Dirac electron in graphene
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton

(Date: March 24, 2019)

Graphene is a single sheet of carbon atoms arranged in the well known honeycomb structure. Carbon has four valence electrons, of which three are used for the sp^{2} bonds. We are concerned with the band structure of the fourth electrons. Chemists refer to this band as the π band. Thinking in terms of atomic orbitals this fourth electron is in a p_{z} orbital. Note that there are two such electrons. Thus there will be two π bands (the π and π^{+}bands). There are two electrons per unit cell consisting the carbon atoms in the sublattice A and B.

1. Crystal structure of graphene

Fig. Carbon atoms on the graphene.

First we discuss the structure of graphene. The nearest neighbor distance:

$$
a_{0}=1.42 \AA .
$$

The lattice constant:

$$
\begin{aligned}
& a=\sqrt{3} a_{0}=2.46 \AA \\
& \boldsymbol{\delta}_{1}=a_{0}\left(\cos \frac{\pi}{3},-\sin \frac{\pi}{3}\right)=a_{0}\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right), \\
& \boldsymbol{\delta}_{2}=a_{0}\left(\cos \frac{\pi}{3}, \sin \frac{\pi}{3}\right)=a_{0}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \\
& \boldsymbol{\delta}_{3}=a_{0}(\cos \pi, \sin \pi)=a_{0}(-1,0)
\end{aligned}
$$

Primitive lattice

$$
\begin{aligned}
& \boldsymbol{a}_{1}=\boldsymbol{\delta}_{2}-\boldsymbol{\delta}_{3}=a_{0}\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)=\sqrt{3} a_{0}\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)=\frac{a_{0}}{2}(3, \sqrt{3}) \\
& \boldsymbol{a}_{2}=\boldsymbol{\delta}_{2}-\boldsymbol{\delta}_{1}=\sqrt{3} a_{0}(0,1)
\end{aligned}
$$

2. Reciprocal lattice and the first Brillouin zone

Reciprocal lattice

$$
\boldsymbol{a}_{1} \cdot \boldsymbol{b}_{1}=\boldsymbol{a}_{2} \cdot \boldsymbol{b}_{2}=2 \pi
$$

or

$$
\begin{aligned}
& a_{1} b_{1} \cos \frac{\pi}{6}=2 \pi, \quad a_{2} b_{2} \cos \frac{\pi}{6}=2 \pi \\
& \boldsymbol{a}_{1} \cdot \boldsymbol{b}_{2}=\boldsymbol{a}_{2} \cdot \boldsymbol{b}_{1}=0
\end{aligned}
$$

leading to

$$
\left|\boldsymbol{b}_{1}\right|=\left|\boldsymbol{b}_{2}\right|=\frac{2 \pi}{a_{1} \cos \frac{\pi}{6}}=\frac{4 \pi}{\sqrt{3} a_{1}}=\frac{4 \pi}{3 a_{0}}=2.95 \AA^{-1} .
$$

$$
\boldsymbol{b}_{1}=b_{1}(1,0)=\frac{4 \pi}{3 a_{0}}(1,0)
$$

$$
\boldsymbol{b}_{2}=b_{1}\left(\cos \frac{2 \pi}{3}, \sin \frac{2 \pi}{3}\right)=\frac{4 \pi}{3 a_{0}}\left(-\cos \frac{\pi}{3}, \sin \frac{\pi}{3}\right)=\frac{4 \pi}{3 a_{0}}\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=\frac{2 \pi}{3 a_{0}}(-1, \sqrt{3})
$$

$$
\boldsymbol{b}_{1}+\boldsymbol{b}_{2}=\frac{2 \pi}{3 a_{0}}(1, \sqrt{3})
$$

$$
\boldsymbol{K}=\frac{1}{3}\left(\boldsymbol{b}_{1}-\boldsymbol{b}_{2}\right)=\frac{2 \pi}{3 a_{0}}\left(1,-\frac{1}{\sqrt{3}}\right)
$$

$$
\boldsymbol{K}^{\prime}=\frac{1}{3}\left(2 \boldsymbol{b}_{1}+\boldsymbol{b}_{2}\right)=\frac{2 \pi}{3 a_{0}}\left(1, \frac{1}{\sqrt{3}}\right)
$$

$$
\boldsymbol{M}=\frac{\boldsymbol{K}+\boldsymbol{K}^{\prime}}{2}=\frac{\boldsymbol{b}_{1}}{2}=\frac{2 \pi}{3 a_{0}}(1,0)
$$

