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The Rashba effect, also called Bychkov-Rashba effect, is a momentum-dependent splitting of
spin bands in bulk crystals and low-dimensional condensed matter systems (such as
heterostructures and surface states) similar to the splitting of particles and anti-particles in the
Dirac Hamiltonian. The splitting is a combined effect of spin—orbit interaction and asymmetry of
the crystal potential, in particular in the direction perpendicular to the two-dimensional plane (as
applied to surfaces and heterostructures). This effect is named in honour of Emmanuel Rashba,
who discovered it with Valentin I. Sheka in 1959 for three-dimensional systems and afterward
with Yurii A. Bychkov in 1984 for two-dimensional systems.
https://en.wikipedia.org/wiki/Rashba_effect

The properties of a 2D electron gas in which the two-fold spin degeneracy of the spectrum has
been lifted by the Hamiltonian of the spin-orbit interaction of an electron,

H, =ayn-(6xk)

where ¢, is a Rashba coupling. Here we discuss the eigenvalue problem of Rashba Hamiltoniam

(and also Dresselhaus Hamiltonian) as exercises in Phys.421-521 (Quantum mechanics I).

1. Derivation of the spin-orbit interaction from Dirac theory of electron
We consider the origin of the spin-orbit interaction. In a relativistic quantum mechanics of the
electron (Dirac theory), the Hamiltonian of the Dirac equation can be approximated by
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in the non-relativistic approximation (see the detail in the lecture note of Phys.524 and 525
Quantum Mechanics (graduate course), where e (<0) is the charge of electron.

E=-2""=_"7 (electric field)

Ay =¢=—— (electric potential)

V(r)=ed,=eg,= - (potential energy)



((Physical meaning))

Third term: relativistic correction
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The fourth term (Thomas correction)

Thomas term = —#?Czo"(E X p)

For a central potential field,
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where L is an orbital angular momentum. Then the Thomas term is rewritten as

Thomas term :
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(Spin-orbit interaction)
When
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The spin angular momentum is defined by

S=—0c

which is an automatic consequence of the Dirac theory.

The last term is called the Darwin term.

For a hydrogen atom,
V-E=-569r).
It gives rise to an energy shift
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which is non-vanishing only for the s state.
We note that the spin orbit interaction becomes stronger as the atomic number Z increases.
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2 Spin-orbit interaction
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Using the formula
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7 (Bohr radius)

we can evaluate the magnitude of the spin-orbit coupling.
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where the fine structure factor « is defined by « = o
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We note that the lowest energy for the Bohr model is

E

n=1

2 4 2 22 2
_ VA mze _me Ze _mc (Za)’
2h 2 \ ch 2

Thus we have the ratio:
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So the spin orbit coupling is proportional to the factor

1
137.035999139

(Za)’ . We note that the spin orbit

coupling becomes important when the atomic number Z becomes large.
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The factor (Z 05)2 as a function of the atomic number Z.

Rashba Hamiltonian

The Rash Hamiltonian is given by

A=, +8,

H, =o,n-(6xk)=a,(k,0, ~k0,)
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with
[H,,H]1=0

where n is the unit vector along the z axis. The Rashba field is defined by
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Fig. Rashba effect. B, =—=kxn. k L n. n//z. The spin orbit coupling and asymmetry of
gHp

the potential in the z axis (half spaces with z>0 and z<0 are not equivalent), which is the
surface induced asymmetry.

Using this field, the Rashba Hamiltonian can be rewritten as
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Fig. The effective magnetic field in the Rashba Hamiltonian. B, =—=kxn. When k 1 n,
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Using the Pauli matrices;



H, can be expressed as
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With
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or
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k, +ik, = k(cos 0 +isin 0) = ke

k, —ik, = k(cos @—isin@) =ke

Using this notation, we have
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((Eigenvalue problem))

We have
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We solve the eigenvalue problems using the Mathematica.
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where the eigenkets of H , are given by

va) =%[ie1”j

(eigenvalue: ak)
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We note that

E,(=k) = E, (k) , E\(=k) = E, (k)
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Fig.  E (k) for the state |y,) (red) and E,(k) for the state |,) (blue). Symmetry:
E,(=k) = E\(k) , E\(=k) = E, (k)

The average values of spin operators are given by
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We note that
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Fig. x-y plane. k: black arrow [wave vector, (kx, ky)]. <Sl>: red arrow. <S2> : blue arrow. B, :

green arrow.

