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Rudolf Ludwig Mdssbauer (German spelling: MéBibauer; January 31, 1929 — September 14,
2011) was a German physicist best known for his 1957 discovery of recoilless nuclear resonance
Sfluorescence for which he was awarded the 1961 Nobel Prize in Physics. This effect, called the
Mossbauer effect, is the basis for Mdssbauer spectroscopy.

http://en.wikipedia.org/wiki/Rudolf M%C3%B6ssbauer

1. Recoil

We consider a phenomenon in which the nucleus makes a transition from an excited state to
the ground state via j-ray, and the emitted j-ray is then absorbed by another nucleus of the same
kind to make a resonant transition from the ground state to the excited state. Let the energy
difference between the ground state and the excited state be £, and the energy of the emitted g-
ray be E,. The momentum p of the j~ray is given by E, /c. Because of momentum conservation,
the isolated nuclear recoils with momentum -p.

Momentum conservation
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The kinetic energy of nucleus, R, is

2 2
R=2ap? = L2
2 2Mc

where M is the mass of nucleus.

The value of R can be evaluated numerically as follows.

M = mass of >’Fe = 56.935396 g/mol
hw =144 keV

R =1.95494 meV.

v=28.13994 x 10° m/s

((Mathematica))

» y-ray



Clear["Global *"];

rulel = {NA » 6.02214179x 10%, ¢ 5 2.99792x 10'°,
A-1.054571628 1072’, keV - 1.602176487x 1072,
meV - 1.602176487x 107°, M » 56.935396, E1 » 14.4 keV};
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2. Recoiless emission
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ho - R is a little lower to raise the energy level of nucleus from the ground state to the excited
state.

Recoilless emission
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In crystals the nucleus interacts with the surrounding nucleus. Since M — «, we have R = 0.
The probability of the occurrence of recoilless y~ray with R = 0 is

3R
P =exp(—
p( 2k3®)
with
2 2
Retap? =t Y
2 2Mc

The value of P can be evaluated numerically as follows.

M = mass of °’Fe = 56.935396 g/mol

fiw =144 keV
R =1.95494 meV =22.6861 K
P =0.922173



((Mathematica))

Clear["Global *"];

rulel = {NA - 6.02214179x 10%, c 5 2.99792x 10,
A > 1.054571628 10727, keV » 1.602176487x 107°,
meV - 1.602176487 x 10™3°, M » 56.935396, E1 - 14.4 keV,
kB » 1.3806504x 107'¢, @ - 420};

E1? E12

R=——//. rulel; R1=—— //. rulel
22 2 22 c2kB

NA NA

22.6861
3R
P=Exp[— ] //. rulel
2kB6
0.922173
3. Experiment of Mossbauer effect
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The energy difference between the ground state and the first excited state is different depending
on the surrounding interaction of °’Fe. In this case no absorption occurs.

4. Doppler effect

The Doppler effect is the apparent change in frequency (or wavelength) that occurs because
of motion of the source or observer of a wave. When the motion of the source or the observer is
toward the other, the frequency appears to increase. When the motion of the source or observer is
away from the other, the frequency appears to decrease
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us (>0) is the velocity of sender approaching the receiver.
ur (>0) is the velocity of the receiver approaching the sender.
fo is the frequency of the sender and f'is the frequency of the receiver.

Receiver




Fig. A receiver is stationary and a source is moving toward the receiver at the velocity vs. v is
the velocity of sound. vs <v.

We consider the Doppler effect

Suppose that the source (emitting j~ray with the angular frequency w) moves toward the nucleus
(receiver) in the system ( stationary, v: = 0) at the velocity v. Using the formula of the Doppler
effect, we get

1+~

R el e VR (Y
c—v v c
C

or
ho, =ho(l+Y)=ho+6
C

where

§:ha)v
c

The value of v can be estimated as follows.

fiw =144 keV
o=1uV.
y =2.08189 cm/s

6. Isomar shift
The energy of interaction can be computed classically by considering an unifoprmly charged
spherical nucleus imbeded in its s-electron charge cloud.

(Model))
Electrostatic shift of a nuclear level

The electronic charge density p is assumed to be uniform over nuclear dimensions



For the point nucleus the electrostatic potential Vpt is

For the finite one,

Ze 3 r?

V=-"Z—-2=) for r<R,
R 2 2R

VZE for >R,
r

((Note)) Using the Gauss's law ( .[ E -da =40, , with the total charge Qi)

For r<R,

ar s E
E(4m?) = dr(Ze)—>— = 4n(Ze) -~ for <R,
472' 3 R3
TR
3
or
For >R,
r

Then the electric potential is obtained as follows.
(1) For >R,

r VZ Z
V=—[Edr=-[%dr =25
r r

[’e]

(1) For <R,



f “Z Zer? Ze Zer®
V:_JEdr:_Jgdr:_zj; ’ :%_ 2Z3

where the constant C is obtained from the continuity of V at » =R,

o3z
2R

Then the energy difference is

R
OE = [ p(v =V, )dr
0

R
= [ p(v =7, am>dr
0

R 12 2R
:—2?7[2 R == 7¢*|w (0)' R?
where
2
p=—dy(0)
6. Quadrupole interaction

Isomar shift: nucleus is spherical. The charge density is uniform.