3. Tight binding approximation

We define the Bloch sums of p_{z} atomic orbitals ϕ

$$
\begin{array}{ll}
\psi_{q}{ }^{A}(\boldsymbol{r})=\frac{1}{\sqrt{N}} \sum_{\boldsymbol{R}} e^{i q \cdot\left(\boldsymbol{R}+\boldsymbol{\tau}_{A}\right)} \phi\left(\boldsymbol{r}-\boldsymbol{R}-\boldsymbol{\tau}_{A}\right) & \text { for the site A } \\
\psi_{q}{ }^{B}(\boldsymbol{r})=\frac{1}{\sqrt{N}} \sum_{\boldsymbol{R}} e^{i q \cdot\left(\boldsymbol{R}+\tau_{B}\right)} \phi\left(\boldsymbol{r}-\boldsymbol{R}-\boldsymbol{\tau}_{B}\right) & \text { for the site B }
\end{array}
$$

The wavefunction of the electron in this tight-binding basis may be expanded as a superposition

$$
\psi_{q}(\boldsymbol{r})=C_{A} \psi_{q}{ }^{A}(\boldsymbol{r})+C_{A} \psi_{q}{ }^{B}(\boldsymbol{r}) .
$$

We solve the 2×2 Hamiltonian matrix eigenvalue problem

$$
\left(\begin{array}{ll}
H_{A A}(\boldsymbol{q}) & H_{A B}(\boldsymbol{q}) \\
H_{B A}(\boldsymbol{q}) & H_{B B}(\boldsymbol{q})
\end{array}\right)\binom{C_{A}}{C_{B}}=E\binom{C_{A}}{C_{B}}
$$

where the matrix is given by

$$
H(\boldsymbol{q})=\left(\begin{array}{ll}
H_{A A}(\boldsymbol{q}) & H_{A B}(\boldsymbol{q}) \\
H_{B A}(\boldsymbol{q}) & H_{B B}(\boldsymbol{q})
\end{array}\right)
$$

with

$$
H_{i j}(\boldsymbol{q})=\left\langle\psi_{q}{ }^{i}\right| H\left|\psi_{q}{ }^{j}\right\rangle
$$

Since the environments around atoms A and B are identical, by symmetry, $H_{A B}(\boldsymbol{q})=H_{B A}(\boldsymbol{q})$. Within the nearest-neighbor interaction assumption, $H_{A A}(\boldsymbol{q})$ is a constant, independent of \boldsymbol{q}, which we may set to be zero, and $H_{A B}(\boldsymbol{q})$ may be simplified to

$$
H_{A B}(\boldsymbol{q})=\left\langle\phi\left(\boldsymbol{r}-\boldsymbol{\tau}_{A}\right)\right| H\left|\phi\left(\boldsymbol{r}-\boldsymbol{\tau}_{B}\right)\right\rangle\left(e^{i q \cdot \delta_{1}}+e^{i q \cdot \boldsymbol{\delta}_{2}}+e^{i q \cdot \delta_{3}}\right)
$$

where $\boldsymbol{\delta}_{1}, \boldsymbol{\delta}_{2}$, and $\boldsymbol{\delta}_{3}$ are the vectors pointing from a given A atom to its three nearest neighbors. Defining the nearest-neighbor hopping integral as

$$
\gamma=\left\langle\phi\left(\boldsymbol{r}-\boldsymbol{\tau}_{A}\right)\right| H\left|\phi\left(\boldsymbol{r}-\boldsymbol{\tau}_{B}\right)\right\rangle
$$

