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1. Introduction

Since 1930’s, it has been well-known that at very low temperatures the metals with magnetic
impurities exhibits an anomaly in the temperature dependence of their electrical resistivity; instead of the
generally known decrease of resistivity with lowering temperature, it increases with decreasing
temperatures. This effect is named as the Kondo effect, after Kondo (Jun). In 1964, Kondo has succeeded
for the first time in explaining using the perturbation method, with scattering of electrons on magnetic
impurities taken into account. In 1981, the exact solution of the Kondo problem was obtained later, by N.
Andrei and Paul Wiegmann, separately. Note that the methods and ideas (by Abrikosov,
Nozieres ,Wilson, Yosida, and et al.), which were needed to explain the Kondo effect, had played the
most important role in studying the fundamental phenomenon of the electron localization- a part of
modern physics and physical application.

In this note I do not intend to present various kinds of theories on the Kondo effect. It is beyond my
ability. I am interested in the experimental results. I have been doing research on the spin glasses,
experimentally using the techniques of aging dynamics. When one starts to read typical books on spin
glass (such as Mydosh) as beginner, one may encounter excellent experimental data on canonical spin
glasses (for example, Cu host diluted with magnetic impurity such as Mn or Fe). When the concentration
of the magnetic impurities is extremely dilute, it is found that the systems show Kondo effect. The
magnetic impurity is isolated from other magnetic impurities. The antiferromagnetic interaction between
the spin of the conduction electron and the spin of magnetic impurity (the s-d interaction) leads to the
Kondo spin singlet. The magnetic moment will vanish below a characteristic temperature, Kondo
temperature 7k. Although there is no phase transition at this temperature, the pair formation of
antiparallel alignment of spins look so similar to the Cooper pair in BCS theory (spin singlet with orbital
angular moment L = 0).



Fig. Isolated localized spins in a sea of conduction electrons, forming the singlet state of antiparallel
alignment of conduction electron spin and the spin of magnetic impurity.

When the concentration of magnetic impurities is slightly increased, the system becomes a spin glass.
The interaction between the magnetic impurities which is the so-called the RKKY (Ruderman-Kittel-
Kasuya-Yosida) interaction, plays an important role in spin glass behavior. The interaction between the
magnetic impurities arises as a result of the interaction between the magnetic impurity and the conduction
electrons. The sign of the interaction shows oscillatory change depending on the distance. The
competition between the antiferromagnetic and ferromagnetic interactions leads to the fully frustrated
nature of spin glass.

My first encounter with the Kondo effect occurred when I read the book of Thermoelectricity which
was written by D.K.C. MacDonald. He showed a lot of excellent data of the thermoelectric power and
electrical resistivity for canonical systems (for example, Cu host diluted with magnetic impurities). The
temperature dependence of these two quantities are extremely sensitive to the concentration of magnetic
impurities in the limit of dilute range. Even at the present stage, I am not sure whether the temperature
dependence of the thermoelectric power as shown in the book of MacDonald, can be well explained.

2. Kondo effect and Jun Kondo
The Kondo effect is an unusual scattering mechanism of conduction electrons in a metal (such as
noble metals) due to magnetic impurities9such as Mn, Fe), which contributes a term to the electrical
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resistivity that increases logarithmically with temperature as the temperature is decreased [as In(7)]. It is
used to describe many-body scattering processes from impurities or ions which have low energy quantum
mechanical degrees of freedom. In this sense it has become a key concept in condensed matter physics in
understanding the behavior of metallic systems with strongly interacting electrons.

The Kondo effect is normally observed in very dilute magnetic alloys as a result of the interaction
between the host conduction electrons and the magnetic impurity spins. In its ideal form, it is a single-
impurity effect and leads to the rise of the electrical resistivity as the temperature is lowered down to zero
temperature. It can be described by an effective interaction which increases with decreasing temperature
and finally leads to a single state formed by a single impurity spin and the spins of the surrounding
conduction electrons (Kondo, Nozieres, Wilson). At larger concentrations, the impurity-spin interaction
becomes significant and leads to a partial destruction of single state. The impurities again become
magnetic, leading to a spin glass for typically, a few percent magnetic impurities.



Fig.  Picture of Prof. Jun Kondo
http://www.aist.go.jp/aist_j/information/emeritus_advisor/index.html

3. Experimental results

In 1934a resistance minimum was observed in gold as a function of temperature (de Haas, de Boer
and van den Berg 1934), indicating that there must be some additional scattering mechanism giving an
anomalous contribution to the resistivity--- one which increases in strength as the temperature is lowered.
Other examples of metals showing a resistance minimum were later observed, and its origin was a
longstanding puzzle for about 30 years. In the early 1960s it was recognized that the resistance minima
are associated with magnetic impurities in the metallic host --- a magnetic impurity being one which has
a local magnetic moment due to the spin of unpaired electrons in its atomic-like d or f shell. A carefully
studied example showing the correlation between the resistance minima and the number of magnetic
impurities is that of iron impurities in gold (van den Berg, 1964). In his book entitled Thermoelectricity,
An Introduction to the Principles (first published in 1961 from John & Wiley), MacDonald (D.K.C.)
showed various kinds of experimental results of electrical resistivity and thermoelectric power for noble
metals (Au, Cu) diluted with magnetic impurities such as Mn and Fe. The electrical resistivity of Cu
diluted with Mn or Fe clearly shows a local minimum at low temperatures. The temperature dependence
of the thermoelectric power at low 7 is extremely sensitive to the amount of the magnetic impurities; Au
diluted with Mn.
(a) Electrical resistivity
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Fig. Electrical resistivity of Au with Mn as solute. The nominal atomic concentration of Mn is
indicated on each curve. (D.K.C. MacDonald, Thermoelectricity, Dover, 2006).
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Fig.  Electrical resistivity of Cu with Mn as solute. The nominal atomic concentration of Mn is
indicated on each curve. (D.K.C. MacDonald, Thermoelectricity, Dover, 2006).
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Fig.  Electrical resistivity of Cu with Fe as solute. The nominal atomic concentration of Fe is indicated
on each curve. (D.K.C. MacDonald, Thermoelectricity, Dover, 2006).