If these conditions are relaed, other effects appear which are in fact higher order term in the
multipole expansiuon of the electrostatic interaction. These terms do not shift the nuclear levels ;
they split them, i.e., they lift all or partr of their (2I+1)-fold degeneracy (I: nuclear spin quantum
number).

Quadrupole coupling= Second nonvanishing term of the electrostatic interaction of a
nucleus with its surrounding electronic charge.

The interaction of the nuclear quadrupole moment Q with the gradient of the electric field due to
other charges in the crystal.
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The nuclear quadrupole moment reflects the deviation of the nucleus from spherical symmetry.
An oblate (flattened) nucleus has a negative Q, while a prolate (elengated) one has a positive Q.
Nuclear whose spin is 0 or 1/2 are spherically symmetric and have a Q = 0. Thus the ground state
of *’Fe, with I = 1/2 cannot exhibit quadrupole splitting.

We assume that V(r) is the electric potential due to electrons around the nucleus site. When
p,(r) 1s the nuclear charge distribution, the energy of the nucleus in this potential is given by

H= jdrpn(r)V(r)

The origin is the center of mass of the nucleus. We expand F(r) about the origin (Taylor
expansion)

ov| 1 o
H= .[drpn(r){V +2x ( ™ j +52xjx{ml +...}

_/ 0 ./;k

= ZeV, +ZP( j ZQ/k {
where x;j denotes one of x, y, and z. Here Ze, Pj and ('jc are defined by

Ze = .[ drp,(r): nuclear charge
P = .[ drp,(r)x; electric dipole moment
= j drp, (r)x x, electric quadrupole moment

The first term is constant. The second term is zero. Note that the electric dipole moment P,
vanishes if the nuclear charge distribution has inversion symmetry with respect to the origin, as
we assume. We consider only the third term

1 \
H, =§ZQ_/1« Vi
Jok

where
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Here we introduce the traceless tensor

Q_/‘k = 3Q'_/‘k _5_/k z Qvn

3QV11 _Qvll _szz _QV33 3QV12 3QV13
= 3QV21 3QV22 _Qvll _szz _QV33 3QV23
3QV31 3QV32 3QV33 _QVII_QVZZ _QV33

Then Hqy’ can be rewritten as

1. 1 1 1 1
HQ'=EZ[§Q_/A¢ +§5_/kZQ'ﬁ]V_/k = EZQ/kV_/k +E(ZQ'1‘JZV.H
I ik !

i J

7. Isomar shift

We consider the first term (the isomar shift)

1 1
SE = g(z 0. jz V, = E(Vm +V,, + VZZ)_[ drrp, (r)
i j

where

VeV, +V.)= (VZV)O =-4r(-e)y, (0)|2 (Poisson's equation)

1,//E(O)|2 is the electronic probability density at the nucleus. Then we have

where

SE = 2T”e|l//(0)|2 [drrp, ()
Suppose that the distribution of charge of proton inside the nucleus is homegeneous for 7<R.

drr’p (r) = Amtdr = ==ZeR?,
.[ pn( ) pn.[ 5 47Z'R3 5

3

_Anp, RS = 47R> Ze 3
5
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where R is the radius of nucleus, and the homogeneous charge density is

B Ze B 3Ze
Pr =l R
3

Then we have

OF = 2Tﬂelt//(O)l2 %ZeRz = %ZezRZP/f O

which is the isomar shift.

8. Electric quadrupole interaction
\ 1
Hy,=H,"-ob = ng:Q_/kV_/k
J>

We are concerned only with the ground state of a nucleus. The eigenstates of the nucleus are
characterized by the total angular momentum /, of each state, 2/+1 values of a component of
angular momentum. According to the Wigner-Eckart theorem (which will be discussed in detail),
the Hamiltonian can be rewritten as

<I,m|ij

I,m') = C([,m|%(1j1k+1k1j) -6, 1’

I,m'>

where C is a constant. We define C as follows, using the quadrupole moment eQ,

eQ =(11|0..|1,1)=C(1,I31* - I*)|1,I)=C[3I° = I(I +1)] = CI(2] - 1).
or
I
121 -1)

The quantity eQ is the expectation value of

13



Q.=30.-0.-0,-0.= I drp,(r)(3z* =17)
over the state in which the z component of I is /. We note that eQ = 0 for I = ".

9. Hamiltonian of the electric quadrupole (general case)
We introduce

I, =1 =*il

+ =4,y
V., = l(Vxx -V, )xiv,
2
where we take the principal axes as the coordinate system,
VeV, +V.=0

The Hamiltonain can be rewritten as

oo @
© 41021 -1)

+ 1V, +17%7,]

[(3IZ2 ~ YW+ 1 +1 1) +(I_ I +11)V,+

Here we choose the z, y, and x axes so that

%

zz

%

XX

2‘V ‘2

Yy

and define eq and 7 (asymmetric parameter)as

Then we have

_eZLQ N/ ) 2
0= G L T+ U L)

__ 90 o .0 o
—41(21_1)[312 I(I+1)+2(I+ +17)]
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where I>1.

10. Example
Suppose that I =3/2 (*’Fe): O =0.21 barn.
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(1) Eigenvalue

