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In 1958, Philips Anderson conceived the idea of electron localization. Beyond a critical 

amount of impurity scattering, the diffusive motion of the electron will come to a halt. Later 

work by Mott, Ioffe, and Regel predicted the transition to occur when the mean free path 

becomes shorter than the de Broglie wavelength. The localization has dramatic consequence for 

the conductivity. The system turns into an insulator. The concept of a minimum conductivity was 

deviced by Nevill Mott. However, his idea conflicts with the scaling theory of localization 

(Abrahams, Licciardello, Ramakrishnan, and Andderson) at the end of 1970's. The concept of a 

minimum conductivity is incorrect. The metal-insulator transition is continuous.  

Philip Anderson, Neville Mott, and John Van Vleck were awarded the Nobel Prize in Physics for his 

investigations into the electronic structure of magnetic and disordered systems. 

Here we discuss the Anderson localization based on the scaling relation. 

 

 
 

 

Fig. A non-interacting electron moving in random potential. The red dots denote impurities 

which are randomly distributed in the system. Anderson localization of electrons is the 

quantum interference of electron waves. A non-interacting electron in a random potential 

may be localized. 
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___________________________________________________________________________ 

Sir Nevill Francis Mott, CH, FRS (30 September 1905 – 8 August 1996) was an English physicist. He 

won the Nobel Prize for Physics in 1977 for his work on the electronic structure of magnetic and 

disordered systems, especially amorphous semiconductors. The award was shared with Philip W. 

Anderson and J. H. Van Vleck, who had pursued independent research. 

 

 
 

http://en.wikipedia.org/wiki/Nevill_Francis_Mott 

 

____________________________________________________________________________ 

Philip Warren Anderson (born December 13, 1923) is an American physicist and Nobel 

laureate. Anderson has made contributions to the theories of localization, antiferromagnetism 

and high-temperature superconductivity. Anderson was born in Indianapolis, Indiana and grew 

up in Urbana, Illinois. He graduated from University Laboratory High School in Urbana in 1940. 

Afterwards, he went to Harvard University for undergraduate and graduate work, with a wartime 

stint at the U.S. Naval Research Laboratory in-between. In graduate school he studied under 

John Hasbrouck van Vleck. From 1949 to 1984 he worked at Bell Laboratories in New Jersey, 

where he worked on a wide variety of problems in condensed matter physics. During this period 

he discovered the concept of localization, the idea that extended states can be localized by the 

presence of disorder in a system; the Anderson Hamiltonian, which describes electrons in a 

transition metal; he also claimed to have discovered the "Higgs" mechanism for generating mass 

in elementary particles; and the pseudospin approach to the BCS theory of superconductivity. He 

was elected a Fellow of the American Academy of Arts and Sciences in 1963.] From 1967 to 

1975, Anderson was a professor of theoretical physics at Cambridge University. In 1977 

Anderson was awarded the Nobel Prize in Physics for his investigations into the electronic 

structure of magnetic and disordered systems, which allowed for the development of electronic 

switching and memory devices in computers. Co-researchers Sir Nevill Francis Mott and John 

van Vleck shared the award with him. In 1982, he was awarded the National Medal of Science. 

He retired from Bell Labs in 1984 and is currently Joseph Henry Professor of Physics at 

Princeton University. Anderson's writings include Concepts of Solids, Basic Notions of 
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Condensed Matter Physics and The Theory of Superconductivity in the High-Tc Cuprates. 

Anderson currently serves on the board of advisors of Scientists and Engineers for America, an 

organization focused on promoting sound science in American government. He is a certified first 

degree-master of the Chinese board game Go. A 2006 statistical analysis of scientific research 

papers by José Soler, comparing number of references in a paper to the number of citations, 

declared Anderson to be the "most creative" physicist in the world.  

 

 

 
 

__________________________________________________________________________ 

1. Minimum conductivity (Mott) 

In 1958, Anderson proposed a theory on electron localization. This theory did not attract 

wide attention immediately. In 1978, Mott suggested that when the concentration of impurities 

reaches a certain level, localized electron waves start overlapping with each other and form a 

continuous impurity band. The bottom of this band is still localized so that there exists a sharp 

boundary between the localized and extended states. Hence, the mobility of electrons is finite if 

the electron energy is above a critical value c, and is zero below. When the energy is decreased 

toward the critical value, the conductivity will decrease until it reaches a minimum value min, 

below which it drops to zero. There is some discontinuity in change of the conductivity at c.  
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Fig. Conductivity vs electron energy for the 3D disordered system. The red line shows 

the continuous transition prediced from the scaling theory. The dashed line is 

prediction of the minimum conductivity (Mott).  

 

The idea of Mott for the minimum conductivity is as follows. For the system with a 

dimension d, the electron number density is on the order of 
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where  is the relaxation time of electron. The minimum conductivity is obtained as 
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when kFl = 1 (the mobility edge). This conductivity is called the minimum conductivity. The 

conductivity discontinuously jumps from this value to zero.  

However, the scaling theory of localization proposed by Abrahams et al. showed that it was 

incorrect. The conductivity should decrease continuously to zero. Our understanding on in 

Anderson localization has been has been greatly enhanced by the scaling law. 