we have

$$
H_{A B}(\boldsymbol{q})={H_{B A}}^{*}(\boldsymbol{q})=\Gamma(\boldsymbol{q})
$$

where

$$
\begin{aligned}
\Gamma(\boldsymbol{q}) & =\sum_{i=1}^{3} e^{i q \cdot \delta_{i}} \\
& =e^{i \cdot \cdot \delta_{1}}+e^{i q \cdot \delta_{2}}+e^{i q \cdot \delta_{3}} \\
& =\exp \left[i a_{0}\left(\frac{1}{2} q_{x}-\frac{\sqrt{3}}{2} q_{y}\right)\right]+\exp \left[i a_{0}\left(\frac{1}{2} q_{x}+\frac{\sqrt{3}}{2} q_{y}\right)\right]+\exp \left(-i a_{0} q_{x}\right) \\
& =\exp \left(-i a_{0} q_{x}\right)\left\{\exp \left[i a_{0}\left(\frac{3}{2} q_{x}-\frac{\sqrt{3}}{2} q_{y}\right)\right]+\exp \left[i a_{0}\left(\frac{3}{2} q_{x}+\frac{\sqrt{3}}{2} q_{y}\right)\right]+1\right\} \\
& =\exp \left(-i a_{0} q_{x}\right)\left\{1+2 \exp \left[i\left(\frac{3}{2} q_{x} a_{0}\right) \cos \left(\frac{\sqrt{3}}{2} q_{y} a_{0}\right)\right.\right. \\
|\Gamma(\boldsymbol{q})|^{2} & =\left\{1+2 \exp \left[i\left(\frac{3}{2} q_{x} a_{0}\right) \cos \left(\frac{\sqrt{3}}{2} q_{y} a_{0}\right)\right\}\left\{1+2 \exp \left[i\left(-\frac{3}{2} q_{x} a_{0}\right) \cos \left(\frac{\sqrt{3}}{2} q_{y} a_{0}\right)\right\}\right.\right. \\
& =1+4 \cos \left(\frac{3}{2} q_{x} a_{0}\right) \cos \left(\frac{\sqrt{3}}{2} q_{y} a_{0}\right)+4 \cos ^{2}\left(\frac{\sqrt{3}}{2} q_{y} a_{0}\right)
\end{aligned}
$$

((ContourPlot))

$$
|\Gamma(\boldsymbol{q})|^{2}=1+4 \cos \left(\frac{3 q_{x} a_{0}}{2}\right) \cos \left(\frac{\sqrt{3}}{2} q_{y} a_{0}\right)+4 \cos ^{2}\left(\frac{\sqrt{3}}{2} q_{y} a_{0}\right)
$$

O

Fig. ContourPlot of $|\Gamma(\boldsymbol{q})|^{2} \approx 0$ in the reciprocal lattice plane. $|\Gamma(\boldsymbol{q})|^{2}=0$ at the Dirac points K and K '.

The Hamiltonian for graphene takes on the simple form

$$
H(\boldsymbol{q})=\left(\begin{array}{cc}
0 & \Gamma(\boldsymbol{q}) \\
\Gamma^{*}(\boldsymbol{q}) & 0
\end{array}\right)
$$

and the two solutions to $H(\boldsymbol{q})$,

$$
E_{ \pm}(q)= \pm|\Gamma(\boldsymbol{q})|
$$

where $\gamma \approx 2.7 \mathrm{eV}$.
For the graphene, there are two π electrons per unit cell. The lower π band is occupied and the upper π band is empty, thus ε_{F} is at $\varepsilon=0$. This occurs at the $\boldsymbol{q}=\boldsymbol{K}$ or $\boldsymbol{q}=\boldsymbol{K}^{\prime}$ point in the Brillouin zone. We note that $\boldsymbol{q}=\boldsymbol{K}$ or $\boldsymbol{q}=\boldsymbol{K}^{\prime}$ are not the same point in general. It shows the bands linearly dispersing from the $\boldsymbol{q}=\boldsymbol{K}$ or $\boldsymbol{q}=\boldsymbol{K}^{\prime}$ point. Thus, the low-energy carriers in graphene behave like massless relativistic particles in 2D with the velocity given by the band velocity. These are known as 2D massless Dirac fermions. The energy surface for the electronic states corresponds to two cones, one inverted, which touch each other at two points (called Dirac points) in the Brillouin zone.