2

1
2 e’q0,|1+ % (degenerate)

with eigenvectors (not normalized) given by
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(11) Eigenvalue

2

1
Zequ 1+ % (degenerate)

with eigenvectors (not normalized) given by

. [ 2 [ 2
(0,2 HNEEN {M,O,I,O}
n

’ n

The energy level of 7 = 3/2 splits into the two levels (both degenerate). The energy difference of
these two levels is

1 2
AEQ =Eez|q|Q l+%

Y

o | —

Fig. The splitting of the energy level of 7 = 3/2 due to the electric quadrupole moment. The

1 2
hyperfine splitting is neglected. AE,, = Eez|q|Q 1+%

((Mathematica))

16



Clear["Global *"]; j0 =3/2;

exp *iz=exp /. {Complex[re , im ] »» Complex[re, -im]};

1
Jx[7 , n , m] :=— v (7/-m) (/+m+1) KroneckerDelta[n, m+ 1] +
- 2

1
— V (#/+m) (/-m+1) KroneckerDelta[n, m-1];
2

1
=i (/-m) (/+m+1l) KroneckerDelta[n, m+1] +
2

Jyl[7_,n_, m ] :

1
— i1V (/+m) (/-m+1) KroneckerDelta[n, m-1];
2

Jz[7_, n_, m_] := mKroneckerDelta[n, m];
Jx=Table[Jx[j0, n, m]/ {nl jol _jol '1}/ {ml jol _jol '1}];
Jy=Table[Jy[j0, n, m]/ {n/ jol _jol '1}/ {ml jol _jol '1}];
Jz = Table[Jz[m0, n, m], {n, jO, -jO0, -1}, {m, jO, -30, -1}];
El = IdentityMatrix[4]; Jp = Jx + 1 Jy;
Jdm = Jx - 1iJy;
el?qlol
Al=—"—"—;
4 j0 (230-1)
]
H1 = Al (3 Jz.Jz-3j0 (jO+1) E1 +— (Jp.Jp+Jm.Jm)) // Simplify;
2
H1l // MatrixForm
2
1 2 el® qloln
1 101
, et ate 0 V3 0
1 42 el2ql0lp
- 1 101
0 , et ate 0 RVE)
e12 g1 01y 1124101
av3 0 , ethatoe 0
2
0 el~gloly 0 1e12q101
VE) , ethate

Eigensystem[H1] // FullSimplify

_el2qul\/3+r]2

el? g1 Q1 4/ 3 + n?

{1

4+/3 ’ a3 ’
el? g1 Q1 4/ 3 + n? el2qul\/3+r]2}
RVEY ’ VEY ’

_\/?+\/3+172 0

{{o, 1)

{o

((Experimental data))
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Wertheim and Herber [4].

G.K. Wertheim and R.H. Herber, J. Chem. Phys. 38, 2106 (1963).
11. Zeeman splitting

H,=-p B=-gu,l B=-gu,mB

withm =1,1- 1, -2,....., -I. The magnetic moment of the nuclear spin is given by

p=yhl =gu,l
where y is the gyromagnetic ratio (the ratio of the magnetic moment to the angular momentum),

Y= guyl _ gy
nl 7

The Landé g factor: g0 (for / = 3/2) and g,<0 (for I = 1/2); g = 0.103, g, = -0.18. The

selection rule is given by Am = 0, =1, and Al = 1 (dipolar transition) because of the matrix
element

<'//_/ ‘Hdipole ‘/’i>

where H is the dipolar interaction. There are 6 lines observed for the Mossbauer

measurement of °’Fe

dipole

18
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((Experimental data)) O.C. Kistmer and A.W. Sunyar, Phys. Rev. Lett. 4, 412 (1960).
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FIG. 1. The absorption by Fe*? bound in Fe,03 of the 14 .4-kev gamma ray emitted in the
decay of FeS7” bound in stainless steel as a function of relative source-absorber velocity.
Positive velocity indicates a motion of source toward absorber.

Fig. The data from O. C. Kistmer and A. W. Sunyar, Phys. Rev. Lett., 4, 412(1960). The
energy levels of the iron nucleus, contained in an ordinary iron sample, are split by the
nuclear Zeeman effect. The spectrum shows the transitions for *’Fe in Fe,Os. The
splittings are some 11 orders of magnitude smaller than the nuclear transition energy;

19



le()*“_
14.4keV

12. Magnetic hyperfine interaction
Even in the absence of an external magnetic field, the effective magnetic field H,  arises in

the form of molecular magnetic field through a hyperfine interaction.

16 16
Ho =iy O (), = mnn(s),

where <s> ,» 1s the average of electron spin vector in thermal equilibrium.

2
A7 =|w(0)|
10. Selection rules

|I€9m€97[€>

le,m,L>

Fig.  Transition from the excited state to the ground state and the radiation field.

The j-ray is emitted on the transition from the excited state to the ground state. The excited state
and the grounds state are specified by the angular momentum (%/) and the parity. In this

20



transition, the angular momentum is conserved. Suppose that AL is the angular momentum of the
j-ray.

Since y radiation arises from electromagnetic effects, it can be thought of as changes in the
charge and current distributions in nuclei.