(b) Thermoelectric power
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Thermoelectric power at low T of Au alloys with a range of transition metals as solutes. Each
alloy has a concentration of 0.2 nominal atomic percent as solute of the transition metal indicated
on the curve. (D.K.C. MacDonald, Thermoelectricity, Dover, 2006)
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Fig.  Thermoelectric power at low 7 of Au alloys with Mn as solutes. The nominal atomic
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is particularly striking. (D.K.C. MacDonald, Thermoelectricity, Dover, 2006).
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4. Spin glass region for canonical systems
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Fig. Various concentration regimes for a canonical spin glass (such as host Cu diluted with Mn)
illustrating the different types of magnetic behavior which occur. (J.A. Mydosh, Spin Glass,
Taylor & Francis, London, 1993)

The concentration is one of the most important factors in determining the magnetic state of the alloys.
We show a schematic diagram for various concentration regime division. At the very dilute magnetic
concentration (ppm) there are the isolated impurity-conduction electron coupling leading to the Kondo
effect. This localized interaction (if J<0) causes a weakening or fluctuation of the magnetic moment, and
below the Kondo temperature, the magnetic moment disappears and the impurity appears non-magnetic.
Thus the Kondo effect prevents strong impurity-impurity interaction which are basic necessity of the spin
glass. Up to a concentration of few thousand ppm (= 0.5 at. %), the RKKY (Ruderman-Kittel-Kasuya-
Yosida) interaction becomes significant to the interactions between the nearest neighbor magnetic
impurities

cos(2k.r + @)

Qk.r)

J(r)=J,

at large distance r between two impurities, where kr is the Fermi wave number, and Jo is the exchange
constant. The sign of the RKKY interaction depends on the separation distance between two magnetic
impurities, because of its oscillatory nature. The competition between the ferromagnetic interaction and
the antiferromagnetic interaction leads to the frustrated nature of spin order, so-called spin glass.
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Fig. RKKY interaction between localized magnetic impurities. The red circle denotes the sea of
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Fig. Field cooled (a, ¢) and zero-field (b, d) cooled magnetization for CuMn (1 and 2%) as a function
of temperature The data shows clearly the characteristic features of spin glass behavior. (J.A.
Mydosh, Spin Glasses, Taylor & Francis, 1993).

S. Kondo effect:minimum in resistivity vs temperature

In the 1930’s it was found that the electrical resistivity of dilute magnetic alloys shows a minimum at
a characteristic temperature. The resistivity decreases as the temperature decreases from the high
temperature side. It shows a minimum value, and in turn increases with further decreasing temperature.
These systems are noble metals such as Au, Ag, and Cu diluted with magnetic impurities such as Mn and
Fe. Such temperature dependence is rather different from that for normal metals obeying the Bloch 7°
law at low temperatures. In 1964, Jun Kondo proposed a remarkable theory that explains the resistivity
minimum. The interaction of conduction electrons with localized spins leads to the many body problem
in electrons of metal. This effect is called the Kondo effect. The Kondo effect described the scattering of
conduction electronic in a metal due to magnetic impurities.

The local minimum of the electrical resistivity arises from the competition between the following two
contributions,

p = pspin + pBloch

=c,oM(1+?’Z—JlnT)vLaT5

F

=c(p, — p,InT)+aT’

The first term is the spin-dependent contribution to the resistivity and the second term is the phonon
contribution (Bloch T° law). J is the exchange energy, z is the number of nearest neighbors, ¢ is the
concentration, and pm is a measure of the strength of the exchange scattering. The resistivity has a
minimum at

dp 4
——=5aT" —cp, =0
JT P

or

1/5
Tmin = (C_le
S5a

The temperature at which the electrical resistivity takes a minimum, varies as one-fifth power of the
concentration of the magnetic impurities, in agreement with experiment at least for Cu diluted with Fe.
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6. Origin of exchange interaction
The Hamiltonian of the Anderson model can be described by

N
H,= Zekckg Cro +5d2ndg +Unn, |

Vi d +V,d "c,.) (perturbation)

X

where

We now shoe that the s-d interaction can be derived from the Anderson model.

Eg+U

U

We consider the second-order process of V starting with
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0,)=d.|F).

where |F > is the state where the conduction electrons make up the Fermi sphere. Note that there is no d-

electrons in the localized magnetic state. This state is degenerate with

@) =d,"|F).