4 Effect of external magnetic field: Zeeman effect
In the presence of an external magnetic field

i = g;’b’ 6-(B,+B)
= aRn-(&xk)+%6'-B
or
A, = ay(k,o, —kxa},)+%6'-3
Here we define a new parameter x as
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We consider the two cases for the direction of B.
(a) B//z

We solve this eigenvalue problem using the Mathematica.
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Note that
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Thus we have
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Fig. B =#0. B//z. 3D plane. k: black arrow [wave vector, (kx, ky)]. <Sl>: red arrow. <S2> : blue

arrow. BR . green arrow.



Fig. B =0 for comparison. 3D plane. k: black arrow [wave vector, (kx, ky)] <S >: red arrow
<S2> : blue arrow. B, : green arrow.
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We assume that these energies can be expressed by

y=x"+ax’+b°, y, =x" —a\x' +b’
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Fig.  Energy dispersion E vs k for B//z, where B is perpendicular to Br.

(b) B//B,



where
ayn-(6xk)=a,(kxn) -6

The energy eigenvalues are obtained as
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Fig.  Energy dispersion E vs k for B//Bk.



3. Dresselhaus Hamiltonian
We consider the eigenvalue problem for the Dresselhaus Hamiltonian

Hys = Bos(k,6,-k.6)

= Bpsk(sin 06, —cos 06,)
0 _eiE’
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where S, is a Dresselhaus coupling. Eigenvalue problem
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Dresselhaus Hamiltonian

Fig. Dresselhaus interaction. x-y plane. k: black arrow [wave vector, (kx, ky)]. <Sl>: red arrow.
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APPENDIX
Mathematica



Clear["Global *"];

ox = PauliMatrix[1]; oy = PauliMatrix[2];

oz = PauliMatrix[3];

exp * :=exp /. {Complex[re , im ] > Complex[re, -im]};
s _ie

A = ( 0. 1e ;

ie™® 2]
Eigensystem[A] // Simplify[#, 6 > 0] &
{{1, -1}, {{-ie' 7%, 1}, {1e'?, 1}}}

1 1
¥1=— {1, ie*°};y2= — {1, -1e*};
Va2 Va2

{(¥1*.ox.y1, y1*.0oy.¥1, ¥y1*.0z. ¥1} // FullSimplify
{Sin[&6], Cos[©], 0}

{(¥2*.ox.¥2, y2*.oy. Y2, ¥2*.0z. Y2} // FullSimplify
{-Sin[©6], -Cos[©], 0}



P1=8;

R1[& ] := {Cos[&], Sin[&]};

BR1[& ] := {Sin[&], -Cos[&]};

S1[¢ ] := 0.2 {Sin[#], Cos[&€]};

S2[6 ] :=-0.2 {Sin[&], Cos[&]};

sl = Graphics[{Red, Thick, Arrowheads[0.03],
Table[Arrow[{R1[©], R1[€] +S1[©]}],

{6, @, 27, 7w /P1}], PointSize[0.03],

Table[Point[R1[€]], {6, @, 27, mw/P1}]}] ;