 

2. Scaling theory (gang of four, 1979) 

If the system is macroscopic, the conductance should be proportional to the cross-section 

area and inversely proportional to the length L. In d dimensions, the cross-section area is 

proportional to Ld-1. Then we get the conductance G(L) as 
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where  is the conductivity, which is independent of L. We define the Thouless number g as 
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(Thouless number is the dimensionless conductance), where the unit of e2/h is -1.  

We now consider the case when the length L of the system is changed into L’. 
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For an arbitrary length L’, the conductance is assumed to obey the scaling form 
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where F is a universal function which is independent of the microscopic structure of the system.  
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where f is also a universal function. Here we assume that  is continuous variable. Then we get 
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We need to determine the form of (g), which is a universal function.  

When (g)>0, g(L) increases with increasing L.  

When (g)<0, g(L) decreases with increasing L. 

 

3. The form of )(g  in the metallic limit 

In the ordinary metallic region where g>>1,  
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Then we have 
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As the disorder increases, g will decrease and eventually vanish (insulator). For large systems, 
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(Pichard’s formula). Then we have 
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where g<<1. 

 

If we assume that (g) is a smooth monotonic function of lng, we get the schematic diagram 

shown below. From this figure, we can conclude that in 3D (g) intersects the  = 0 axis at a 

certain g = gc. Around the value of gc, g(L) continuously approaches zero with no finite 

minimum metallic conductivity.  

 

 

 

Fig. Schematic diagram of  as a function of g for d = 1, 2, 3. A critical point exists at 

g = gc for the d = 3 case. 

 

((Conclusion)) Scaling theory 

 

1. For d = 3, there exists a mobility edge at which the conductivity continuously reduces to 

zero. This implies that there is no minimum metallic conductivity. 

2. For d = 3. both extended and localized states can exist.  

3. For d = 2, there is no true metallic conduction in that, in the limit of infinite system size, 

all the states are localized no matter how small the randomness. The conductivity always 

decreases in the form of -ln(L) in two dimensions (weak localization regime). 

 

4. d = 1 case 
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Note that in d = 1, we can calculate g( ), using the Landauer formula, 
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From this, we get 
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Fig. Exact solution for (g) vs lng for d = 1. 

 

5. Integrating the function  (d = 2): weak localization regime 

In d = 2, there is no fixed point. In the Ohmic limit (g>>1), we have 

 

g

c
g   )( , 

 

where c is a constant (Hikami 1980, 1981). Then we get 
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When L = l, lkg F , which can be derived from the Drude model (see later section). So we 

choose 

 

L0 = l,  g0 = kFl. 

 

or 
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We see that the localization length  is the value of L for which the correction term is on the 

same order as kFl, 
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A first principles treatment yields 
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The metallic regime in d = 2 is called the weak localization regime. 
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The first term comes from the Drude model. The second term comes from the quantum 

interference. As the impurity concentration increases, the interference of electron waves going 

around the impurities becomes more and more important. Hence, in order to approach the regime 

of weak localization, it is necessary to improve the Drude model. 
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6. Weak localization regime 

(i) Temperaure dependence of conductivity 

At finite temperatures, inelastic scatterings are present and introduce a finite inelastic 

scattering length 
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where   is the inelastic scattering time and D is the diffusion constant. At low temperatures   is 

expressed by 
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where the exponent p is between 1 and 2, and  is a constant. Then we get 
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The logarithmic term (lnT) appears as a result of quantum interference of electron waves. Such a 

behavior was first observed experimentally in thin metal films (Dolan and Osheroff 1979).  

 

(ii) Negative magnetoresistance 

The phase of a wavefunction changes appreciably over the magnetic length scale 
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Then the conductance increases with increasing H through a logarithmic term. In turn, the 

resistance decreases with increasing H (negative resistance). 

 

7. Drude model for d = 2 

According the Drude model, the sheet resistance, i.e., the resistance of a square segment of the 2D 

electron gas, can be written as 
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where l = vF  is the mean free path. The sheet density ns is defined by 
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where N is the total number of electrons below the Fermi energy F, 
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The sheet resistance is defined by 
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Using the mean free path l = vF , we get 
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since 
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The conductance G is 
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The corresponding Thouless number is 
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((Note)) For d = 2,  
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___________________________________________________________________ 

8. Integrating the function  (d = 3) 

For d = 3, we do not know the precise form of b(g). So we approximate it piecewise: 
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where (g) = 0 at g = gc. This point is called a fixed point. From the condition of continuity, we have 
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9. Mobility edge 

On the metallic side of the transition near the fixed point, a linear variation may be assumed; 
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where a is a constant. In order to incorporate the asymptotic property that 
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Although this form specifies a special approach to the asymptotic value, the final result we will obtain is 

independent of this special form.  
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where a macroscopic length L0 is much larger than L. We define the exponent  as 
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The result of integration is 
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For the macroscopic L0, we have 
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We choose L such that g(L) is sufficient close to gc. Since g(L0) is much larger than gc, we get 
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Under the assumption that the conductance is proportional to the electron energy, one can rewrite 

this equation in the form 

 

  cc   

 

where c represents a mobility edge. At this edge, the conductivity is expected to vanish rather 

than to approach a constant. The critical exponent  is predicted to be equal to 1. Experimentally 

 = 1/2 was reported. 

 

10. Drude model for d = 3 

The electron number density n is defined by 
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where N is the total number of electrons below the Fermi energy F, 
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Using the mean free path l = vF , we get 
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Then g(L) is proportional to the energy of electron . 
_________________________________________________________________ 
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