Charge distributions resulting electric moments
Current distributions yield magnetic moments

Gamma decay can be classified as magnetic (M) or electric (E)
E and M multipole radiations differ in parity properties
Transition probabilities decrease rapidly with increasing angular-momentum changes
as in f-decay
Carries of angular momentum
L=1234
2L —pole (dipole, quadrupole, octupole...)

Shorthand notation for electric (or magnetic) 2% —pole radiation

E\or My
—F> is electric quadrupole

Ii+ Iy > I > |[; - I, where /; is the initial spin state and /r is the final spin state. If initial and final
state have the same parity electric multipoles of even / and magnetic multipoles of odd 7 are

allowed

If different parity, the opposite is true

In general, a gamma transition between two nuclear levels of spin /1 and /> must conserve the z
component of the angular momentum, i.e., the angular momentum, L, carried off by the

I, -L|<L<I+I,

21



However, L cannot be zero. A transition for which L = 1 is called a dipole transition. If it is
accompanied by a change in parity, it is a magnetic dipole M; transition. If not, it is a electric

dipole, E1, transition.

For a given L, transitions between sublevels are limited to those with |Am| < L, and of course

to those with proper parity change.

Table

2 -pole L Parity change
Dipole 1 No

Dipole 1 Yes
Quadrupole 2 Yes
Quadrupole 2 No

Transition

11. Clebsch-Gordon co-efficient
Here we have the relation

Jodui o)y =" jis dysmysmy ) s jyimysmy| s o jam)

ml ITLZ
where we use the closure relation.

22|jl’j2;ml’m2><j1’jz;m1,m2| =1:

<j1,j2;ml,m2 |j1,j2;j, m>: Clebsch Gordan co-efficient

(1) The co-efficient vanishes unless m = m;+m.

((Proof))

Note that
(jz _jlz _j2z)j1’j2;j’m>:0
<j1’j2;m1’m2 jz _jlz _j2z jl’j2;j’m> =0
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or
(m—my = my)( i, Josmymy| oo jo3 jom) = 0

Form —m, —m, # 0,
(Jos sy oo jos jom) =0

(2) The co-efficieny vanishes unless
ETAEVEV YA

triangle inequality, which tells us the possible range of values of j when we add two angular
momenta j; and j, whose values are fixed.

((Proof))

For a proof of the triangle rule, let us consider the possible values of m. Since m = m| +m,,
its maximum value is j; + j,. The value is realized for the single state | JisJas Jis j2> . The total J of
this state is j = j;+ jo. The next highest value of m, j; + j,-1 is realized for the linear
combinations of two states in the wuncoupled representations; | JisJas i =1, j2> and
|j1,j2;j1,j2 - 1> . One of the linear combinations belongs to j =j; +j, and the second one to j = j;
+jy- 1.

For m = j; + j, - 2, there are three linear combinations of the three uncoupled states;

i Jsdi =2 42) s | s Josdi =1, j, = 1), and | ji, jy; jis o — 2), corresponding to three of /, j =1 + Jj,,

J=j1tja-landj=jy +jp - 2.

If we continue this process, we can see that each time we lower m by 1, a new value of j
appears. The argument continues until we reach a stage where we can no longer go one more
step down in one of them to make new states. We assume that j;>j,.

J=j1 s m=j1+ ) j1 i1, s -G +2)
J=i1tj2 - Lm=j1+jo-1,j1 +j2-2,..-(j1 T jo -1),

23



J=J1-Josm=j1 -2, j1-Jo-1s ceeies =(j1 - J2).

Here we show that if the triangle rule is valid, then the dimension of the space spanned by

{|Ji>J»;j,m) } is the same as that of the space spanned by{| ji, j,;m,,m,) }.
For the (my, m,) way of counting, we obtain N = (2j; +1) (2j,+1).

As for the {j, m) way of counting, note that for each j, there are (2j+1) states. According to
the inequality (Ij1 —j2|£j <J,+J,),Jj runs (we assume j;>j,) fromjj - j, to j; + .

Jitia Jita J1=J2
N= > (2j+D)=D.2j+D)- D (2j+)
J=ii—J2 Jj=0 j=0

G+ o+ 0G0 = @) 4D 4D
((Note))
Dy x Dy, =D, ) + D+t
where
D, sJ=j1tjasm=j1+j2j1 )L s -1 +)2),
D;.,si=h tirlim=j1 +jo-1j1 )22, .., -Gy +jo-1),
By, g =V-salsm =iy -l iy =721 s =iy =20,

The Clebsch-Gordan coefficients form an unitary matrix. Furthermore, the matrix elements are
taken to be real by convention. A real unitary matrix is orthogonal. We have the orthogonal
condition.

<j1,j2,j,m|j1,j2,m1,m2> =<j1,j2;m1,m2 jl’jz;j’m>* =<j1,j2;m1,m2 jl’jz;j’m>

Closure relation

24



<j1,j2,m1,m1 j17j27m1'7m2'> = Z<j1,j2;m1,m2|jl,jz;j,m><j1,jz;j,m|j1,j2;m1',m2'>

Jj,m

=2 (s dasmysmy | is s Jom) i o sy | s o3 Jom) = 8B

Jj,m

or
D (s sy | i jos jom) s osmy'smy'| iy oz Jom) = 6, 8, 0
Jj.m

Similarly,

D Uis dosmismy | i jos Jom) i sy | i jys j'sm) = 8, .6,

my,m,

As a special case of this, we may set j =j', m' =m =m + m,.

