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The Rashba effect, also called Bychkov-Rashba effect, is a momentum-dependent splitting of 

spin bands in bulk crystals and low-dimensional condensed matter systems (such as 

heterostructures and surface states) similar to the splitting of particles and anti-particles in the 

Dirac Hamiltonian. The splitting is a combined effect of spin–orbit interaction and asymmetry of 

the crystal potential, in particular in the direction perpendicular to the two-dimensional plane (as 

applied to surfaces and heterostructures). This effect is named in honour of Emmanuel Rashba, 

who discovered it with Valentin I. Sheka in 1959 for three-dimensional systems and afterward 

with Yurii A. Bychkov in 1984 for two-dimensional systems. 

https://en.wikipedia.org/wiki/Rashba_effect 

The properties of a 2D electron gas in which the two-fold spin degeneracy of the spectrum has 

been lifted by the Hamiltonian of the spin-orbit interaction of an electron, 
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where R  is a Rashba coupling. Here we discuss the eigenvalue problem of Rashba Hamiltoniam 

(and also Dresselhaus Hamiltonian) as exercises in Phys.421-521 (Quantum mechanics I). 

 

 

1. Derivation of the spin-orbit interaction from Dirac theory of electron 

We consider the origin of the spin-orbit interaction. In a relativistic quantum mechanics of the 
electron (Dirac theory), the Hamiltonian of the Dirac equation can be approximated by 
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in the non-relativistic approximation (see the detail in the lecture note of Phys.524 and 525 
Quantum Mechanics (graduate course), where e (<0) is the charge of electron. 
 

0
2r

Ze
E

r r


   


,   (electric field) 

 

0 0

Ze
A

r
      (electric potential) 

 
2

0 0( )
Ze

V r eA e
r

      (potential energy) 



 
((Physical meaning)) 
 
Third term: relativistic correction 
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The fourth term (Thomas correction) 
 

Thomas term = )(
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For a central potential field, 
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where L is an orbital angular momentum. Then the Thomas term is rewritten as 
 
Thomas term : 
 

 

0
2 2 2 2

0
2 2

2 2

1
( ) ( )

4 4
1

2
1 1

2

dAe e

m c m c r dr

dAe

m c r dr

dV

m c r dr

      

 

 

σ E p σ L

S L

S L

ℏ ℏ

 

 
(Spin-orbit interaction) 
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The spin angular momentum is defined by 
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which is an automatic consequence of the Dirac theory. 
 
The last term is called the Darwin term. 
 
For a hydrogen atom, 
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It gives rise to an energy shift 
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which is non-vanishing only for the s state. 

We note that the spin orbit interaction becomes stronger as the atomic number Z increases. 

The fine structure factor  is defined by 
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2. Spin-orbit interaction 
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Using the formula 
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we can evaluate the magnitude of the spin-orbit coupling. 
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where the fine structure factor  is defined by 
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We note that the lowest energy for the Bohr model is 

 
22 4 2 2 2

2
1 2

( )
2 2 2n

Z me mc Ze mc
E Z

c


 
   

 ℏ ℏ
 

 

Thus we have the ratio: 
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So the spin orbit coupling is proportional to the factor 2( )Z . We note that the spin orbit 

coupling becomes important when the atomic number Z becomes large. 

 



 
 

Fig. The factor  2
Z  as a function of the atomic number Z. 

 

3. Rashba Hamiltonian 

The Rash Hamiltonian is given by 
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with 
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where n is the unit vector along the z axis. The Rashba field is defined by 
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Fig. Rashba effect. 
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 B k n . k n . n//z. The spin orbit coupling and asymmetry of 

the potential in the z axis (half spaces with z>0 and z<0 are not equivalent), which is the 

surface induced asymmetry. 

 

Using this field, the Rashba Hamiltonian can be rewritten as 
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Fig. The effective magnetic field in the Rashba Hamiltonian. 
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Using the Pauli matrices; 
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((Eigenvalue problem)) We solve the eigenvalue problems using the Mathematica. 
 
