states. 1 hartree = 627.5 kcal/mol = 27.211 eV. The 

ground state is g1  and the first excited state is u1  

 

 

(j) ContourPlot 

We make a ContourPlot of )(re  and )(rO  in the x-y plane, where R = 2.49283 a0. 



 
 

Fig. ContourPlot of )(re  in the x-y plane, where R = 2.49283 a0. 
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Fig. ContourPlot of )(rO  in the x-y plane, where R = 2.49283 a0. 

 

8. Pauli exclusion principle and exchange interaction 

In hydrogen molecules, there are two protons and two electrons. It is very complicated to solve 

the eigenvalue problems for the system as a function of co-ordinates and spins of 4 particles. the 

coordinates of four particles. Instead of solving this problem, we use the approximation. To this 

end, we neglect the kinetic energy of the protons. We also neglect the interaction between electrons. 

In this case the problem is reduced to a simple problem of one electron moving in the presence of 

two protons (fixed). We find the eigenstate of one electron. Next, based on the Pauli exclusion 

principle, we take into account of the spin symmetry of the two spins, so that the total wave 

function is antisymmetric under the exchange of the sites. This method is called the linear 

combination of atomic orbitals (LCAO) 
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9. Two electrons system (hydrogen molecule H2) 

 

Hydrogen molecule (H2) 

 

 
 

In the molecule H2, the hydrogen atoms share the two electrons via covalent bonding. 

Covalency is greatest between atoms of similar electronegativities. Thus, covalent bonding does 

not necessarily require that the two atoms be of the same elements, only that they be of comparable 

electronegativity. Covalent bonding that entails sharing of electrons over more than two atoms is 

said to be delocalized. 

 

(a) Ground state: the total energy is eE2  (singlet) 

 

 
 

Spatial wave function: 
21 ee    (symmetric state) 
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Spin wave function:  )(
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leading to the antisymmetric wave function  
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because of the fermion. 

 

(b)  The first excited state: the total energy is 0EEe   (triplet) 

The first excited state for the two particle system is 

 

 
 

According to the Hund’s rule, the spin direction of the particle in the state u1  is parallel to that 

of the particle in the state g1  

 

State with two particles: 
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Spatial wave function: ][
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leading to the antisymmetric wave function 
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because of the fermion. 

 

 
 

Fig. Energy diagram for some electronic states of H2, including the ground state (singlet) and 

the first excited state (triplet). 

 

10. Molecular term symbol 

It has the general form: 
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where 

 S is the total spin quantum number 

 Λ is the projection of the orbital angular momentum along the internuclear axis 

 Ω is the projection of the total angular momentum along the internuclear axis 

 u/g is the effect of the point group operation i 

 +/− is the reflection symmetry along an arbitrary plane containing the internuclear axis 

 

11. Exchange interaction between two spins (Heisenberg-type) 

According to the quantum mechanics, the addition of spin angular momentum (with spin 1.2) 

leads to 
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(a) 1S  state (symmetric state); 3 states 
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For the symmetric spatial wave function with energy eigenvalue ( sE ), the spin state should be 

antisymmetric one;  

 

(b) 0S  state (antisymmetric state) 
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Here we use the Dirac exchange operator, 
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Thus we have 
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We now consider the effective spin Hamiltonian 
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leading to the relation 
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Thus we get the effective spin Hamiltonian 
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The exchange energy J between two spins is obtained as 
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as EE
J  (ferromagnetic interaction). 

 

The binding depends on the relative spin orientation not because there are strong magnetic dipole 

forces between the spins, but because the Pauli principle modifies the distribution of charges 

according to the spin orientation. This spin dependent Coulomb energy is called the exchange 

interaction. 

 

12. Hund’s rule 

The 1s orbitals should be filled before 2s orbitals, because the 1s orbitals have a lower value 

of n, and thus a lower energy. What about the three different 2p orbitals? In what order should they 

be filled? The answer to this question involves Hund's rule. 

Hund's rule states that: 

1. Every orbital in a sublevel is singly occupied before any orbital is doubly occupied. 

2. All of the electrons in singly occupied orbitals have the same spin (to maximize total spin). 

 
According to the first rule, electrons always enter an empty orbital before they pair up. 