Process-1
k4 enters d,,and d| goesoutto k'\

+ E;+U [ — E,+U
k> ——— - k'>——@p——
Er Ep Er
s k>
E,+E, E,—-¢ +E,+E,+U E —¢ +¢.+E,
Initial state Intermediate state Final state
V...V
4 =—k2 = Uck'¢+d¢d¢+ck¢
&y — Ly —
Process-2

k enters d,, and d, goesoutto k'T
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* Eg+U E+U
Ik'> lk' [ku +

E4

E,+E, E,—¢ +E,+E,+U E,—¢ +e.+E,

Initial state Intermediate state Final state

Process-3
d, enters k'T,and kT goes out to d;.

i

E,+E, E,+eé, Ey—¢ +ée.+E,
Initial state Intermediate state Final state
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Process-4
d, enters k'T,and k| goes out to d,.

E,+E, E, +&,

Initial state Intermediate state

We consider the second-order process of V' starting with

0,)=d,7).

E,—¢ +e.+E,

Final state

Process-5
kT enters d,,and d, goes out to 3

17



* E4+U S O I

Ik Ik

[k’

Er

E; Ey
E,+E, E,—¢ +E,+E,+U E,—¢ +e.+E,
Initial state Intermediate state Final state
Process-6
kT enters d,,and d| goes out to k'
+ E +U - E4+U
> |k'>+
. .
Ed I—F Ed

E,+E, E,—¢ +E,+E,+U E,—¢ +e.+E,
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Initial state Intermediate state

Final state

Process-7
d, enters k', and k| goesoutto d,.

k'

Er

E;
E,+E, E,+¢,
Initial state Intermediate state

E,—¢ +e.+E,

Final state

Process-8
d, enters k'\,and kT goes out to d;.
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- -
Er Er — Ep

+ Eg —— Ey + E;
E,+E, E,+eg, E,—¢ +¢.+E,
Initial state Intermediate state Final state

V Vv + +
V,=—ddkd g c ¢ 'd
8 E, —¢&, T TR T

Adding to the all the processes above, we obtain the effective Hamiltonian,

Vk'dde + + + + + + + +
— (e dd e reydid ey e ddy ey e didy e,
& —E, -
+M(d ‘e ac,n'dy+d e c..'dy+d,c c,'d +dc.c.'d)

T R et M 2 20 3 ) 2 200 2 2hat T e

E, —¢,

Noting that

+ 1 + 1
ngr =dy d¢:§+52a g =d, dLZE—SZ
d.'d.+d,'d, =n,.+n, =n, =1
| + 1
S. ZE(d¢ dy—d, dﬂ:E(”ﬁ_”dﬂ
S+ :dT+d~L :_dwl«dT+ 5 S_ :d~L+dT :_de\L_F

we get
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+ + + + + + + +
Coy dydy €+ Cpn drdy ¢+ dydycpptepy ddy cpy
+ + + + + +
=c,y ¢ (=n, )—cppcpd dy e cp(l=—np)—cpcpdy d,
+ + + +
=Chy cki(l_ndi)_ck'T ckis— T Cpn ckT(l_ndT)_ck'i ckTS+

_ + + + + S + + S
- (ck'J« Cry T Cin ckT) TCL Gy TG CpuP- T Cn Cpllyr T Cpy Cpros

Vk'd de

for the coefficient of — %
& —E,-U

di cppCpn dy+d e Cp dy+d ey 0 dy +dyepe,d)
=CinCpr dy dy ey d) dy oo d T Hepe Tdyd

= (5k,k' N Ck'T+CkT M gp = Ck'T+Ck¢ S+ (5k,k' N Ck'¢+ck¢ g, = Ck'¢+ckTS+

= 5k,k'nd - Ck'T+CandT - Ck'T+Ck¢ S - Ck'¢+ck¢nd¢ - Ck'¢+ckTS+

= Orxla ~ Ck'T+CkT (I=n,)~ Ck'T+Ck¢ S - Ck'¢+ck¢ (I=n,)- Ck'¢+ckTS+

+ + + + + +
- (5k,k'nd T ) Cki) +(Ck'T CorMyy T €y CpyMyr —Cpn CHS— —Cpl CkTS+)

. V.V,
for the coefficient of —%—*d4_
d " €p

The non-perturbed Hamiltonian is

V..V,
HY = Z[M(ck'iJrcki + ck'T+ckT)

kk' g ¢k

Vk'dde + +

— & (5 n,—C,, C|—C,n C

gk_Ed_U( (AR 1 VR 10 kT)]
—ZV V. [( L ! e, ¢, +c,ac.y)
& k'd” dk Ed_gk gk_Ed_U kL Tkl kT TkT

1
+—95, .
& —E,~U bl

where n, =1

The interaction Hamiltonian is
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Vk'd de

2 _ + + ¥ .
" _Z[E - (=Cpr Cunfigr =€y Cpiltyy =Cpp €S- =4y €1 S,)
k' Ha k
ViedVa n N N .
k d
Vk'dde + 1 . 1 N .
ZZ[E —c (_ckT ck'T(SZ +E)_ck‘l’ ck'i(E_SZ)_ckT ck'J«S*_ckJ, ck'TSJr)
d k
ViedVan + 1 . 1 . N
+€_T(Ckv¢ ¢, (S, +E)+cm ckT(E_Sz)_cm ¢ S_—cpn S
k d
= V..V ! 1 + S + S + + S
__z k'd dk[(E + E )(ck'T cki 7+Ck,¢ CkT + +(ck,1« CkT _Ck'J( cki) .
Kok =& & —FE,—

1 1 1 N .
——»V. v — c.CaatceC, C
22 ey CULTRLMICY

Since the second term of H‘”has nothing to do with the interactions, the second term is moved to the
Hamiltonaian A" . Then we have

