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1. Introduction 

The Landauer formula—named after Rolf Landauer, who first suggested its prototype in 1957 

is a formula relating the electrical resistance of a quantum conductor to the scattering properties 

of the conductor. In the simplest case where the system only has two terminals, and the scattering 

matrix of the conductor does not depend on energy. The electrical conductance is  
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the transmission eigenvalues of the channels, and the sum runs over all transport channels in the 

conductor. 1

0 0R G   is the resistance quantum. 

A short quasi-1D channel is formed between two regions of a 2D electron gas in a 

GaAs/AlGaAs heterostructure. As the carrier density of the channel is increased, the conductance 

increases in discrete steps of height 
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h
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Fig. Conductance quantization in a short channel electrostatically defined in a GaAs/AlGaAs 

heterostructure at different temperatures. A negative gate voltage gV  applied to the metallic 

gate on the surface of the sample depletes the carriers in the underlying 2D electron gas. 

(Kittel, ISSP, 8-th edition). 

 

2. Derivation of the Landauer formula for the single channels 

Here we discuss the derivation of Landauer formula, 



 

0 0

k k k k

k k

e
I e v n v f

L 

    

 

where 0.k   We use the energy dispersion for the 2D system, 
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Note that for the density of states for the 1D system we need to use the factor 2 for the even parity 

of the energy dispersion k k   . This is not the case since 0k  . Only the spin degeneracy (the 

factor 2) is taken into account. The group velocity is 
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The current is given by 
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since 
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At T = 0 K, we have the current between two elecrodes (having chemical potentials, 1
  and 2

 ) 
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or 
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Fig. Model of electric conduction for the derivation of Landauer formula. The chemical 

potential of the reserver R1 is 1  and the chemical potential of the reserver R2 is 2 . Both 

L1 and L2 are ideal perfect conductors where electrons are not scattered.  

 

((Note)) 

Suppose we have one electron with charge q. The current is flowing under the perturbation field 
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where T is the period of the wave as a duality of electron and  ( 1/ )T   is the frequency of the 

wave. / 2T  is the time taken for electron to move from the one electrode to the other electrode. 

The relation I q  is used to evaluate the current for electron rotating around a proton in the Bohr 

hydrogen atom model. Note that   is the characteristic frequency 
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from the energy conservation. Then we have 
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Note that for V=1V, we have 483.598  MHz. 

 

This relation is independent of the nature of material used in the 1D channel. 

 

2. The case of many channels 

If the channel is not perfectly conducting, the overall conductance is the quantum of 

conductance times the probability ( )F  for electron transmission through the channel, 
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For a quasi-1D system with multiple channels, we sum over the contributions of each channel, 

since conductances in parallel add: 
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where ij  is the probability of finding electron in the output channel i, which enters from the 

channel j. 

 

3. Resistance quantum for the single channel 

The resistance quantum for the simple channel is 
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where 1    is the reflection coefficient. The first term is the resistance quantum. The second 

term is due to scattering from barriers in the channel, and it is zero for a perfect conductor. 

 

 



______________________________________________________________________________ 

APPENDIX 

The Fermi momentum in the 2D system 
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The number density n is 
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Thus the Fermi momentum is 

 
2 2

2 22 2

F F Fm p p
n

m


 

 
ℏ ℏ

, 2Fp n ℏ . 

 

 

 