Electrons are negatively charged and, as a result, they repel each other. Electrons tend to minimize 
repulsion by occupying their own orbitals, rather than sharing an orbital with another electron. 
Furthermore, quantum-mechanical calculations have shown that the electrons in singly occupied 
orbitals are less effectively screened or shielded from the nucleus. Electron shielding is further 
discussed in the next section. 

For the second rule, unpaired electrons in singly occupied orbitals have the same spins. 
Technically speaking, the first electron in a sublevel could be either "spin-up" or "spin-down." 
Once the spin of the first electron in a sublevel is chosen, however, the spins of all of the other 
electrons in that sublevel depend on that first spin. To avoid confusion, scientists typically draw 
the first electron, and any other unpaired electron, in an orbital as "spin-up." 
 



 
 

 
 

13. Further discussion on the energy diagram 

We consider the wave function and the energy diagram of the hydrogen molecule H2 (two-

body problem) using the energy diagram of the H2+ ion (one-electron energy diagram) and the 

Pauli’s exclusion principle for the fermion. 

We note that from two atomic orbitals we can build two molecular orbitals. In general, from N 

atomic orbitals we can build N molecular orbitals. There are two electrons to accommodate, and 

both can enter 1σg by pairing their spins, as required by the Pauli principle. The ground-state 

configuration is therefore 1gσ2 and the atoms are joined by a bond consisting of an electron pair 

in a bonding σ orbital. This approach shows that an electron pair, which was the focus of Lewis’s 

account of chemical bonding, represents the maximum number of electrons that can enter a 

bonding molecular orbital. The same argument explains why He does not form diatomic molecules. 

Each He atom contributes a 1s orbital, so 1σg and 1σu molecular orbitals can be constructed. 

Although these orbitals differ in detail from those in H2, their general shapes are the same and we 

can use the same qualitative energy level diagram in the discussion. There are four electrons to 

accommodate. Two can enter the 1σg orbital, but then it is full, and the next two must enter the 1σu 

orbital. The ground electronic configuration of He2 is therefore 22
11 ug  . 

We see that there is one bond and one anti-bond. Because 1σu is raised in energy relative to the 

separate atoms more than 1σg is lowered, an He2 molecule has a higher energy than the separated 

atoms, so it is unstable relative to them. 

 



 
 

(a) One electron system 

 

 
 

(b) The ground state for the two electrons 

 

 
 

The ground state: The spin state is a singlet (antisymmetric). 
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(b) The first excited state with two electrons 

 
 

 

According to the Hund’s rule, the spin direction of the upper state is parallel to that of the lower 

state. In other words, the spin state of u1  should be the same as that of the g1 , 
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(c) The states with three particles 

 

 
 

(d) The state with four particles (closed shell) 
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14. Hybridization 

We assume that two atoms A and B (atoms A and B are the same) are located on the z axis. 

When the position of atom A is close to that of the atom B, we consider the molecular orbits of 

atomic orbitals, 1s, 2s, 2px, 2py, 2pz. 

 

 

 
 

Fig. Energy levels without the zps   interaction. The energy level of 2p state is much higher 

than that of 2s state. 
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Fig. Energy levels with strong zps   interaction. The energy level of 2p state is not so higher 

than that of 2s state. 

 

(a) s2 and s2  orbits 
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(b) zp2 and zp2  orbits 
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and for the anti-bonding [ )2(*
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((Note)) Cohen-Tannoudji et al. Quantum Mechanics 
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Fig. Schematic representation of the 2pz atomic orbitals centered at P1 and P2 and used as a 

basis for constructing the excited molecular orbitals )2( zg p  and )2(*

zu p  (note the 

sign convention chosen). (Cohen-Tannoudji et al. Quantum Mechanics): (a) 

 

(c) 
yp2 and 

yp2  orbits 
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Fig. Schematic representation of the atomic orbitals 2px centered at P1 and P2 (the Oz axis is 

chosen along P1P2) and used as a basis for constructing the excited molecular orbitals 

)2( xu p  and )2(
*

xg p . 

 

15. Molecular orbits 

 

 MO’s 

  indicates the z-component of the orbital angular momentum is 0m . 