1 1 1
HY==-N1v_ Vv — C,. ¢ +ConcC
2]; k'd dk[(Ed—é‘k Ek—Ed—U)( o Ykl T kT)
1
+—+——0, .1
gk_Ed_U k.k d]
H ——ZV V. [( ! + ! Y(c,,'c.n—c,, c,)S
ex “ k'd" dk Ed—é‘k gk—Ed—U kT kT kN Tk z

+ +
tCpn Ckis— Tl CkTS+}

The s-d exchange interaction H, can be expressed by
H, = J ’ ‘e )S ‘¢, .S e
ex _ﬁz{(cm Cer —Cry Cki) 2T Cyo_ T Chy Cip +}
k. k'

We use the approximation

Vk'd = de =V
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1 1
L et )
2N E,—-¢ ¢ -E,-U
_p( 1 N 1
E,—¢.-¢,+e, ¢ —é—E;+¢,-U
1 1
>V (ot ——)
|£d| g, +U

where ¢,=E,—£.<0, and & ~¢&, .Since U>|g,[>0, J is negative, which is indicative of

antiferromagnetic interaction.

Ey+U

Ea

Fig. &,=E,—E, (<0). Note that |¢,|<<U

Then we get

Note that
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+ _ + _x + _x + _x + _x
zck'a G o5Cip S = (Chy O11Ch + Cp O13Cks +Cpy 051Gy + Chy 02Cz) S,
a.p

oy + oy + oy + oy
+(Chn O11Ch1 +Cpy OinCra +Chy 031Cy +Cpg O-zzckz)'Sy
+ __z + __z + __z + __z
+(Cpy 0116 FCpny O1nCry +Cpy 0304y +Chy 055C45) " S,
+ +
=(Cp Cha tChny C11) S,
. + + .
+(=ic,, ¢y +Cpy zckl)-Sy
+ +
+(Cpy Gl = Cpa Cip) - S,
_ + S 'S + S 'S + + S
=Cpy Cra(S, —1 y)+ck'2 (S, +i y)+(ck'l Ch1 —Cra Cpa)* S,

+ + + +
= Cpn €S FCy S Gy Gy =€y €4y ) S,

where the Pauli matrices are given by

(01 L (0 i (10
o' = , o’ = , o’ =
10 i 0 0 -1

In conclusion, the Anderson Hamiltonain is equivalent to the s-d exchange interaction when the mixing
term V is small and the impurity d-band is occupied by one electron. In this limit, the Anderson
Hamiltonian leads to the Kondo effect and gives rise to the singlet ground state.,

8. Calculation of electrical resistivity due to the s-d interaction
The electrical conductivity is represented by the mean free time zx and the Fermi velocity of electron vk
as

f

2¢° 0
o= _3_degkrkvkp(gk)a_gk

where Q and p(¢,) are the volume of the system and the density of states for the conduction electrons,

respectively. In general, the scattering probability 1/7(&) is given by the T-matrix as

1 2z AR o
%— - ;‘<f|T(8)|l>‘ o(e—¢&,+¢),

where |z> and | f > are the initial and final states, respectively. The T-matrix is given by

I'=H _,+H_, z

24



where 7 is an infinitesimal positive number, and Hiq is the scattering potential.

k)1

The first-order term of the 7-matrix for the scattering of conduction electron;

T(l)(

k) > k) = (f|H, i)
M)

<T,M‘a -

S
2N

The first -order term accompanying the spin flip for the scattering;

k) |k )
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7O ) o> [k, 4) = (01 +1]5 1)

=L+ 1l s|)

J
= —ﬁ\/(s —M)(S+M +1)

((Note))
(1)

(0.".M"lo- S| M) =(c." . M"|0.S. +%(0'+S +0.8,)

T,M>

=5(0." DSM ", MY M|S.|M)
+68(0." ~DS(M", M +1)(M +1|S | M)

or
(T.Mlo-s|" M) =(M|s.|M)
(VM +1|o-S|TM) = (M +1IS | M)

(ii)

<GZ”,M”|0' . SH,M> = <GZ”,M"|GZSZ +%(O‘+S +0.8,) ~L,M>

¢,M>

=68(0,"~DS(M", M) M|S | M)+
+6(c," DS(M", M —1)(M —1|S_|M)

=(c.,",M"|S, +%0+S

(V. Mlo-S|V,M) = (M|s.|M)

<T,M —1\0 : s\i,zw) = (M 1S | M)
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o)<} =44,
1 1

EO'+ T>=0, Eo; ~L>=‘T>
1 1
Loty=lt).  Lojy=o

Then the total 7-matrix up to the first-order is given by
J
T =-"_(c-9).
N (6-S)

We now consider the four second-order terms shown by (a) — (d).
(a) The process: ‘k T> - ‘k"T> - ‘ k' T> (without spin flip)

|k T> k"> k'T>

The T-matrix is given by

SZ

z

M)

o T

E—&pn +177

(b)
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k7> |k'T>

K" T>

Fig. The arrow directed to the left denotes holes, while the arrow directed to the right denotes
electrons.