We have 
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where the eigenkets of 1Ĥ  are given by 
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Note that 
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So 1  and 2  are simultaneous eigenkets of 0Ĥ  and 1Ĥ . In other words, 1  and 2  are 

the eigenkets of Ĥ . Then we have 
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We note that 
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Fig. 1( )E k  for the state 1  (red) and 2( )E k  for the state 2  (blue). Symmetry: 

2 1( ) ( )E k E k  , 1 2( ) ( )E k E k   

 

The average values of spin operators are given by 
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We note that 
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Fig. x-y plane. k: black arrow [wave vector, (kx, ky)]. 1S : red arrow. 2S : blue arrow. RB : 

green arrow.  

 

4 Effect of external magnetic field: Zeeman effect 

In the presence of an external magnetic field 
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Here we define a new parameter x as 
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We consider the two cases for the direction of B. 
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We solve this eigenvalue problem using the Mathematica. 
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The eigenvalue: 21Rk x   
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The eigenvalue: 21Rk x   
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The average values of spin operators are given by 
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Thus we have 
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Thus we have 
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Fig. 0B  . B//z. 3D plane. k: black arrow [wave vector, (kx, ky)]. 1S : red arrow. 2S : blue 

arrow. RB : green arrow.  

 



 
 

Fig. 0B   for comparison. 3D plane. k: black arrow [wave vector, (kx, ky)]. 1S : red arrow. 

2S : blue arrow. RB : green arrow.  

 

Since 

 

2
B

R

g B
x

k




  

 

we have 

 
2 22 2 2 2

2
1 1

2 2 2 2
B B

R R

R R

g B g Bk k
E k k

m k m

 
 

 
   

        
   

ℏ ℏ
, 

 
2 22 2 2 2

2
2 1

2 2 2 2
B B

R R

R R

g B g Bk k
E k k

m k m

 
 

 
   

        
   

ℏ ℏ
 



 

We assume that these energies can be expressed by 
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Fig. Energy dispersion E vs k for B//z, where B is perpendicular to BR. 
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The energy eigenvalues are obtained as 
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Fig. Energy dispersion E vs k for B//BR. 
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3. Dresselhaus Hamiltonian 

We consider the eigenvalue problem for the Dresselhaus Hamiltonian 

 

ˆ ˆ ˆ( )

ˆ ˆ(sin cos )

0

0

DS DS y y x x

DS y x

i

DS i

H k k

k

e
k

e





  

  




 

 

 
  

 

 

 

where DS  is a Dresselhaus coupling. Eigenvalue problem 
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Fig. Dresselhaus interaction. x-y plane. k: black arrow [wave vector, (kx, ky)]. 1S : red arrow. 
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APPENDIX 

Mathematica 
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Dresselhaus Hamiltonian



 

Clear "Global` " ;

x PauliMatrix 1 ; y PauliMatrix 2 ;

z PauliMatrix 3 ;

exp : exp . Complex re , im Complex re, im ;

A
0

0
;

Eigensystem A Simplify , 0 &

1, 1 , , 1 , , 1

1
1

2

1, ; 2
1

2

1, ;

1 . x. 1, 1 . y. 1, 1 . z. 1 FullSimplify

Sin , Cos , 0

2 . x. 2, 2 . y. 2, 2 . z. 2 FullSimplify

Sin , Cos , 0



 

P1 8;

R1 : Cos , Sin ;

BR1 : Sin , Cos ;

S1 : 0.2 Sin , Cos ;