 



bau sss 111  , 

 

bag sss 111   

 

bau sss 222   

 

bag sss 222   

 

zbzagz ppp 222   (note the minus sign for gzp 2 ) 

 

zbzauz ppp 222   (note the plus sign for uzp 2 ) 

 

  MO’s 

  indicates the z-component of the orbital angular momentum is 0m . 
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16. Orbital hybridization: two possible representation;    and equivalent-orbital 

models 

Molecules with multiple bonds or multiple lone pairs can have orbitals represented in terms of 

sigma and pi symmetry or equivalent orbitals. The sigma and pi representation of Erich Hückel is 

the more common one compared to the equivalent orbital representation of Linus Pauling. The two 

have mathematically equivalent total many-electron wave functions, and are related by a unitary 

transformation of the set of occupied molecular orbitals. This is a very important concept. In my 

opnion, the orbital model is much easier for one to vusialize the covalent bonding. 

 

((Example)) sp hybridization (orbital) 

Using the following example, we understand that the two models are equivalent. 

 



 
 

Fig. (a) sp hybrid orbital. (b) Molecular orbital made from a LCAO’s (    model) 

 

Note that 
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zpcs 21       (orbital model) 

 

The wave functions of the four states (sp hybridization) are given by 
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17. sp3 hybridization for carbon: CH4 (methane) 



 
 

Carbon’s ground state configuration is (1s)2(2s)2(2p)2 (based on the Hund’s rule) 

 

 
 

The carbon atom can use its two singly occupies p-type orbitals, to form two covalent bonds. The 

carbon atoms can also four covalent bonds, by an excitation of an electron from the doubly 

occupied 2s orbital to the empty 2p orbital, producing four singly occupied orbitals.; 

 

 
 

Quantum mechanically, the lowest energy is obtained if the four bonds are equivalent, which 

requires that they are formed from equivalent orbitals on the carbon. A set of four equivalent 

orbitals can be obtained that are linear combinations of the valence-shell (core orbitals are almost 

never involved in bonding) s and p wave functions, which are the four sp3 hybrids. 

 



 
 

In CH4, four sp3 hybrid orbitals are overlapped by hydrogen 1s orbitals, yielding four σ (sigma) 

bonds (that is, four single covalent bonds) of equal length and strength. 

 

   
 

https://en.wikipedia.org/wiki/Orbital_hybridisation 

 

The wave functions of the four states (sp3 hybridization) are given by 
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18. sp2 hybridization: C2H4 

 

 

 

Ethene (C2H4) has a double bond between the carbons. For this molecule, carbon sp2 hybridises, 
because one π (pi) bond is required for the double bond between the carbons and only three σ 
bonds are formed per carbon atom. In sp2 hybridisation the 2s orbital is mixed with only two of 
the three available 2p orbitals (Hund’s rule) 
 

 
 

forming a total of three sp2 orbitals with one remaining p orbital. In ethylene (ethene) the two 

carbon atoms form a σ bond by overlapping two sp2 orbitals and each carbon atom forms two 

covalent bonds with hydrogen by s–sp2 overlap all with 120° angles. The π bond between the 

carbon atoms perpendicular to the molecular plane is formed by 2p–2p overlap. The hydrogen–

carbon bonds are all of equal strength and length. 

 

 
 

https://en.wikipedia.org/wiki/Orbital_hybridisation 

 

The wave functions of the there states (sp2 hybridization) are given by 
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19. sp hybridization: C2H2 

 



 
 

Fig. Two sp orbitals. 

 

In this model, the 2s orbital is mixed with only one of the three p orbitals (Hund’s rule) 

 

 
 

resulting in two sp orbitals and two remaining p orbitals. The chemical bonding in acetylene 

(ethyne) (C2H2) consists of sp–sp overlap between the two carbon atoms forming a σ bond and 

two additional π bonds formed by p–p overlap. Each carbon also bonds to hydrogen in a σ s–sp 

overlap at 180° angles. 

 

https://en.wikipedia.org/wiki/Orbital_hybridisation 

 

20. Metallic bond 

Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force 

between conduction electrons (in the form of the free electron Fermi gas) and positively charged 

metal ions. It may be described as the sharing of free electrons among a lattice of positively charged 

ions (cations). Metallic bonding accounts for many physical properties of metals, such as thermal 

and electrical conductivity, and so on. According to the Heisenberg’s principle of uncertainty, the 

kinetic energy of the electron is approximated by 
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since ℏ xpxp . As the uncertainty of position x  increases, the kinetic energy tends to 

decrease, lowering the total energy of the system.  