J S
(2N) ;8—8k., +i77<M

SZ

z

M)

where we have fixed the energy of the electrons in the initial state and final states at

E, =& =¢&+in

(©)
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k1> k"> k'T>

J (1= fi)
(2N) kz E— &+ i77<M|S'S+|M>

(d)

[kT> k' T>

k">

J 2 f}{"
(2N) kz E—&.+in <M|S+S'|M>]

Combining the four second-order processes (a) — (d), we have
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R e N e L L R e (Y A7)

o E—&Entin E—&ntin

+f—<M|S S|M)

&— gk +in
Ty S +1)-— =2 iys mry,
2N o E— & +in E—&n+in

Here we note that

S.S.=S(S+1)-8°+£S,

In a similar way to |k T) — [k'T), the second-order term of the T-matrix for the scattering for the process
y

‘k T> - ‘k'¢> 1s obtained as

TO(kT) > |k'V)) = -G )z S VISRV S

E—&p+in

Finally, the total 7-matrix up to the second order terms is given by

o J 1 1-2f,,
== ;{g —SS+D=(6-8)——}

— & +in E—E+in
and
0+ _ o J 2 1 _J J 1-2f,.
! _(ZN) ;8—8k,,+i775(5+1) ZN(G S){1+2N;8—8k,,+i77
(I~ 1=2f (TN TG 1221
(2Nj ;g—gk"ntin_ 2N ~[Odgp(g)8 g+in
=—% ]zdgp(g)l 2f(8)[:—172'5(8 &Nl
__ % jdg o). f(g)+m-(2{\/j J;dg'p(g')[l—2f(g')]§(g—g')
{2 [ae e 21 i L] o270
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Fig. The region in momentum space relevant to the formulation of the Kondo effect. At low

temperatures where we are interested, we may linearize the spectrum around & and impose a cut
off D.

We assume the following density of states for the conduction electrons,
pe)=p for |5—5F|<D, p(e)=0 for |g—gF|>D,

The first term:

(a2 (27, e

1
&— 2N Dre, &g'-¢

We now calculate the integral,
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j g =2/ 2f<e>

-D+ep
D+¢g
F a '
:11’1‘D+6‘F —6“+11’1‘D—6‘F +g‘_2 I 11’1‘6‘—5"(— f(f,‘ ))dé"
_Dre, oe'
= 1n|D -,
~2InD+1%?
where
E. =&—¢&;
Since
N 1
(&)= e 1]
) WG
gf(é")z—[f(gT —fsech [’B( ]
we get
D+ep af( ) D+5F ﬁ( )
j 11’1|6‘—8v|( € J‘ h’1|6‘ 6‘|S€C/’l A PP
—D+ep —D+ep
Here we put
g'-g,. =x,

Then the second term of / is

D
17 =-28
-D

sech’ (%)dx ~-2f T sech’ (%)dx

(1)
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[® ~-2f1n

g, '[ sec hz(%)dx =-8lnle,

—00

and
I=2InD-8lnjg|=-6InD - glnH
D
(i) g |<<kT
1Y ~2p j 1n|x|sech2(%)dx
. 5 2
=—4 j dy[ln(z) +In|y[]sech’(y)

=4 ln(%)zdy sech’(y)— 4zdy In|y[lsec i’ (y)

=-8 ln(%) — 8I dyln ysech’(y)]

4¢” 7k, T
=-8In(2k,T)+ 8In(—) =81 B
(2k,T) +8In(=-) = -8In(L)
1 =—61nD—81n(ﬂkBT)
2¢"D

((Note-1))
° 5 T 4e”
jdylnysech () =In() =y ==In(=—)=-081878
V4
0

with
y=0.577216

((Note-2))

j sech’(x)dx =2

—00
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Thus, the 7-matrix is given by

&
D

J

k,T
T(1>+(2>:__(O-.S){1+J—pln HyT]
2N N

Max[

}

Thus we have the expression for the resistivity as

~ ~ 2Jp . kT
=5.(1+=Ln28",
P = py( N D)

where p, is the resistivity coming from the first-order Born approximation.

9. Spin singlet for the ground state
We assume that the trial wave function is given by

|l//a>= zak(a+ck¢+ _,B+CkT+)|F>

|k|>k

where a” and a" create up- and down-spin states of the local spin, |F > is the filled Fermi sea ground

state, and the ax are coefficients that we will have to determine. So this state is a spin singlet. It is
antisymmetric combination of the local up-spin plus a delocalized down-spin above the Fermi surface

The Hamiltonian;

- + + + +
H, = _JZ{(CM Cet ~Cpy Cu)Se HCn €S-+ Gy €S
ok

where

The eigenvalue equation we wish to solve is

(H,+H, —¢&,—0¢,)

l//a>=0'
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Here & is the ground-state energy of the unperturbed Hamiltonian,

.
H,= ngck,cr Cro

k.o

and O¢, is the shift in energy due to the perturbation H,. We need to determine ax such that this shift is

as negative as possible. According to Taylor, we have

(H, - &, - 0¢,) l//a> =(H,—¢, _55}1)‘ zak(a+ck¢+ _ﬁ+ck¢+)|F>
k|>kp
= Zak (6, —Se)a'c,, = Bcy | F)

|k|>kp

and

3J 3J o e s
l//a>=7 zak l//a> & 2% zak'(a Coy P Cn )|F>

K[okr 2 0% W

H,

The eigenvalue equation for dg, then becomes

a, (&, —5ga)+3—J Zak, =0

|k|>kp

Suppose that

A= Zak.

|#e|>kp
Then we get

Ea
2 g 05,

a, =

Then we have
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where V<O0.

