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Graphene is a single sheet of carbon atoms arranged in the well known honeycomb structure. 

Carbon has four valence electrons, of which three are used for the sp2 bonds. We are concerned 

with the band structure of the fourth electrons. Chemists refer to this band as the   band. Thinking 

in terms of atomic orbitals this fourth electron is in a zp  orbital. Note that there are two such 

electrons. Thus there will be two  bands (the   and    bands). There are two electrons per unit 

cell consisting the carbon atoms in the sublattice A and B. 

 

1. Crystal structure of graphene 

 

 
 

Fig. Carbon atoms on the graphene. 

 

First we discuss the structure of graphene. The nearest neighbor distance: 

 

0 1.42a  Å. 



 

The lattice constant: 
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2. Reciprocal lattice and the first Brillouin zone 

 

Reciprocal lattice 
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The first Brillouin zone 
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3. Tight binding approximation 

We define the Bloch sums of zp  atomic orbitals   
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The wavefunction of the electron in this tight-binding basis may be expanded as a superposition 
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We solve the 2x2 Hamiltonian matrix eigenvalue problem 
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where the matrix is given by 
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with 
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Since the environments around atoms A and B are identical, by symmetry, ( ) ( )AB BAH Hq q . 

Within the nearest-neighbor interaction assumption, ( )AAH q  is a constant, independent of q, 

which we may set to be zero, and ( )ABH q  may be simplified to 
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where 1δ , 2δ , and 3δ  are the vectors pointing from a given A atom to its three nearest neighbors. 

Defining the nearest-neighbor hopping integral as 
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we have 
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Fig. ContourPlot of 
2

( ) 0 q  in the reciprocal lattice plane. 
2

( ) 0 q  at the Dirac points K 

and K’. 

 

The Hamiltonian for graphene takes on the simple form 
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and the two solutions to ( )H q , 

 

( ) ( )E q    q  

 
where γ ≈2.7 eV. 

For the graphene, there are two π electrons per unit cell. The lower π band is occupied and the 

upper π band is empty, thus F  is at 0  . This occurs at the q K  or 'q K  point in the 

Brillouin zone. We note that q K  or 'q K  are not the same point in general. It shows the bands 

linearly dispersing from the q K  or 'q K  point. Thus, the low-energy carriers in graphene 

behave like massless relativistic particles in 2D with the velocity given by the band velocity. These 

are known as 2D massless Dirac fermions. The energy surface for the electronic states corresponds 

to two cones, one inverted, which touch each other at two points (called Dirac points) in the 

Brillouin zone. 
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We note that ( ) 0 K . In the limit of k K≪ , ( ) q  can be expanded by using the Taylor 

expansion. 

 

(a) The case of  q K k  around the K point. 

We have 
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Neglecting the extra phase factor ( /3iie  ),  the Hamiltonian near K takes on the form 
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0v  is the band velocity of the  states near the K point (the Dirac point). 

 

We solve the eigenvalue problem 
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Fig. Energy dispersion at the Dirac points. The effective mass is zero at the Dirac points. 

 

(b) The case of ' q K k  around the K’ point 

We have 
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Neglecting the extra phase factor ( /3iie  ) the Hamiltonian near K takes on the form 
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We solve the eigenvalue problem 
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The wavefunction of the electron can be thought of as having a pseudospin associated with it. This 

pseudospin is pointed either parallel or antiparallel to k, depending on whether the state is in the 
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In fact, the form n  explicitly shows that the wavefunction is a linear combination of Bloch 

sums of   orbitals on the two sublattices with a relative amplitude of 1 to ise   ( 1s   ). The 

orientation of the pseudo-spinor thus gives the bonding character of the state with respect to the 

neighboring atoms. It is in this sense that the carriers in graphene have chiral character, in analogy 

with the 2D massless neutrinos. We note here that the pseudospin has nothing to do with the real 

spin of electrons. The states at 0   are, in fact, eightfold degenerate since there are two valleys, 

K and K’, and the real spin of the electron introduces two more degree of freedom.  

 



 
Fig. Figure from the book of Alloul. 

 

 

4. Density of states  

We find that the energy dispersion at the Dirac points is given by 
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The density of states: 

 



2

2

2 2

2
( ) 2

(2 )

2
2

(2 ) F F

F

A
D d kdk

A
d

v v

A
d

v

  


 




 








ℏ ℏ

ℏ

 

 

2 2
( )

F

A
D

v
 



ℏ

 

 

It is proportional to the energy  . 
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