 



21. Hydrogen bond 

A hydrogen bond is an electrostatic attraction between two polar groups that occurs when a 

hydrogen (H) atom, covalently bound to a highly electronegative atom such as nitrogen (N), 

oxygen (O), or fluorine (F), experiences the electrostatic field of another highly electronegative 

atom nearby. 

Hydrogen bonds can occur between molecules (intermolecular) or within different parts of a 

single molecule (intramolecular). Depending on the nature of the donor and acceptor atoms which 

constitute the bond, their geometry, and environment, the energy of a hydrogen bond can vary 

between 1 and 40 kcal/mol. This makes them somewhat stronger than a van der Waals interaction, 

and weaker than covalent or ionic bonds. This type of bond can occur in inorganic molecules such 

as water and in organic molecules like DNA and proteins. 

 

((Hydrogen bond in water)) 

The H2O molecule is electrically neutral, but the positive and negative charges are not 

distributed uniformly. The electronic (negative) charge is concentrated at the oxygen end of the 

molecule, owing partly to the nonbonding electrons, and to oxygen's high nuclear charge which 

exerts stronger attractions on the electrons. This charge displacement constitutes an electric dipole,  

 
The negative end of one water molecule will tend to orient itself so as to be close to the positive 

end of another molecule that happens to be nearby. The strength of this dipole-dipole attraction is 

less than that of a normal chemical bond, and so it is completely overwhelmed by ordinary thermal 

motions in the gas phase. However, when the H2O molecules are crowded together in the liquid, 

these attractive forces exert a very noticeable effect, which we call (somewhat misleadingly) 

hydrogen bonding. And at temperatures low enough to turn off the disruptive effects of thermal 

motions, water freezes into ice in which the hydrogen bonds form a rigid and stable network. 

 

 



 

 
 

Fig.  Hydrogen bond of water H2O 

 

The most ubiquitous and perhaps simplest example of a hydrogen bond is found between water 

molecules. In a discrete water molecule, there are two hydrogen atoms and one oxygen atom. Two 

molecules of water can form a hydrogen bond between them; the simplest case, when only two 

molecules are present, is called the water dimer and is often used as a model system. When more 

molecules are present, as is the case with liquid water, more bonds are possible because the oxygen 

of one water molecule has two lone pairs of electrons, each of which can form a hydrogen bond 

with a hydrogen on another water molecule. This can repeat such that every water molecule is H-

bonded with up to four other molecules, as shown in the figure (two through its two lone pairs, 

and two through its two hydrogen atoms). Hydrogen bonding strongly affects the crystal structure 

of ice, helping to create an open hexagonal lattice. The density of ice is less than the density of 

water at the same temperature; thus, the solid phase of water floats on the liquid, unlike most other 

substances. 

 

______________________________________________________________________________ 
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APPENDIX-I   Polarizability 

 

eEF   [dyne = erg/cm], 

 

erEp  . 

 

Then we get 
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We have two spheres, each of radius a, one of which has volume charge density + and the other 

of which has density -. The vector from the center of the positive sphere to the center of the 

negative sphere is d. The two spheres have a region of overlap and we want the electric field within 

this region. 

 

 
 

We see that the electric field inside a uniformly positively charged sphere is (restoring the vector 

notation) 
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where r is the vector from the center of the sphere to the point in question. Now suppose that s is 

the vector from the center of the negative sphere to the same point. Because the charge is 

negative, we get 
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So the total electric field is, using the superposition 
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For the system (sphere, radius a) with the total charge q, the charge density  is obtained as 
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Then we have 
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or 

 

EERp  3  

 

The polarizability is given by 

 
3R . 

 



For the hydrogen, if we take BaR   = 0.52917721092 A, we get 

 

 = aB
3=1.48185 x 10-25 cm3. 

 

Another method to calculate the value  is shown as follows. Here we use the formula 
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For n = 1, Z = 1, and l = 0, the radius R can be evaluated as 

 

BarR 32   

 

for a = aB. Then  is calculated as 

 
333 196.533 BB aaR   

 

Experimentally,  for hydrogen is  = 6.67 x 10-25 cm3 = 4.50 aB
3. 

 

APPENDIX-II Energy diagram of H2
+ and H2 

We note that depending on the nature of textbooks, the definition of the notation is different, even 

the content of the physics is the same. 

 

Energy levels of H2
+: one-electron system 

 

 



 
 

Fig. The two lowest H2
+ potential energy curves are plotted versus the distance R.  