((Note)) Numerical calculation
First we consider the simple example. Suppose that

k
N = 10, 260 =(2+7)

1
where k=1, 2, ..., 10. In other words,
26,=2,2.1,22,23,...,2.8,2.9, 3.

When J¢, = E, we get

1 Ny 1 Ny 1 1 1 1 1
L f(E)= — = + +...+ +
V S(E) ;E_zgk k. E-21 E-22 E-29 E-3

We make a plot of (E) as a function of E.

f(E)
P S HHHHE

20

05

S ) S LHiHT HARH HH R A

—40©

Fig. Plot of f(E) as a function of E. The dashed line (-1/V = 40) for the repulsive interaction.
The dashed line (-1/V = -20) for the attractive interaction. The last crossing on the left is
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the coherent state, split from the continuum by an energy gap, displaying the essential
singularity in the coupling constant.

?

: €k

Singlet ground state
We change from a sum over k to an integration in which the energy e measured relative to the Fermi
energy run from zero to a value D related to the bandwidth, and approximate the density of states by its
value p(0).

l__3jpT de, 3Jp
- 2 ve. -0, 2 |D—5ea|'

Noting that J<0, we then find the solution with d¢, <0 to be

o€, =— D

a

exp[zj‘]—l

3
This expression is reminds us of the condensation energy of a BCS superconductor. When ‘j ‘ p(0) is

small, o¢, is similarly given as

2 4N
o =—-Dexp(————)=—-Dexp(———).
; p( 3‘ ) p( 3pJ)

7o

The state

l//a> which consists of bound spin-singlet pairs of conduction electrons and local spins, has a

lower energy than &,, and is a better candidate for the ground state. We note that the definition of the

Kondo temperature 7k is

kT, =D exp(—%) = Dexp(—%)
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Note that g, is related to the Kondo temperature as
og, = —k,T,
The susceptibility at 7= 0 K is given as

2 2

7= g Hp
4k, T,

We notice an analogy with the BCS theory of superconductivity, in which we find a similar
expression for the critical temperature 7¢. This is not an accident. Both TK and Tc define temperatures
below which perturbation theory fails. In the BCS case, Tc signals the onset of the formation of bound
Cooper pairs and a new ground state with an energy gap. The Kondo effect is a little more subtle. 7k
defines a temperature at which the energy contributions from the second-order perturbation theory
becomes important. This happens when the local spin on a single impurity starts to become frozen out at
an energy set by the Kondo coupling J and the density of states at the Fermi energy.

10.  Phenomelogical interpretation

We assume that the RKKY is negligibly small. The only remaining interaction is between the
impurity spin § and the conduction electron spin s. It may be treated by the so-called s-d exchange
interaction,

H=-JS" s

where J (<0) is the antiferromagnetic exchange interaction.
At high tempereatures, the magnetic impurity behave like free (paramagnetic moment). Below a Kondo
temperature 7k,

T, = Dexp(—L) .

Al

the isolated magnetic impurity becomes non-magnetic because of the interaction, where D is the energy
band in the vicinity of the Fermi level and N(e&r) is the density of states at the Fermi level.

For 7T<Tk, there is a gradual loss of local moment as the conduction electrons begin to form a
surrounding cloud of oppositely (antiferromagnetically) polarized spin. This formation is not a phase
transition.

Experimental manifestations of the Kondo effect for 7<7k are as follows.
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(1) A loss of magnetic moment, the magnetization falls below its free moment value and the
susceptibility is less than its Curie value

Nu® Ny
3, (T +T,) 3k, T

Xk

where

M= glpS(S+1)

(b) The enhanced scattering rate creates a logarithmic upturn in the resistivity at low temperatures.
11. Physical properties of typical Kondo systems

It is now know that many of the properties associated with the Kondo effect can be well described by
a scaling function of 7/7k.
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imp

TEMPERATURE

Fig. Schematic behavior characteristic of a typical Kondo alloy

(a) Resistivity
The resistivity decreases as 1-47? with increasing 7 and varies with InT above Tx. The resistivity at 0
K is called the unitary limit.

(b) Reciprocal Susceptibility
The reciprocal susceptibility shows the Pauli paramagnetic behavior around 7= 0 K as 1+BT%. Above
Tx, it shifts to the Curie-Weiss like behavior.

(c) Specific heat
The specific heat shows a peak below Tk, and is proportional as 7 above Tx.
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(d) The Wilson ratio
The specific heat is proportional to 7, while the susceptibility becomes constant at 7= 0. The Wilson
ratio. The Wilson ratio is given by

TZ[m gzﬂ 2
=S5 01521,

imp B

12.  Conclusion

When magnetic impurities such as Mn, Fe and Co are dilutely inserted into nonmagnetic metals such as Cu,
Ag and Au, susceptibility obeying the Curie—Weiss law is observed. In this case impurity atoms are considered to
possess magnetic moments. On the other hand, Mn in Al does not show the Curie—Weiss law and seems not to
possess any magnetic moment. Anderson tried to explain these phenomena using the Anderson model. From the
above discussions, these phenomena can be interpreted from the concept of the scaling relation. The Kondo
temperature 7k is very low for Mn in Cu (7x = 0.1 K), and is very high for Mn in Al (7x is above room
temperature).

l O = O
09} o B
AR 20%
ARo
08 N
07]

T (T
L
[{]

