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1. Introduction 

Since 1930’s, it has been well-known that at very low temperatures the metals with magnetic 

impurities exhibits an anomaly in the temperature dependence of their electrical resistivity; instead of the 

generally known decrease of resistivity with lowering temperature, it increases with decreasing 

temperatures. This effect is named as the Kondo effect, after Kondo (Jun). In 1964, Kondo has succeeded 

for the first time in explaining using the perturbation method, with scattering of electrons on magnetic 

impurities taken into account. In 1981, the exact solution of the Kondo problem was obtained later, by N. 

Andrei and Paul Wiegmann, separately. Note that the methods and ideas (by Abrikosov, 

Nozieres ,Wilson, Yosida, and et al.), which were needed to explain the Kondo effect, had played the 

most important role in studying the fundamental phenomenon of the electron localization- a part of 

modern physics and physical application. 

In this note I do not intend to present various kinds of theories on the Kondo effect. It is beyond my 

ability. I am interested in the experimental results. I have been doing research on the spin glasses, 

experimentally using the techniques of aging dynamics. When one starts to read typical books on spin 

glass (such as Mydosh) as beginner, one may encounter excellent experimental data on canonical spin 

glasses (for example, Cu host diluted with magnetic impurity such as Mn or Fe). When the concentration 

of the magnetic impurities is extremely dilute, it is found that the systems show Kondo effect. The 

magnetic impurity is isolated from other magnetic impurities. The antiferromagnetic interaction between 

the spin of the conduction electron and the spin of magnetic impurity (the s-d interaction) leads to the 

Kondo spin singlet. The magnetic moment will vanish below a characteristic temperature, Kondo 

temperature TK. Although there is no phase transition at this temperature, the pair formation of 

antiparallel alignment of spins look so similar to the Cooper pair in BCS theory (spin singlet with orbital 

angular moment L = 0).  
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Fig. Isolated localized spins in a sea of conduction electrons, forming the singlet state of antiparallel 

alignment of conduction electron spin and the spin of magnetic impurity. 

 

When the concentration of magnetic impurities is slightly increased, the system becomes a spin glass. 

The interaction between the magnetic impurities which is the so-called the RKKY (Ruderman-Kittel-

Kasuya-Yosida) interaction, plays an important role in spin glass behavior. The interaction between the 

magnetic impurities arises as a result of the interaction between the magnetic impurity and the conduction 

electrons. The sign of the interaction shows oscillatory change depending on the distance. The 

competition between the antiferromagnetic and ferromagnetic interactions leads to the fully frustrated 

nature of spin glass. 

My first encounter with the Kondo effect occurred when I read the book of Thermoelectricity which 

was written by D.K.C. MacDonald. He showed a lot of excellent data of the thermoelectric power and 

electrical resistivity for canonical systems (for example, Cu host diluted with magnetic impurities). The 

temperature dependence of these two quantities are extremely sensitive to the concentration of magnetic 

impurities in the limit of dilute range. Even at the present stage, I am not sure whether the temperature 

dependence of the thermoelectric power as shown in the book of MacDonald, can be well explained. 

 

2. Kondo effect and Jun Kondo 

The Kondo effect is an unusual scattering mechanism of conduction electrons in a metal (such as 

noble metals) due to magnetic impurities9such as Mn, Fe), which contributes a term to the electrical 



3 

 

resistivity that increases logarithmically with temperature as the temperature is decreased [as ln(T)]. It is 

used to describe many-body scattering processes from impurities or ions which have low energy quantum 

mechanical degrees of freedom. In this sense it has become a key concept in condensed matter physics in 

understanding the behavior of metallic systems with strongly interacting electrons. 