2
ZKJl’JZ;mI’mZ|J1’J2;J’m>‘ =1
my,m,
m=m; +m,

which is just the normalization condition of | JisJas j,m> .

13.  Addition of angular momentum: Mathematica

In Mathematica we use the notation given by

<j1,j2;m1,m2|jl,j2;j,m>—> ClebschGordan[ {j1,m1},{j2,m2},{j,m}]
|j1,j2;j,m>—> CG[{), m}, ji,)2]
|j1,j2;m1,m2> a(j,,m)b(j,,m,)

For example, we consider the case of j1=3/2 and j>=1/2;j =2 and j = 1.

D,,,xD,,, =D, +D,
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j1=3/2 and j2=1/2

Clear["Global *"];

CCGG[{j1 , m1 }, {j2_, m2_}, {j_, m_}] :=
Module[ {sl1},
sl = If[Abs[ml] < j1&&Abs[m2] < j2 && Abs[m] < 7,
ClebschGordan[{j1, m1}, {j2, m2}, {j, m}], O]]

CG[{j_ , m }, j1_, j2_] :=
Sum[CCGG[{jI, ml}, {j2, m-ml}, {j, m}] a[jl, ml] b[j2, m-ml], {ml, -j51, j1}]

CG[{2, 2}, 3/2, 1/2]

3 3 1 1
2[5 2 1pl30 3]

CG[{2, 1}, 3/2, 1/2]

1 3 3 1 1 1 3 1 1 1

2alyr glely g leg Vs el Jlelg 5]

CG[{2, 0}, 3/2, 1/2]

a2, 4] b[3, 1] al2 1]
+

Z vz

CG[{2, -1}, 3/2, 1/2]

1 3 1 1 1 1 3 3 1
Eﬁa[gl *—}b[gl *5%— a[;, *g}b[—'

26



CcG[{2, -2}, 31, j2]

1 1 3 3
o p el

CG[{2, 1}, 31, j2]
éﬁa[éé}b[gé 2 '2 é 2
CG[{2, 0}, 31, j2]

a3 3]b[2, -3] all, -]l

Jz vz

CcG[{2, -1}, 31, j2]

1 1 1 3 3 1 1 1 3 1
el olely gl s el Sl -]

ce[{1, 1}, 31, 32]

1 1 1 3 1 1 1 1 3 3
2oz glel gl e aly 5 leln
CG[{1, 0}, 31, j2]
o3 2182 2] ald -2l 2

Vz vz

CcG[{1, -1}, 31, j2]

1 1 1 3 1 1 1 3 1
2 ey olel 5l-g el Sl -

14. Conventional notations of ket vector.

Forj=2,
|J=27m:2>: iai lal for m =2
2 2/12°2
1 1 1 I\1 1
amety A2 3L L) 313 11 for 1 =1
212 °2/|12 2 212 °2/12°2



| j=z’m=_1>=£‘z,_1>‘1 _1>+1‘z _z>‘1,1> for m =1

2127 2/[27 2/ 2[27 2/[2°2
|j=2,m=—2>= i,—i l,—l for m =-2
27 2/|27 2
Forj=1
N33 3\[1 1\ 13 1\1 1
|j=lm=1)=—"|=, =)= —)——|=, = )l=.= form =1
2(2°2/|27 2/ 2(2°2/|2°2
1 1\1 1 1 1\[1 1
|] 1,m=0>=— é,— S P — é,—— —,— form=20
J212°2/12° 2 2127 2/|12°2

e lme_p) =L
|]—1,m— 1> >

301\1 1\ V3|3 3\[11
— =)= =) == )<= form = -1
2 2»2 2> 2|2 2»2 2>

15.  Symmetry relation for the Clebsch-Gordan coefficient
We replace the operator equation

Jo+J,=J

J,==J,+J=J +J

is the time reversed angular momentum. These results suggest that the Clebsch-Gordon
coefficient <j1,j;—m1,m|j1,j;j2,m2> may be related to <j1,j2;m1,m2 jl,jz;j,m>. In fact, we

have the symmetry relation (1),
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or

ajijrjam | 2da 1, ...
<j1,j;—m1,m|j1,j;j2,m2>=(—1) ST 2];—_:_1<]1’]2;m1’m2 ]1’]2;]’m>

((Note)) The detail of this formula is presented in the following reference.

M.E. Rose, Elementary Theory of Angular Momentum (Dover, New York, 1957, 1995).
A.R. Edmonds, Angular momentum in quantum mechanics p.42 (Princeton University Press,
1957)

((Mathematica))
The proof'is given here for the case of j1=3/2 and j» =1/2. /=1, m=1,0, and -1.