s2 = Graphics[{Blue, Thick, Arrowheads[0.03],
Table[Arrow[{R1[©], R1[©] +S2[6]}],
{6, 0, 27, 7w/P1}], PointSize[0.015],
Table[Point[R1[©]], {6, @, 27w, w/P1}]1}] ;
s3 = Graphics[ {Black, Thick, Arrowheads[0.03],
Table[Arrow[{ R1[©], 1.2R1[©]1}], {6, @, 27, m/P1l}],
Green, Table[Arrow[{ R1[©], R1[6] +0.2BR1[€]}],
{6, 0, 27, w/P1}1}] ;
s4 = Graphics[{Black, Thin, Line[{{-1, 0}, {1, 0}}],
Line[{{0, -1}, {0, 1}}],
Text[Style["x", Black, 15, Italic], {1.3, ©0}],
Text[Style["y", Black, 15, Italic], {0, 1.3}],
Text[Style["0", Black, 15], {9, -0.05}],
Text[Style["Br", Black, Bold, 12, Italic],
{-0.29, 1.03}],
Text[Style["k"™, Black, Bold, 12, Italic],
{-0.46, 1.16}],
Text[Style["<S;>", Black, Bold, 12, Italic],
{-0.14, 0.8}1],
Text[Style["<S,>", Black, Bold, 12, Italic],
{-0.65, 1.03}]11}1;
s5 = Graphics[{Black, Thin, Circle[{©, 0}, 1]1}];
Show[sl, s2, s3, s4, s5]
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APPENDIX
Spin-orbit interaction
A.1. Biot-Savart law



The electron has an orbital motion around the nucleus. This also implies that the nucleus has
an orbital motion around the electron. The motion of nucleus produces an orbital current. From
the Biot-Savart’s law, it generates a magnetic field on the electron.
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The current / due to the movement of nucleus (charge Ze, e>0) is given by
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where v, is the velocity of the nucleus and o v, . Note that
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The effective magnetic field at the electron at the origin is
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where v is the velocity of the electron. Then we have
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Since r, =-r, B, can be rewritten as
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where m. is the mass of electron. The Coulomb potential energy is given by
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where L. is the z-component of the orbital angular momentum, L =mvr .

A.2. Derivation of the expression for the spin-orbit interaction

Fig.  Electron in the proton frame, and proton in the electron frame. The direction of magnetic
field B produced by the proton is the same as that of the orbital angular momentum L of

the electron (the z axis in this figure).

We consider the circular motion of the nucleus (e) around an electron at the center. The nucleus
rotates around the electron at the uniform velocity v. Note that the velocity of the proton in the
electron frame is the same as the electron in the proton frame. The magnetic field (in cgs) at the

center of the circle along with the current 7 flow.
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according to the Biot-Savart law. The current / is given by
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where 7 is the period. Then the magnetic field B at the site of the electron (the proton frame) can
be expressed as

B =MW, eL

3 7z 3
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where L is the orbital angular momentum of the electron (the electron frame). Note that the
direction of B is the same as that of L. The spin magnetic moment is given by
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where S is the spin angular momentum and s is the Bohr magneton,
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Then the Zeeman energy of the electron is given by
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where the factor (1/2) is the Thomas correction. In quantum mechanics we use the notation
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A.3. Thomas correction
The spin magnetic moment is defined by

2,
- Mg
M 7

where S is the spin angular momentum. Then the Zeeman energy is given by
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where the factor 1/2 is the Thomas correction and the Bohr magneton g is given by
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Thomas factor 1/2, which represents an additional relativistic effect due to the acceleration of
the electron. The electron spin, magnetic moment, and spin-orbit interaction can be derived
directly from the Dirac relativistic electron theory. The Thomas factor is built in the expression.
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When we use the formula

with

3 1
<r >: 33 >
wa, 1(1+1/2)(1+1)

the spin-orbit interaction constant & is described by
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The energy level (negative) is given by
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where
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_e 1
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((Note)) For / = 0 the spin-orbit interaction vanishes and therefore £= 0 in this case.

((Summary))

The spin-orbit interaction serves to remove the / degeneracy of the eigenenergies of hydrogen
atom. If the spin-orbit interaction is neglected, energies are dependent only on n (principal
quantum number). In the presence of spin-orbit interaction (n, /, s = 1/2; j, m) are good quantum
numbers. Energies are dependent only on (n, /, ).