 

 
 

The Kondo effect is normally observed in very dilute magnetic alloys as a result of the interaction 

between the host conduction electrons and the magnetic impurity spins. In its ideal form, it is a single-

impurity effect and leads to the rise of the electrical resistivity as the temperature is lowered down to zero 

temperature. It can be described by an effective interaction which increases with decreasing temperature 

and finally leads to a single state formed by a single impurity spin and the spins of the surrounding 

conduction electrons (Kondo, Nozieres, Wilson). At larger concentrations, the impurity-spin interaction 

becomes significant and leads to a partial destruction of single state. The impurities again become 

magnetic, leading to a spin glass for typically, a few percent magnetic impurities.  
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Fig. Picture of Prof. Jun Kondo 

http://www.aist.go.jp/aist_j/information/emeritus_advisor/index.html 

 

3. Experimental results 

In 1934a resistance minimum was observed in gold as a function of temperature (de Haas, de Boer 

and van den Berg 1934), indicating that there must be some additional scattering mechanism giving an 

anomalous contribution to the resistivity--- one which increases in strength as the temperature is lowered. 

Other examples of metals showing a resistance minimum were later observed, and its origin was a 

longstanding puzzle for about 30 years. In the early 1960s it was recognized that the resistance minima 

are associated with magnetic impurities in the metallic host --- a magnetic impurity being one which has 

a local magnetic moment due to the spin of unpaired electrons in its atomic-like d or f shell. A carefully 

studied example showing the correlation between the resistance minima and the number of magnetic 

impurities is that of iron impurities in gold (van den Berg, 1964). In his book entitled Thermoelectricity, 

An Introduction to the Principles (first published in 1961 from John & Wiley), MacDonald (D.K.C.) 

showed various kinds of experimental results of electrical resistivity and thermoelectric power for noble 

metals (Au, Cu) diluted with magnetic impurities such as Mn and Fe. The electrical resistivity of Cu 

diluted with Mn or Fe clearly shows a local minimum at low temperatures. The temperature dependence 

of the thermoelectric power at low T is extremely sensitive to the amount of the magnetic impurities; Au 

diluted with Mn. 

(a) Electrical resistivity 
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Fig. Electrical resistivity of Au with Mn as solute. The nominal atomic concentration of Mn is 

indicated on each curve. (D.K.C. MacDonald, Thermoelectricity, Dover, 2006). 

 



6 

 

 
 

Fig. Electrical resistivity of Cu with Mn as solute. The nominal atomic concentration of Mn is 

indicated on each curve. (D.K.C. MacDonald, Thermoelectricity, Dover, 2006). 
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Fig. Electrical resistivity of Cu with Fe as solute. The nominal atomic concentration of Fe is indicated 

on each curve. (D.K.C. MacDonald, Thermoelectricity, Dover, 2006). 

 

(b) Thermoelectric power 
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Fig. Thermoelectric power at low T of Au alloys with a range of transition metals as solutes. Each 

alloy has a concentration of 0.2 nominal atomic percent as solute of the transition metal indicated 

on the curve. (D.K.C. MacDonald, Thermoelectricity, Dover, 2006) 
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Fig. Thermoelectric power at low T of Au alloys with Mn as solutes. The nominal atomic 

concentration of Mn is indicated on each curve. The behavior of the most dilute alloys below 1 K 

is particularly striking. (D.K.C. MacDonald, Thermoelectricity, Dover, 2006). 
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Fig. Variation of the Kondo temperature for the 3d transition metals in Cu host. 
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4. Spin glass region for canonical systems 

 

 
 

Fig. Various concentration regimes for a canonical spin glass (such as host Cu diluted with Mn) 

illustrating the different types of magnetic behavior which occur. (J.A. Mydosh, Spin Glass, 

Taylor & Francis, London, 1993) 

 

The concentration is one of the most important factors in determining the magnetic state of the alloys. 

We show a schematic diagram for various concentration regime division. At the very dilute magnetic 

concentration (ppm) there are the isolated impurity-conduction electron coupling leading to the Kondo 

effect. This localized interaction (if J<0) causes a weakening or fluctuation of the magnetic moment, and 

below the Kondo temperature, the magnetic moment disappears and the impurity appears non-magnetic. 