 

Energy levels of H2: two-electrons system 

 



 
 

Fig. H2 ground singlet and triplet potential curves, 
gg Xs 12)1(   and 

uug bss 3)1)(1(   as a 

function of internuclear distance R. The singlet spin state has a spatially symmetric wave 

function under exchange of the two electrons, whereas the triplet spin state has a spatially 

antisymmetric wave function. 

 

____________________________________________________________________________ 
gg Xs 12)1(    

 

X:    The ground state. 

1 (superscript)   Singlet 

  The projection of the total electronic angular momentum 

about the diatomic axis is zero. 

g The total two-electron wave function is even under 

inversion.  

+    Symmetric configuration 

 

___________________________________________________________________________ 
uug bss 3)1)(1(   

The spin is triplet (S = 1); symmetric. The spatial wave function is antisymmetric. 

 



APPENDIX-III: Evjen method; calculation of Madelung constant 

The Evjen’s method requires an iterative summation of ever larger neutral cells with no 

accumulation of surfaces charge. This method constructs the sum so that onlyt single dipole and 

higher moments are used. Thus, rapid convergence is guaranteed. 

The first cube surrounding the negative reference ion (denoted by red) at the point O intercepts 

six positive charges (1/2) on the cube faces, twelve negative charges (1/4) on the cube edges, and 

eight positive charges at the cube corners (1/8). The contribution to the Madelung constant from 

the first cube is 
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since 

 

# Fraction  ijp  

6 +1/2  1 (blue) 

12 -1/4  2  (red) 

8 +1/8  3  (blue) 

 

 



 

Fig. The first cube. Fractional charge assignments for the NaCl structure, arranged according 

to the Evjen method for calculating the Madelung constant. Face atoms carry charge 1/2; 

edge atoms 1/4; corner atoms 1/8. 

 

 
 

Fig. The second cube. 

 

The contribution to the Madelung constant from the second cube: 

 

 

((Inside wall)) 
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# Fraction  ijp  

6 +1/2  1 (blue) 



12 -3/4  2  (red) 

8 +7/8  3  (blue) 

 

((Ourside wall)) 
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since 

# Fraction  ijp  

6 -1/2  2 (red) 

24 +1/2  5  (blue) 

24 +1/4  3 (blue) 

12 -1/4  22  (red) 

8 -1/8  32  (red) 

24 -1/2  6  (red) 

 

Then we have 

 

74177.1321   , 

 

which is very close to the exact value of the Madelung constant for NaCl; 

 

33187475645946.1 . 

 

APPENDIX-IV: Mathematica for the calculation of the Madelung constanr for NaCl 

(a) Direct calculation 

The Madelung constant a for NaCl can be expressed by 
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Using the Mathematica we calculate the Madelung constant as follows.  
 



 
 
(b)  Benson’s formula 
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APPENDIX-V Bulk modulus for NaCl 

Compressibility and bulk modulus 
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The compressibility is defined as the reciprocal of the bulk modulus. From the thermodynamics, 
we have the relation 
 

PdVTdSdU  . 

 
When 0dS  at T = 0 K, we get PdVdU  . Thus we have 

 

Clear "Global` " ; N1 98;

f m1 , n1 , k1 :

If m1 0 && n1 0 && k1 0, 0,
1 m1 n1 k1

m12 n12 k12
;

Sum f m1, n1, k1 , m1, N1, N1 , n1, N1, N1 ,

k1, N1, N1 N

1.7417

Clear "Global` "

g m1 , n1 : 12 Sech
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;

Sum g m1, n1 , m1, 0, , n1, 0, N , 8 &

1.7475646
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For NaCl, there are 4 molecules of NaCl in the conventional cubic cell with lattice constant a. 
The number of molecules in a volume V is 
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The nearest neighbor distance R is 
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Thus we have  NRV 32 . Since )(RUU  , we use 
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Thus B can be rewritten as 
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At the equilibrium separation 0RR   and 0
dR

dU
, we have 
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Note that 
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0R  is obtained as 
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The bulk modulus B is 
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For NaCl,  B = 2.40 x 1011 dyne/cm2 = 2.4 x 1010 Pa = 24.0 GPa 
 
((Note)) 
 

GPa=109 N/m2.  N = 105 dyne,  Pa = 10 dyne/cm2. 
 
 


