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The Knight shift is a shift in the nuclear magnetic resonance frequency of a paramagnetic 

substance first published in 1949 by the American physicist Walter David Knight. The Knight 

shift refers to the relative shift K in NMR frequency for atoms in a metal (e.g. sodium) compared 

with the same atoms in a nonmetallic environment (e.g. sodium chloride). The observed shift 

reflects the local magnetic field produced at the sodium nucleus by the magnetization of the 

conduction electrons. The average local field in sodium augments the applied resonance field by 

approximately one part per 1000. In nonmetallic sodium chloride the local field is negligible in 

comparison. 

The Knight shift is due to the conduction electrons in metals. They introduce an "extra" 

effective field at the nuclear site, due to the spin orientations of the conduction electrons in the 

presence of an external field. This is responsible for the shift observed in the nuclear magnetic 

resonance. The shift comes from two sources, one is the Pauli paramagnetic spin susceptibility, 

the other is the s-component wave functions at the nucleus. Depending on the electronic structure, 

the Knight shift may be temperature dependent. However, in metals which normally have a 

broad featureless electronic density of states, Knight shifts are temperature independent. 

 

http://en.wikipedia.org/wiki/Knight_shift 

 

1. Introduction 

There is an interaction between the magnetic moment of a nucleus and the magnetic 

moment of electron (orbital magnetic moment and spin magnetic moment). This 

interaction is very important in the nuclear magnetic resonance (NMR). Through this 

interaction, the information on the properties of electrons surrounding the nucleus can be 

observed by NMR. The interaction consists of the dipole-dipole interaction (spin-dipolar 

interaction), the hyperfine interaction (Fermi contact field), and the crystal field (related 

to the orbital angular momentum). 

 

2. The coupling Hamiltonian between electron and nucleus (Abraham) 
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The behavior of an electron [ q = -e (charge of electron); m (mass of electron)] in a 

magnetic field B produced by a nucleus, is given by the Hamiltonian 
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where B is the Bohr magneton of electron 
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s = ℏ/S  and S is the spin angular momentum (in the units of ℏ ). The second term arises 

from the spin magnetic moment in the presence of magnetic field B. According to the 

classical electromagnetic theory, the magnetic moment of nucleus )( Iμ ℏ produces at a 

point removed from it by a vector r, a magnetic field B 
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where A is the magnetic vector potential.Noting that
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(b) The vector A satisfies the Coulomb gauge, 
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((Mathematica)) 
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Near the origin, A has a singularity of order r-2 and B has a singularity of order r-3, so 

some care must be exerted in the calculation of its interaction. 

____________________________________________________________________ 

3. Magnetic field ditribution due to the magnetic moment of nucleus 

Suppose that the magnetic moment of the nucleus is directed along the z axis at the 

origin. 
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The magnetic field produced by the magnetic mpoment of nucleus is 
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We make a plot of B in the y-z plane by using the StreamPlot (Mathyematica), where 0 

= 1. 

 

Clear@"Global`∗"D;

Needs@"VectorAnalysis`"D; SetCoordinates@Cartesian@x, y, zDD;

 = 81, 2, 3<; r = x2 + y2 + z2 ; R = 8x, y, z<; R1 = R ë r3;

A1 = Cross@µ, R1D êê Simplify

9
z µ2 − y µ3

Ix2 + y2 + z2M3ê2
,

−z µ1 + x µ3

Ix2 + y2 + z2M3ê2
,

y µ1 − x µ2

Ix2 + y2 + z2M3ê2
=

Div@A1D êê FullSimplify

0

Curl@R1D êê FullSimplify

80, 0, 0<

B1 = Curl@A1D êê FullSimplify

9
2 x2 µ1 − Iy2 + z2M µ1 + 3 x Hy µ2 + z µ3L

Ix2 + y2 + z2M5ê2
,

3 x y µ1 − x2 µ2 + 2 y2 µ2 − z2 µ2 + 3 y z µ3

Ix2 + y2 + z2M5ê2
,
3 z Hx µ1 + y µ2L − Ix2 + y2 − 2 z2M µ3

Ix2 + y2 + z2M5ê2
=
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((Mathematica)) 

 

Clear@"Gobal`"D

Needs@"VectorAnalysis`"D

SetCoordinates@Cartesian@x, y, zDD

Cartesian@x, y, zD

r = 8x, y, z<; m = 80, 0, m0<;

A =
1

Hr.rL3ê2
Cross@m, rD êê Simplify

9−
m0 y

Ix2 + y2 + z2M3ê2
,

m0 x

Ix2 + y2 + z2M3ê2
, 0=

B = Curl@AD êê Simplify

9
3 m0 x z

Ix2 + y2 + z2M5ê2
,

3 m0 y z

Ix2 + y2 + z2M5ê2
, −

m0 Ix2 + y2 − 2 z2M

Ix2 + y2 + z2M5ê2
=

rule1 = 8m0 → 1, x → 0<;

B1 = B ê. rule1

90,
3 y z

Iy2 + z2M5ê2
, −

y2 − 2 z2

Iy2 + z2M5ê2
=

f1 = StreamPlot@8B1@@2DD, B1@@3DD<, 8y, −3, 3<, 8z, 3, −3<,
StreamStyle → PurpleD;

f2 = Graphics@8Red, Thick, Arrow@880, −0.5<, 80, 0.5<<D,
Black, Thin, Line@88−3, 0<, 83, 0<<D,
Line@880, −3<, 80, 3<<D,
Text@Style@"y", Black, 12D, 83.2, 0<D,
Text@Style@"z", Black, 12D, 80, 3.2<D <D;

Show@f1, f2D
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Fig. The distribution of the magnetic field B produced by the magnetic moment of 

nucleus at the origin (along the z axis) in the y-z plane. 