Thus the Kondo effect prevents strong impurity-impurity interaction which are basic necessity of the spin 

glass. Up to a concentration of few thousand ppm ( 0.5 at. %), the RKKY (Ruderman-Kittel-Kasuya-

Yosida) interaction becomes significant to the interactions between the nearest neighbor magnetic 

impurities 
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at large distance r between two impurities, where kF is the Fermi wave number, and J0 is the exchange 

constant. The sign of the RKKY interaction depends on the separation distance between two magnetic 

impurities, because of its oscillatory nature. The competition between the ferromagnetic interaction and 

the antiferromagnetic interaction leads to the frustrated nature of spin order, so-called spin glass. 

 



12 

 

 
 

Fig. RKKY interaction between localized magnetic impurities. The red circle denotes the sea of 

conduction electrons. 
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Fig. Field cooled (a, c) and zero-field (b, d) cooled magnetization for CuMn (1 and 2%) as a function 

of temperature The data shows clearly the characteristic features of spin glass behavior. (J.A. 

Mydosh, Spin Glasses, Taylor & Francis, 1993). 

 

5. Kondo effect:minimum in resistivity vs temperature 

In the 1930’s it was found that the electrical resistivity of dilute magnetic alloys shows a minimum at 

a characteristic temperature. The resistivity decreases as the temperature decreases from the high 

temperature side. It shows a minimum value, and in turn increases with further decreasing temperature. 

These systems are noble metals such as Au, Ag, and Cu diluted with magnetic impurities such as Mn and 

Fe. Such temperature dependence is rather different from that for normal metals obeying the Bloch T5 

law at low temperatures. In 1964, Jun Kondo proposed a remarkable theory that explains the resistivity 

minimum. The interaction of conduction electrons with localized spins leads to the many body problem 

in electrons of metal. This effect is called the Kondo effect. The Kondo effect described the scattering of 

conduction electronic in a metal due to magnetic impurities.  

The local minimum of the electrical resistivity arises from the competition between the following two 

contributions, 

 

5

10

5

)ln(

)ln
3

1(

aTTc

aTT
zJ

c
F

M

Blochspin














 

 

The first term is the spin-dependent contribution to the resistivity and the second term is the phonon 

contribution (Bloch T5 law). J is the exchange energy, z is the number of nearest neighbors, c is the 

concentration, and M is a measure of the strength of the exchange scattering. The resistivity has a 

minimum at 
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The temperature at which the electrical resistivity takes a minimum, varies as one-fifth power of the 

concentration of the magnetic impurities, in agreement with experiment at least for Cu diluted with Fe. 
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6. Origin of exchange interaction 

The Hamiltonian of the Anderson model can be described by 
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We now shoe that the s-d interaction can be derived from the Anderson model. 

 

 
 

We consider the second-order process of V starting with 



15 

 

 

Fdi



 . 

 

where F  is the state where the conduction electrons make up the Fermi sphere. Note that there is no d-

electrons in the localized magnetic state. This state is degenerate with 
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__________________________________________________________________________________ 

Process-1 

k  enters d , and d  goes out to 'k  
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____________________________________________________________________________________ 

Process-2 

k  enters d , and d  goes out to 'k  
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____________________________________________________________________________________ 

Process-3 

d  enters 'k , and k  goes out to d . 
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____________________________________________________________________________________ 

Process-4 

d  enters 'k , and k  goes out to d . 
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We consider the second-order process of V starting with 
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___________________________________________________________________________________ 

Process-5 

k  enters d , and d  goes out to 'k  
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____________________________________________________________________________________ 

Process-6 

k  enters d , and d  goes out to 'k  
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Initial state Intermediate state Final state 

 












kk

k

kk cddc
UE

VV
V

d

dd

'

'
6 

 

 

____________________________________________________________________________________ 

Process-7 

d  enters 'k , and k  goes out to d . 
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__________________________________________________________________________________ 

Process-8 

d  enters 'k , and k  goes out to d . 
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Adding to the all the processes above, we obtain the effective Hamiltonian, 
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Noting that 
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The interaction Hamiltonian is 
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Since the second term of 
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H has nothing to do with the interactions, the second term is moved to the 
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The s-d exchange interaction exH  can be expressed by 
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where 0 Fdd E  , and Fk   .Since 0 dU  , J is negative, which is indicative of 

antiferromagnetic interaction.  