S2 : 0.2 Sin , Cos ;

s1 Graphics Red, Thick, Arrowheads 0.03 ,

Table Arrow R1 , R1 S1 ,

, 0, 2 , P1 , PointSize 0.03 ,

Table Point R1 , , 0, 2 , P1 ;

s2 Graphics Blue, Thick, Arrowheads 0.03 ,

Table Arrow R1 , R1 S2 ,

, 0, 2 , P1 , PointSize 0.015 ,

Table Point R1 , , 0, 2 , P1 ;

s3 Graphics Black, Thick, Arrowheads 0.03 ,

Table Arrow R1 , 1.2 R1 , , 0, 2 , P1 ,

Green, Table Arrow R1 , R1 0.2 BR1 ,

, 0, 2 , P1 ;

s4 Graphics Black, Thin, Line 1, 0 , 1, 0 ,

Line 0, 1 , 0, 1 ,

Text Style "x", Black, 15, Italic , 1.3, 0 ,

Text Style "y", Black, 15, Italic , 0, 1.3 ,

Text Style "O", Black, 15 , 0, 0.05 ,

Text Style "BR", Black, Bold, 12, Italic ,

0.29, 1.03 ,

Text Style "k", Black, Bold, 12, Italic ,

0.46, 1.16 ,

Text Style " S1 ", Black, Bold, 12, Italic ,

0.14, 0.8 ,

Text Style " S2 ", Black, Bold, 12, Italic ,

0.65, 1.03 ;

s5 Graphics Black, Thin, Circle 0, 0 , 1 ;

Show s1, s2, s3, s4, s5
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APPENDIX 

Spin-orbit interaction 

A.1. Biot-Savart law 
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The electron has an orbital motion around the nucleus. This also implies that the nucleus has 
an orbital motion around the electron. The motion of nucleus produces an orbital current. From 
the Biot-Savart’s law, it generates a magnetic field on the electron. 
 

 
 
The current I due to the movement of nucleus (charge Ze, e>0) is given by 
 

NZeId vl  , 

 

where Nv
�

 is the velocity of the nucleus and N
dt

d
v

l
 . Note that 

 

NZe
dt

d
qd

t

q
Id v

l
ll 




 . 

 
The effective magnetic field at the electron at the origin is 
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where me is the mass of electron. The Coulomb potential energy is given by 
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where Lz is the z-component of the orbital angular momentum, vrmL ez  . 

 
A.2. Derivation of the expression for the spin-orbit interaction 

 

 
 

Fig. Electron in the proton frame, and proton in the electron frame. The direction of magnetic 
field B produced by the proton is the same as that of the orbital angular momentum L of 
the electron (the z axis in this figure). 

 

We consider the circular motion of the nucleus (e) around an electron at the center. The nucleus 
rotates around the electron at the uniform velocity v. Note that the velocity of the proton in the 
electron frame is the same as the electron in the proton frame. The magnetic field (in cgs) at the 
center of the circle along with the current I flow. 
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according to the Biot-Savart law. The current I is given by 
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where T is the period. Then the magnetic field B at the site of the electron (the proton frame) can 
be expressed as 
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where L is the orbital angular momentum of the electron (the electron frame). Note that the 
direction of B is the same as that of L. The spin magnetic moment is given by 
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where the factor (1/2) is the Thomas correction. In quantum mechanics we use the notation  
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A.3. Thomas correction 

The spin magnetic moment is defined by 
 

Sμ
ℏ

B
s




2
, 

 
where S  is the spin angular momentum. Then the Zeeman energy is given by 
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where the factor 1/2 is the Thomas correction and the Bohr magneton B is given by 
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Thomas factor 1/2, which represents an additional relativistic effect due to the acceleration of 

the electron. The electron spin, magnetic moment, and spin-orbit interaction can be derived 
directly from the Dirac relativistic electron theory. The Thomas factor is built in the expression. 
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When we use the formula 
 

)1)(2/1(

1
33

3




lllan
r

B

, 

 
the spin-orbit interaction constant  is described by 
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The energy level (negative) is given by 
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((Note)) For l = 0 the spin-orbit interaction vanishes and therefore  = 0 in this case. 
 
((Summary)) 

The spin-orbit interaction serves to remove the l degeneracy of the eigenenergies of hydrogen 
atom. If the spin-orbit interaction is neglected, energies are dependent only on n (principal 
quantum number). In the presence of spin-orbit interaction (n, l, s = 1/2; j, m) are good quantum 
numbers. Energies are dependent only on (n, l, j). 
 