= j1=3/2 and j2=1/2

Clear["Global *"]; CCGG[{jl , m1_}, {j2_ , m2 }, {j_, m_}] :=
Module[{sl},
sl = If[Abs[ml] < jl1 & Abs[m2] < j2 && Abs[m] < 7,
ClebschGordan[{j1, mi1}, {j2, m2}, {j, m}], 01]1; ji1=3/2;
j2=1/2;

L=1;

Table[{ml, m2, ml+m2, CCGG[{j1, -ml}, {L, ml+m2}, {j2, m2}],
N232+1
V2L+1
(m2, -32, 32, 1}

(-1) 72 IRz CCGG[{j1, ml}, {32, m2}, {L, ml+m2}]}, {ml, -31, 31, 1},
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L=1;
Table[{ml, m2, ml+m2, CCGG[{j1, -ml}, {L, ml+m2}, {j2, m2}],
V232+1

V2L+1
(m2, -32, 32, 1}]

(-1) 78Rz ccee[{31, ml}, {32, m2}, {L, ml+m2}1}, {ml, -31, 31, 1},

3 1 3 1 1 1
-5 -5 -2 000 {-5. 2, v ;E;}},

1 1 1 1 1 1 1 1
T - FR ST T I Ty O
HE T _i} {_1 i, 1 _1}}

2" 2" 7T 3t o3ttt 2" T e T e
(S5 oo e 200 0)))

L=2;

Table[{ml, m2, ml+m2, CCGG[{jl, -ml}, {L, ml+m2}, {§2, m2}],

Vv232+1

Yv2L+1

(-1) 72 IEoEaz e ceGG[{31, ml}, {32, m2}, {L, ml+m2}]}, {ml, -31, 31, 1},

{m2/ 'j2/ j2/ 1}

[ S—

(1) We replace the operator equation

J +J,=J

<
Il

~
+
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These results suggest that the Clebsch-Gordon coefficient < Jis Jas—m, ,—m2| JisJ2s j,—m> may be

related to < Jis Jasmy,m, | JisJas j,m>. In fact, we have the symmetry relation (II),

<j1a Jasmy,m, |j1aj2;ja m> = (_1)j1+jz_j<j1a Jas—my,—n, |j1a j2;j,—m>
((Formula)) M.E. Rose Elementary theory of angular momentum, p.38 (Dover)

<j1,j2;m1,m2 |j1,j2;j,n’l> = (_1)j1+j27j<j1aj23_m1a_m2 |j1,j2;j,—n’l>
= (=D (s Jismysm] oo i Jom)
2j+1

=(=1 Ji—m,
D 2j,+1

<j1,j;m1,—n’l|j1,j;j2,—m2>

16.  Intensity of the the j~ray transition

If the j~ray transition is between two levels of nuclear spin /1 and I, and furthermore
between the two substates with I, values of mi and mo, respectively, then the angular-
independent probability term is given by the square of the appropriate Clebsch-Gordon
coefficient,

. . . . . . 2 2
Intensity ocK]l,];—ml,m, ]1,];]2,m2>‘ =‘<11,L;—m1,m, II,L;IZ,m2>‘
L =1 is a dipole transition and L = 2 is a quadratic transition. If there is no change in parity
during the decay it is classified as magnetic dipole (M1) or electric quadrupole (E>). Electric

dipole (E1) transitions with a change in parity also come within our scope.
Using the above formula (symmetry rule), we get

2L+1
(1, 0ysmymy | 1,1 Lom)| = 2[;1\<11,L;—m1,m, 1,L:0,m,)

b

or

The results of the Clebsch-Gordan co-efficient are summarized as follows.
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Table-1 [=1.

3 I
/ m mi my <[1 ZE,Z;—ml,m [1al;[2 :E,mz>
| | L 3
2 2 6
| 1 1 1 1
2 2 6
| 0 1 1 2
2 2 6
| . 1 2
2 2 6
| 1 1 1 1
2 2 6
| 1 3 1 3
2 2 6
Table-2 [=2.
1 2
/ m mi my <[1 ZE,Z;—ml,m [1al;[2 :E,mz>
) ) 301 4
2 2 10
) | 3 1 1
2 2 10
) | [t 3
2 2 10
) . 1 1 2
2 2 10
) . 1 2
2 2 10
) P | 3
2 2 10
) 1 3 1 1
2 2 10
) P B | 4
2 2 10
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17.  Angular dependence for /=1
The intensity including the angular dependence is given by

3 1
I, =5,Z;I2 =5,m2>

2

O(l,m)

K[l =§,l;—m1,m,
2

where ©(/,m) is defined by

:‘d(”

1m

Ha0

1m

om)=Y|d0|’
e+l

dé;) is the element of the rotation matrix for the right-handed (+1) and left-handed (-1)

polarization. For m =1, 0, and -1, we have

1+cos’ @

O(l=1m=1)= \dm +|d \ ==

sin’ @

@(1:1,m=0)=\d<‘>\ +|d \ =2 =sin’ 6
@(l—lm— 1) ‘d(l) ‘d( ‘ _W
where the rotation operator for / =1 is given by
1+cos&’ s SIN G 1- cos&’
i e o i?
( ) N ( )
6’ sm&’
DV (0,¢) = sin cos® —
(0,9) 7 | A
,¢(1 cos&’) o sin@ ,¢(1+cosé’)
2
1)  Ol=m :il):%
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2)  ©O(=1,m=0)=sin"6