 

 
 

Fig. Fdd EE   (<0). Note that Ud   
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where the Pauli matrices are given by 
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In conclusion, the Anderson Hamiltonain is equivalent to the s-d exchange interaction when the mixing 

term V is small and the impurity d-band is occupied by one electron. In this limit, the Anderson 

Hamiltonian leads to the Kondo effect and gives rise to the singlet ground state., 

 

8. Calculation of electrical resistivity due to the s-d interaction 

The electrical conductivity is represented by the mean free time k and the Fermi velocity of electron vk 

as 
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where   and )(
k
  are the volume of the system and the density of states for the conduction electrons, 

respectively. In general, the scattering probability )(/1   is given by the T-matrix as 
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where i  and f  are the initial and final states, respectively. The T-matrix is given by 
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where  is an infinitesimal positive number, and Hsd is the scattering potential. 

The first-order term of the T-matrix for the scattering of conduction electron;  ,', kk   
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The first -order term accompanying the spin flip for the scattering;  ,', kk  
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Then the total T-matrix up to the first-order is given by 
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We now consider the four second-order terms shown by (a) – (d). 

(a) The process:  '" kkk  (without spin flip) 

 

 
 

The T-matrix is given by 
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Fig. The arrow directed to the left denotes holes, while the arrow directed to the right denotes 

electrons.  
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where we have fixed the energy of the electrons in the initial state and final states at  
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Combining the four second-order processes (a) – (d), we have 
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In a similar way to  'kk , the second-order term of the T-matrix for the scattering for the process 
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Finally, the total T-matrix up to the second order terms is given by 
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Fig. The region in momentum space relevant to the formulation of the Kondo effect. At low 

temperatures where we are interested, we may linearize the spectrum around F and impose a cut 

off D.  

 

 

We assume the following density of states for the conduction electrons, 
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We now calculate the integral, 
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Thus, the T-matrix is given by 
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where B
~  is the resistivity coming from the first-order Born approximation. 

 

 

9. Spin singlet for the ground state 

We assume that the trial wave function is given by 
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where   and   create up- and down-spin states of the local spin, F  is the filled Fermi sea ground 

state, and the ak are coefficients that we will have to determine. So this state is a spin singlet. It is 
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Here 0 is the ground-state energy of the unperturbed Hamiltonian, 
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The eigenvalue equation for a  then becomes 
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where V<0. 

 

((Note)) Numerical calculation 

First we consider the simple example. Suppose that 

 

N1 = 10,  )2(2
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N

k
k   

 

where k = 1, 2, ..., 10. In other words, 
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We make a plot of f(E) as a function of E.  

 

 
 

Fig. Plot of f(E) as a function of E. The dashed line (-1/V = 40) for the repulsive interaction. 

The dashed line (-1/V = -20) for the attractive interaction. The last crossing on the left is 
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the coherent state, split from the continuum by an energy gap, displaying the essential 

singularity in the coupling constant. 

 

 
 

We change from a sum over k to an integration in which the energy e measured relative to the Fermi 

energy run from zero to a value D related to the bandwidth, and approximate the density of states by its 

value )0( . 
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Noting that J<0, we then find the solution with 0a  to be 

 

1]
3

2
exp[ 


J

D
a  

 

This expression is reminds us of the condensation energy of a BCS superconductor. When )0(J  is 

small, a  is similarly given as 

 

)
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2
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J
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  . 

 

The state a  which consists of bound spin-singlet pairs of conduction electrons and local spins, has a 

lower energy than 0 , and is a better candidate for the ground state. We note that the definition of the 

Kondo temperature TK is 

 

)exp()
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J
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ek

e



38 

 

Note that a  is related to the Kondo temperature as 

 

KBa Tk  

 

The susceptibility at T = 0 K is given as 

 

KB

B

Tk

g

4

22
   

 

We notice an analogy with the BCS theory of superconductivity, in which we find a similar 

expression for the critical temperature Tc. This is not an accident. Both TK and Tc define temperatures 

below which perturbation theory fails. In the BCS case, Tc signals the onset of the formation of bound 

Cooper pairs and a new ground state with an energy gap. The Kondo effect is a little more subtle. TK 

defines a temperature at which the energy contributions from the second-order perturbation theory 

becomes important. This happens when the local spin on a single impurity starts to become frozen out at 

an energy set by the Kondo coupling J and the density of states at the Fermi energy. 