 

4. Orbital magnetic moment contribution 

The Hamiltonian arising from the orbitral motion of the electron isgiven by 
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In the first order (the order of A) perturbation , we have 
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Here we calculate 
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where )(r  is an arbitrary wave function and p is the quantum mechanical operator 

defined by 
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Using the formula (vector analysis), 
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wehere we use 0 A  and 
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The orbital angular momentum L is defined as 

 

prlL  ℏ . 

 

in the quantum mechanics. Then the Hamiltonian can be written as 
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We note that the orbital magnetic moment L is 
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5. Spin magnetic moment contribution 

The interaction between the spin magnetic moment of electron and  is 
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where the spin magnetic moment is given by 

 

Ssμ
ℏ

B
BS




2
)2(  . 

 

and S is the spin angular momentum (in the units of ℏ ). Here we use the formula 
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where F is any vector. We note that 
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The interaction 'SH  can be written as 
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This can be rewritten as 
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((Mathematica)) 
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___________________________________________________________________ 

6. The expression of 'SH  near the origin (White): hyperfine interaction 

We start with the spin Hamilonian 
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The matrix element of the Hamiltonian for the wave function )(r  
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where the radius  defines a sphere which encloses the nucleus. Outside the sphere A(r) is 

given by 

 

3r

r
μA   

 

The second term in s

mW  ( )2(m

sW ) gives the dipole-dipole interaction since r>. The first 

term in s

mW
 
is the additional interaction 

Clear@"Global`∗"D; Needs@"VectorAnalysis`"D;
SetCoordinates@Cartesian@x, y, zDD; s = 8s1, s2, s3<;  = 81, 2, 3<;

r = x2 + y2 + z2 ;

R = 8x, y, z<;

L1@a_D := Ha@@1DD D@� , xD + a@@2DD D@�, yD + a@@3DD D@�, zDL &;

f1 = L1@µD@L1@sD@1êrDD êê FullSimplify

1

Ix2 + y2 + z2M5ê2
I3 s3 z Hx µ1 + y µ2L −

s3 Ix2 + y2 − 2 z2M µ3 + s2 I3 x y µ1 − x2 µ2 + 2 y2 µ2 − z2 µ2 + 3 y z µ3M +

s1 I2 x2 µ1 − Iy2 + z2M µ1 + 3 x Hy µ2 + z µ3LMM

f2 =
1

r5
I3 Hµ.RL Hs.RL − Hµ.sL r2M êê FullSimplify

−Ix2 + y2 + z2M Hs1 µ1 + s2 µ2 + s3 µ3L + 3 Hs1 x + s2 y + s3 zL Hx µ1 + y µ2 + z µ3L

Ix2 + y2 + z2M5ê2

f1 − f2 êê Simplify

0
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Using the vector analysis 
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We also use the Gauss’s theorem. Because of the sphere of integrals has been chosen to 

lie outside the nucleus,  
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where da is the surface element normal to the surface of sphere. Note that 
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d is the solid angle. For simplicity we assume that  is directed along the z axis.  
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This is the contact hyperfine interaction 

 

6. Magnetic hyperfine field 

 

The resulting Hamiltonian is obtained as 

 

35

2

1 2)()(
3

16))((3)(
2

rr

r
H BBB

μl
rμs

rsrμsμ 



 

 

 

The first term is a dipole-dipole interaction and the second term is a contact term of the 

hyperfine interaction. Since 
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The local field Hloc seen by a nucleus is given by 
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7. Knight shift in metals (White) 

The s-like conductuion electrons produce a contact hyperfine field at the nuclei of a 

metal. Thus, if the conduction electrons are polarized by an external field, at a fixed 

frequency the resonance of a nuclear spin is observed at a slightly different magnetic field 

in a metal than in a diamagnetic solid. This effect is known as the Knight shift or metallic 

shift. 
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The local field  z

locH  is given by 
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The average conduction electron spin zS  is related to the Pauli spin susceptibility s  of 

the conduction electrons, 
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The Knight shift is rewritten as 
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where 
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is the ratio of the conduction electron concentration at the nucleus to the average 

conduction electron. The spin susceptibility can be determined by very careful 

conduction electron spin resonance experiment. 

 

8. Pauli paramagnetism and density of states in metal 
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The susceptibility due to the Pauli paramagnetism of conduction electrons is obtained as. 
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For metals which is well described by free electron model, the Knight shift is proportional to the 

density of states at the Fermi level (per spin).  
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