09} L1 % ‘ﬁhﬁ&\ 1

08 Q\ -

07 I ! ' 1 !
1 3 10 30 100 300 1000
T

°K

Fig.  The resistivity for V (1-2 %) in Au as a function of temperature. [K. Kume (J. Phys. Soc. Jpn. 23,
1226 (1967))]. T, =300K for this system. This is obtained subtracting the resistivity of pure Au

from the observed resistivity.
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APPENDIX
A. Brillouin-Wigner series
(see J.M. Ziman, Element of Advanced Quantum Mechanics)
A.l
We start with the Schrodinger equation given by

Hly,)=E,|v,)
with
H=H,+H,
Then we get
(H,+H)ly,)=E,|v,)
or
(Hy+ 1)y, ) +|o) = E, (v, ) +| @)
or
E |y, )+ E|®) = (A, + 0w, )+ (H, + )| @)
or
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E

n

o)=E,"

)+ )= 5y, O+ o)+

l//n> :
Finally we have

(En —ﬁ0)|(1)> = I:Il

v,)=(E,—E, " w,")

Projecting on both sides with P

B(E, ~11,)®) = PrJy,) ~ (£, ~E£,") Py, ")
or

(E, - H,)P|®) = PH|y,)
or

(E, ~1,)@) = Priy,)
or

|(D> = (E, _ﬁo)_lﬁﬁl

v,)
Here we use the commutation relation
[H,,P]=0.

Thus we get the final form

l//n(0)> + (En _1:10)71131:11

v,)= v,)

We solve this by iteration
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A.2. Energy shift

What is the energy shift due to the perturbation? To this end, we start with

(En _I:Io)

Wn> :ﬁl Wn>

Projecting on both sides with M

M(E,-Hy)y,) = MH|y,)
or

(E,—Hy)M|p,) = MH |p,)
or

_,

where we use the commutation relation,

Multiplying on both sides with <t//,,(0)‘

)=y

(v, "B, - 1)

v

Then the energy shift is obtained as
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A

En _En(O) = <l//n(0) Mﬁl Hl

v)=

)

Through the iteration, we have

E,~E" = <‘//n(0) H, ‘//n(O)> +<V/,f°) \ﬁl(En -H,)"'PH, Wn(°)>
+<l//n(0) I:Il(En _I:Io)illsl:ll(En _[:10)7113[:11 ‘//n(O)>+

+{y, O |B(E, - B, PAL(E, - ,)" PA,(E, - A, PA,

)
(1) The first-order energy shift:

).

EO_ <1// (0)
The second-order energy shift:

E® =<Wn(0)‘ﬁ1(En ~A,)"PH,

=S, - 11, P
k#n

) Z ‘ <%(0> Wk(0)>

0
k#n E,,, _Ek( )

o)

Wk(O) ><Wk(0) [:11

v

2

A

Hl

When E, - E,'”, we get a “Rayleigh-Schrodinger series of conventional perturbation theory.”

(1) The second order of the energy shift:

E® Z<‘//n(0) H, Wk(0)><Wk(0)
" T EO_gO

A

H,

v

where E, - E, .
(ii1)°  The third order of the energy shift:
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£ =y, O\ (E, - 2, PRL(E, - )" i,

Z <Wn(0) ‘ﬁl(En _ﬁo)_lﬁ“//kw)x‘//kw) ‘ﬁl (E, - ﬁo)_lﬁ“//l(mx‘//l(m ‘ﬁl‘l/jnw)>

k#ndzn
3 <Wn(0) ‘ﬁl‘l//k(())><l//k(0) ‘ﬁl‘l//l(())><l//l(0) ‘ﬁl‘l/jnw)>
"2 (E,~ E")E, - )

or

where E, - E,'”.

(iv)  The fourth-order of the energy shift

where E, - E,'”.

A3 The form of D)

Next we discuss the from of |<D> .

(1) The first order of wave function:

v,”)
_ Z(En B ﬁo)_l }3‘ Wk(0)><‘//k(0) ‘ ﬁl‘%(o)>
k#n

Ny O|F [y ©
=Z‘l//k zi,ijk_!,k(ol)‘;// >

k#n

v,")=(E,—A,)" PA,

or
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where E, - E,'”.

(i)  The second order of the wave function:

Wn(2)> = (En _ﬁo)_lﬁﬁl(En _ﬁo)_lﬁﬁl

)

= kZ,: (E, _ﬁo)_lﬁ ‘//k(o)><‘//k(0) ‘ﬁl (E, —ﬁo)_lﬁ Wl(0)><%(0) ﬁl %(0)<
‘Wk(0)><l//k(0) I:Il ‘//1(0)><‘//1(0) I:Il ‘//n(O)>

-3

ot (B -EYE -E"™)

where E, - E,'”.