 

10. Phenomelogical interpretation 

We assume that the RKKY is negligibly small. The only remaining interaction is between the 

impurity spin S and the conduction electron spin s. It may be treated by the so-called s-d exchange 

interaction, 

 

sS  JH  

 

where J (<0) is the antiferromagnetic exchange interaction. 

At high tempereatures, the magnetic impurity behave like free (paramagnetic moment). Below a Kondo 

temperature TK, 

 

)
1

exp(
J

DTK 
 . 

 

the isolated magnetic impurity becomes non-magnetic because of the interaction, where D is the energy 

band in the vicinity of the Fermi level and N(F) is the density of states at the Fermi level. 

For T<TK, there is a gradual loss of local moment as the conduction electrons begin to form a 

surrounding cloud of oppositely (antiferromagnetically) polarized spin. This formation is not a phase 

transition. 

 

Experimental manifestations of the Kondo effect for T<TK are as follows. 
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(1) A loss of magnetic moment, the magnetization falls below its free moment value and the 

susceptibility is less than its Curie value 

 

Tk

N

TTk

N

B

C

KB

K
3)(3

22 



 


  

 

where 

 

)1(  SSg B  

 

(b) The enhanced scattering rate creates a logarithmic upturn in the resistivity at low temperatures. 

 

11. Physical properties of typical Kondo systems 

It is now know that many of the properties associated with the Kondo effect can be well described by 

a scaling function of T/TK. 
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Fig. Schematic behavior characteristic of a typical Kondo alloy 

 

(a) Resistivity 

The resistivity decreases as 1-AT2 with increasing T and varies with lnT above TK. The resistivity at 0 

K is called the unitary limit. 

 

(b) Reciprocal Susceptibility 

The reciprocal susceptibility shows the Pauli paramagnetic behavior around T = 0 K as 1+BT2. Above 

TK, it shifts to the Curie-Weiss like behavior. 

 

(c) Specific heat 

The specific heat shows a peak below TK, and is proportional as T-2 above TK. 
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(d) The Wilson ratio 

The specific heat is proportional to T, while the susceptibility becomes constant at T = 0. The Wilson 

ratio. The Wilson ratio is given by 

 

1521.0
2

22

B

B

imp

imp

k

g

C

T 
 . 

 

12. Conclusion 

When magnetic impurities such as Mn, Fe and Co are dilutely inserted into nonmagnetic metals such as Cu, 

Ag and Au, susceptibility obeying the Curie–Weiss law is observed. In this case impurity atoms are considered to 

possess magnetic moments. On the other hand, Mn in Al does not show the Curie–Weiss law and seems not to 

possess any magnetic moment. Anderson tried to explain these phenomena using the Anderson model. From the 

above discussions, these phenomena can be interpreted from the concept of the scaling relation. The Kondo 

temperature TK is very low for Mn in Cu (TK ≈ 0.1 K), and is very high for Mn in Al (TK is above room 

temperature).  

 

 
 

Fig. The resistivity for V (1-2 %) in Au as a function of temperature. [K. Kume (J. Phys. Soc. Jpn. 23, 

1226 (1967))]. KTK 300  for this system. This is obtained subtracting the resistivity of pure Au 

from the observed resistivity. 
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APPENDIX 

A. Brillouin-Wigner series  

(see J.M. Ziman, Element of Advanced Quantum Mechanics) 

A.1 

We start with the Schrodinger equation given by 

 

nnn EH  ˆ  

 

with 

 

ˆ H  ˆ H 0 
ˆ H 1  

 

Then we get 

 

nnn EHH   )ˆˆ( 10  

 

or 

 

)())(ˆˆ(
)0()0(

10  nnn EHH   

 

or 

 

))ˆˆ()ˆˆ( 10

)0(

10

)0(  HHHHEE nnnn   

 

or 
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nnnnnn HHEEE  10

)0()0()0( ˆˆ  . 