For ¢ =0, we have the rotation matrix as

1+cos@ _sinH 1—cos@

diy’(0) dy©) d6) 2 ) NG 2 )
DY(O,p=0)=|dP @) 4@ dP @) |= % cos  — %
dfll)l (@) dfll)o (0) dfll)*l (0) l1-cos@ sind 1+cosé@

2 V2 7
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18.  Angular dependence for /=2

o =2.m=Y|d2[
Emtl

:‘da)

Im

|

Im

d;)(0) d;7(0) dy)(©0) &H(0) d%5(0)
dy(©) d7©O) dif(©) d7©6) d%(0)
DH(O.4=0)=| dF(©®) d(©) dP©O) d©) )
d(0) d5i6) d5y0) d(0) d7,(0)
d%0) d%©0) d50) 45,0 d7,0)

O(=2m=2)=YdZ| =|a2| +|a3)| :i[3+cos(2(9)]sin2 0
&=l

O(l=2,m=1)= Z\dm\ _\d@)\ +d<f{\2:%[coszmcosz(ze)]
E=+1
O =2,m=0)= Z\dm\ _\d<2>2+\d(f3\2=%sin2(2e)

O(l=2,m=-1)= Z\dm\ _\dm \d@) =—[cos20+cos2(2e)]

O =2,m=-2)= Z\dm =|a®] +[a,| =%[3+cos(20)]sin20
where

dfy’ =-2cos’ [gj sin@j : d?) = %[—2 sin @ + sin(260)]

d = %[COS 0 +cos(20)], de) = %[cos 0 —cos(20)]
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dP = \Esinﬁcosﬁ,

d? = %[cos 6 —cos(26)],

d?) =sin’ [gj sind,

(1) O(l=2,m=%2)= %[3 +c0s(26)]sin’

di) = _\E sinfdcos

d? = %[cos 6+ cos(20)]
d?, = %[l +cos @]sin &

0

2 O(l=2m=1)= %[cos2 0 +cos’(20)]
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(3)  O(=2,m=0)= %snf(ze)

\ﬂj\/

19. Selection rules
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/ !
3 _ =
== 2
; /
AN 1
"2
3
2
14.4 keV 1 2 3 4 5 6
Am=1 Am=1
Am=0 Am=0
Am=-1 Am=-1
1
1 +=
S B :
™~ l
2
The parity of the state / = 3/2; Vs
The parity of the state /= 1/2, T
Magnetic: m; =)™
Electric: T = (-1

For 7, =, (the same parity), /=1, 3, 5, (magnetic) and 1 =2, 4, 6 (electric).

For 7, # = ; (different parity), /=1, 3, 5, (electric) and 1 =2, 4, 6 (magnetic).

Table-1 =1
[ m -mi m Relative intensity /
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1 1 -= —— I, =3(1+cos2 9)

1 1 -% % I, =1+cos’

1 0 -% —% I =4sin* @

1 0 % % I, =4sin’ 6

1 -1 % —% I, =1+cos’ 6

1 -1 % % I, =3(1+cos2 0)

The intensity ratio is given by
IR RY SRV YA =3(1+cos2 9):4sin29:1+00529:1+cos29:4sin29:3(1+cos2 9)
(1) When =0,
LA, 10, :1,=3:0:1:1:0:3
(i)  When 0= /2,
LAy L0, I =3:4:1:1:4:3

(11)  Powder pattern
Using the average values

Vi

cos’ @ =L.[cos2 027 sin0)do =l.[cos2 Osin o =l
4, 29 3

) 1 5., . 17

sin 9:—.[s1n 9(27zs1n9)d9=—.[s1n 0d9——
4, 29

we get the intensity ratio for the powder sample as
Ly L0, I g =3:2:1:1:2:3
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20. Resultant intensity for / = 2.

[ m mi m Relative intensity
3 1 .2 .2
2 2 — — 4sin” 0 +sin”(26)
2 2
2 1 — —= cos” @+ cos (20)
2 2
1 1 5 5
2 1 - - 3[cos” @+ cos™(20)]
2 2
1 1 .2
2 0 - —= 3sin”(26)
2 2
1 1 .2
2 0 —-— — 3sin”(26)
2 2
1 1 5 5
2 -1 —= —= 3[cos™ @ +cos (26)]
2 2
2 -1 —= - cos” @ +cos”(260)
2 2
3 1 . 5
2 -2 —-= —-— 2[3+cos(28)]sin” 6
2 2
APPENDIX
1 Rotation operator with j =1

((Mathematica)) Rotation matrix with j = 1
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Clear["Global #"];

exp *izexp/. {Complex[re , im ] :» Complex[re, -im]};

1 1
Jx[/ ,n , m] =~ Y (/-m) (7 +m+1) KroneckerDelta[n, m+1] +— « (7 +m) (/-m+1l) KroneckerDelta[n, m-1];
2 2

1 1
Jyl7 ,n , m] :=-—1 v (/-m) (/+m+1l) KroneckerDelta[n, m+1] +— ERY (7 +m) (/-m+1) KroneckerDelta[n, m-1];
2 2

Jz[/ , n_, m_] := mKroneckerDelta[n, m];
j=1;