(i)  The third order of the wave function:

(iv)  The fourth order of the wave function:

7 Lipmann-Schwinger equation

The Hamiltonian H is given by

A

H=H,+V



where Hy is the Hamiltonian of free particle. Let |¢> be the eigenket of Howith the energy

eigenvalue E,
H¢)=El¢)
The basic Schrodinger equation is

(H, +V)|w)=Ely) (1)

Both I-AI0 and I-AI0 +V exhibit continuous energy spectra. We look for a solution to Eq.(1) such that

as ¥V —0,

l//> - |¢> , where |¢> is the solution to the free particle Schrodinger equation with the

same energy eigenvalue E.
Mv)=(E-H,)ly)

Since (£ ~-H 0)| ¢> = 0, this can be rewritten as

Vy)=(E-Hy|y)-(E-H,)|¢)
which leads to
(E-H)(w)-|#)=V]w)
or

v} =(E=H) V]y)+|9)

The presence of |¢> is reasonable because |l//> must reduce to |¢> as V vanishes.
B.1 Lipmann-Schwinger equation:

) =|K)+(E, - H, +ig) V™)

by making Ex (= #°k” / 2m) slightly complex number (£>0, £=0). This can be rewritten as
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<r‘ y/(i)> =(r|k)+ jdr'<r|(Ek ~Hyxie) | r'><r'|l}‘ l//(i)>
where

1 ik-r

(r|k)= @
and

k) =E, K",
with

2
E, U
2m

The Green's function is defined by

2
1 irik‘rfr"

+ h 7 &)
G0y~ )

((Proof))
1 =—§l—m<r|(Ek —I:IO J_rig)’1|r'>
hz hz 24 - N1/ 0| "l o
=_2m“dk'dk"<r|k'>(Ek ok’ tiz) (K| k")(k"| ")
or
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n? 2 s -l
I rlk'"(E, ——Kk"tig) o(k'-K")}{K"|r'
P e, ~ ey sy
(I)E, — kg ()
2m
A 2 dk' eik'-(r—r')
= 3 2
2m = (27) Ek—h—k'ziie
2m
where
2
E =Tk,
2m
Then we have
_ | dk' e
- 3 22
2m= Q) I e gy e
2m

.[ dk' eik'-(rfr')

- 3 02 2. :Go(i)(”_”')
2x) k"—(k™ tie)

In summary, we get
(1) = (o) =2 [ G, ) P
or
(rly®) = (r|k)- jer(”(r W () (ry ).

More conveniently the Lipmann-Schwinger equation can be rewritten as
™) =|K)+ (B, - H, ie)V|y™)

with
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2
G = —h—(Ek —~H,*ig)",
2m

and

2m
T

GV =(E, —H,+ig)'V

When two operators A and B are not commutable, we have very useful formula as follows,

1 1 1, ~ ~ 1 1 ~ ~1
=~ TR T =& B—A = == B—A TR
A B A( )B B( )A

We assume that

A=(E,-H,*ig), B=(E,—H+is)

Then

(E,—H,+ig)" ' =(E -~ H+ig)" —(E,—H+ig)'V(E,—H,+is) ",
or

(E,—H=*ig)' =(E,-H,+ig)" +(E,—H,+ie)'V(E, - H *ig)™".
For simplicity, we newly define the two operators by

G,(E, +ig)=(E, - H,+ig)"

G(E, +ig)=(E, —H +ig)"

where éo(Ek +ig) denotes an outgoing spherical wave and éo(Ek —ig) denotes an incoming

spherical wave. We note that
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A (4) n’ 4 n’
G =~ (&, _ A, tie) —2—G(Ek i€).

Then we have

G(Ek ig)= G(Ek ig)— G(Ek zg)VG (E, tig)
= G(Ek Tig)[l— VGO(Ek tig)]

G(Ek ig)= G(Ek 15)+G(Ek zg)VG(Ek ic)
—G(Ek 15)[1+VG(Ek i€)]

Then ‘lﬂ >can be rewritten as

)

+G,(E, iié‘)l}‘l/l(i)>

+G(E, +ie)1-VG,(E, +ie)lV|w™)

k
k
k
k

)
)
)+ G(E, + ig)I}(‘ l//(i)> ~G,(E, + ie)]I}‘ l//(i)>
)+ G(E, tie)V|k)

G(E, tie)V]k)

|
|
|
|
[1+
or

) = 1)+ ————P]K)..

E, —H+tic

B.2  The higher order Born Approximation

From the iteration, “)> can be expressed as

) =|K)+ Gy(E, +ie)V|y)
=|K)+ Gy (E, +ie)V (k) + Gy (E, +ie)V |y))
=|K)+ G(E, +ig)V|k)+G,(E, +ieWG,(E, +ig)V|k)+

The Lippmann-Schwinger equation is given by

52



) =[K) + Gy (E, +ieW |y ) =[k) + Gy (E, +ie)T]K)

b

where the transition operator T is defined as
17‘1//(”> =T/K)

or
Tlk) =V]y' ) = V|k) + VG, (E, +ie)Tk)

This is supposed to hold for any |k> taken to be any plane-wave state.
T=V+VG(E, +ie)T.

The scattering amplitude f(k',k) can now be written as

2m 1
h* 4r

(2;;)3<k'|1?\w<”>=—2m L oy (k[fK).

S(K' k)= Py

Using the iteration, we have

A

T =V +VG(E, +ie)T =V +VG,(E, +ie)V +VG,(E, +ie)VG,(E, +ie)V +...
Correspondingly we can expand f(k',k) as follows:

K, k)= P&, k) + P& K+ OK K)+.......
with

2m 1 A
FOK,K) = —h—TE(27r)3<k'|V| k),

f(Z)(kv’k) — _;_Ti(zﬂ.)3<k'|l}éo (Ek + ZE)I}|k> )

1O ) = _;_Ti(zﬁ)s (K'[VG,(E, +i)VG,(E, +is)V|K).
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Fig. Feynman diagram. First order, 2nd order, and 3rd order Born approximations. ¢, = |k> is
the initial state of the incoming particle and ¢, =|k'> is the final state of the incoming

particle. ¥ is the interaction.
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