 

Finally we have 

 
)0()0(

10 )(ˆ)ˆ( nnnnn EEHHE    

 

Projecting on both sides with  ̂P  

 
)0()0(

10
ˆ)(ˆˆ)ˆ(ˆ

nnnnn PEEHPHEP    

 

or 

 

nn HPPHE 10
ˆˆˆ)ˆ(   

 

or 

 

nn HPHE 10
ˆˆ)ˆ(   

 

or 

 

nn HPHE 1

1

0
ˆˆ)ˆ(

  

 

Here we use the commutation relation 

 

0]ˆ,ˆ[ 0 PH . 

 

Thus we get the final form 

 

nnnn HPHE  1

1

0

)0( ˆˆ)ˆ(
  

 

We solve this by iteration 
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A.2. Energy shift 

What is the energy shift due to the perturbation? To this end, we start with 

 

nnn HHE  10
ˆ)ˆ(   

 

Projecting on both sides with ˆ M  

 

nnn HMHEM  10
ˆˆ)ˆ(ˆ   

 

or 

 

nnn HMMHE  10
ˆˆˆ)ˆ(   

 

or 

 

nnn HMHE  1

)0(

0
ˆˆ)ˆ(  , 

 

where we use the commutation relation, 

 

0]ˆ,ˆ[ 0 HM . 

 

Multiplying on both sides with 
)0(

n  

 
)0(
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)0()0(
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Then the energy shift is obtained as 
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Through the iteration, we have 
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(i) The first-order energy shift: 
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The second-order energy shift: 
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When En  En

(0)
, we get a “Rayleigh-Schrödinger series of conventional perturbation theory.” 

(ii) The second order of the energy shift: 
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where En  En

(0)
. 

(iii)` The third order of the energy shift: 
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where En  En

(0)
. 

 

(iv) The fourth-order of the energy shift 
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where En  En
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. 

 

A.3 The form of   

Next we discuss the from of  . 

 

(i) The first order of wave function: 
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where En  En

(0)
. 

 

(ii) The second order of the wave function: 
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where En  En

(0)
. 

 

(iii) The third order of the wave function: 
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(iv) The fourth order of the wave function: 
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7 Lipmann-Schwinger equation 

 

The Hamiltonian H is given by 

 

VHH ˆˆˆ
0   
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where H0 is the Hamiltonian of free particle. Let  be the eigenket of H0with the energy 

eigenvalue E, 

 

 EH 0
ˆ  

 

The basic Schrödinger equation is  

 

 EVH  )ˆˆ( 0  (1) 

 

Both 0Ĥ  and VH ˆˆ
0  exhibit continuous energy spectra. We look for a solution to Eq.(1) such that 

as 0V ,   , where   is the solution to the free particle Schrödinger equation with the 

same energy eigenvalue E. 

 

 )ˆ(ˆ
0HEV   

 

Since )ˆ( 0HE   = 0, this can be rewritten as 
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which leads to 
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  
VHE ˆ)ˆ(

1

0 .
 

 

The presence of   is reasonable because   must reduce to   as V̂  vanishes. 

 

B.1 Lipmann-Schwinger equation: 
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   ViHEkk  

 

by making Ek (= )2/22 mkℏ  slightly complex number (>0,  ≈0). This can be rewritten as 
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In summary, we get 
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More conveniently the Lipmann-Schwinger equation can be rewritten as 
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When two operators Â  and B̂  are not commutable, we have very useful formula as follows, 
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For simplicity, we newly define the two operators by 
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spherical wave. We note that 
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B.2 The higher order Born Approximation 

From the iteration, 
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The Lippmann-Schwinger equation is given by 
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where the transition operator T̂  is defined as 
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This is supposed to hold for any k taken to be any plane-wave state. 
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Using the iteration, we have 
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Fig. Feynman diagram. First order, 2nd order, and 3rd order Born approximations. kk  is 

the initial state of the incoming particle and '' kk  is the final state of the incoming 

particle. V̂  is the interaction. 
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