Jx = Table[Jx[], p, al, {pP, 3, -3, -1}, {a, 3, -3, -1}]; Jy = Table[Jy[], p, al, {P, J, -3, -1}, {a, 3, -3, -1}];

Jz = Table[Jz[], p, al, {p, J, -3, -1}, {a, 3, -3, -1}]; Ry[& ] := MatrixExp[-i Jy &];
Rz[¢ ] := MatrixExp[-iJz 4] ;
Rl = Rz[¢]. Ry[6];

Rl/. ¢ » 0 // Simplify // TableForm

Cos[g"}z ——[—15%??9 Sin[f;"}z
51\739 Cos [@] _ Slfge
Sin [—;"}2 —[—15%:%9 Cos [—;"}2

The rotation operator with / = 1 is given by

s 1+cos@ sSIn@  _,, 1—cos@
ig _ ip ip
e'’( > ) e \ﬂi. e’ ( > )
R‘ — D(l) (0’ ¢) — Sln20 cose _ Slnze
.+ 1—cos®@ ., sin@ .+ 1+cos@
i ip U ellihtid
e (—2 ) e 72 e’ ( 5 )

The eigenkets | 1>

0>” , and |— 1>” are obtained as

”’

1+cos@
—e
2
sin®
V2 o0
1—cos@
—e
2

1, = A1) =

siné

e’
V2
cosd ,
siné

ig
e
V2
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1), = &-1)-

For ¢ = 0, the rotation operator is given by

1—cosé&
2

B sin @

\/5 s

1+ cosé

e’

€i¢

2

1+cos@ _sinH

1-cosé

R=d"(0)=

2 V2

sin@
cosd

NG

1-cosé&

sin@

2
siné

NG

1+cosé

2

NG

2

and

1+ coséd
2
sin@

NG

1-cosé

1—cosé&

2
siné
V2

1+cosé
2

-1, =R-1)=| -

2. Mathematica Rotation operator for / = 2.
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Clear["Global %"];

exp *:=exp/.

Jx[/ , n , m]:
g/, n, m]:
Jz[/ , n , m]:

j=2;

{Complex[re , im ] :» Complex[re, -im]};

1 1
= (/-m) (/+m+1) KroneckerDelta[n, m+1]+— v (/+m) (/-m+1) KroneckerDelta[n, m-1];
2 2

1

m KroneckerDelta[n, m];

1
-— i V(/-m) (/+m+1) KroneckerDelta[n, m+1] +— iV (/+m) (/-m+1) KroneckerDelta[n, m-1];
2 2

Jx = Table[Jx[]j, p, @, {P, 3, -3, -1}, {a, J, -3, -1}]1; Jy = Table[Jy[], p, 2], {P, 3, -3, -1}, {a, 3, -3, -1}1;
Jz = Table[Jz[], p, 9], {pP, J, -3, -1}, {qa, J, -3, -1}1; Ry[&€ ] := MatrixExp[-1Jy &];
Rz[4 ] := MatrixExp[-i Jz 4]

Rl = Rz[¢]. Ry[O];

Rl/.$->0//Simplify // TableForm

Cos[*i}4

—; (1 +Cos[6]) sin[6]

—;\ g sin[6]? l—g Cos[6] Sin[6] i

sm[fi}Q sin[6] (Cos[6] - Cos[26]) \E

sm[—i}‘J sm[—i}2 Sin[6] —; \/g sin[6]?
3. Spherical Harmonics as rotator matrices

Using the relation

|9{r> = 1A3|r>

)=o)

=R

= R.(#R,(0)
= ZRZ(¢)1%y(9)| Im")(Im'

Then

(in[n) = 3" (im

Here note that

e.)

A

m

-2 Cos[*i}3 Sin[?]

—; (Cos[6] +Cos[26])

e.)

e.)

R.($)R,(0)|Im")Im'

e.)

43

—le (-2sin[6] +Sin[2 6])

—; (Cos[6] -Cos[26])
—\E Cos[6] Sin[6]
—; (Cos[6] +Cos[26])

—; (1+Cos[6]) Sin[6]

Sin[f;}‘j

71; (-2 5in[6] +5in[26])



<n| lm> =Y"(n)=Y"(0,9)
or
<lm|n> =[Y"(6.9)]

(Imle.)=[Y"(0,4)] evaluated at 6= 0 with ¢ undetermined. At =0, ¥,"(6,4) is known to

vanish for m#0. Then we get

(Imle,)=[¥"(0=0,)]'8,,

,/2i+ P(cosf=1)5,,

_ 2€+15m0
47 ’

(Y7 0.1 =2 (Im|R.(H)R, @) m'){im'le. )

z<z R.(HR,(0)|Ims,, 1/” *1 (im|R.($)R, (0)]10)

2€+

or

5 5 I > - .
(im[R (DR (0]10) = | 3711 (0.9)]

Since
R (@)= expl— T 4]
we have
(Im|R_($)R,(0)]10) = <1m|exp[—%jz¢]1%y(9)|zo> =" (Im|R (9))10)
or
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& (im|R,(6)]10) = J%mmw, 2

or
(im|R,(0)]10) = ™ ATy,
g 20+1
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