$$
\begin{aligned}
& \boldsymbol{K}=\frac{2 \pi}{3 a_{0}}\left(1,-\frac{1}{\sqrt{3}}\right) \\
& \boldsymbol{K}^{\prime}=\frac{2 \pi}{3 a_{0}}\left(1, \frac{1}{\sqrt{3}}\right) \\
& \boldsymbol{M}=\frac{\boldsymbol{K}+\boldsymbol{K}^{\prime}}{2}=\frac{2 \pi}{3 a_{0}}(1,0)
\end{aligned}
$$

We note that $\Gamma(\boldsymbol{K})=0$. In the limit of $|\boldsymbol{k}| \ll|\boldsymbol{K}|, \Gamma(\boldsymbol{q})$ can be expanded by using the Taylor expansion.
(a) The case of $\boldsymbol{q}=\boldsymbol{K}+\boldsymbol{k}$ around the K point.

We have

$$
\begin{aligned}
\Gamma(\boldsymbol{K}+\boldsymbol{k}) & =e^{i \frac{2 \pi}{3}} e^{i \boldsymbol{k} \cdot \delta_{1}}+e^{i \boldsymbol{k} \cdot \delta_{2}}+e^{-i \frac{2 \pi}{3}} e^{i \boldsymbol{k} \cdot \delta_{3}} \\
& =e^{i \frac{2 \pi}{3}} \exp \left[i a_{0}\left(\frac{1}{2} k_{x}-\frac{\sqrt{3}}{2} k_{y}\right)\right]+\exp \left[i a_{0}\left(\frac{1}{2} k_{x}+\frac{\sqrt{3}}{2} k_{y}\right)\right]+e^{-i \frac{2 \pi}{3}} \exp \left(-i a_{0} k_{x}\right) \\
& =e^{i \frac{2 \pi}{3}}\left[1+i a_{0}\left(\frac{1}{2} k_{x}-\frac{\sqrt{3}}{2} k_{y}\right)\right]+1+i a_{0}\left(\frac{1}{2} k_{x}+\frac{\sqrt{3}}{2} k_{y}\right)+e^{-i \frac{2 \pi}{3}}\left(1-i a_{0} k_{x}\right) \\
& =i a_{0}\left[e^{i \frac{2 \pi}{3}}\left(\frac{1}{2} k_{x}-\frac{\sqrt{3}}{2} k_{y}\right)+\left(\frac{1}{2} k_{x}+\frac{\sqrt{3}}{2} k_{y}\right)-e^{-i \frac{2 \pi}{3}} k_{x}\right] \\
& =\frac{3}{2} i a_{0} e^{i \frac{\pi}{3}}\left(k_{x}-i k_{y}\right)
\end{aligned}
$$

Neglecting the extra phase factor $\left(i e^{i \pi / 3}\right)$, the Hamiltonian near K takes on the form

$$
H_{K}(\boldsymbol{k})=\frac{3}{2} \gamma a_{0}\left(\begin{array}{cc}
0 & k_{x}-i k_{y} \\
k_{x}+i k_{y} & 0
\end{array}\right)=\hbar v_{0}\left(\begin{array}{cc}
0 & k_{x}-i k_{y} \\
k_{x}+i k_{y} & 0
\end{array}\right)
$$

where

$$
\frac{3}{2} \gamma a_{0}=\hbar v_{0}
$$

v_{0} is the band velocity of the π states near the K point (the Dirac point).

We solve the eigenvalue problem

$$
\begin{aligned}
H_{K}(\boldsymbol{k}) & =\hbar v_{0}\left(k_{x} \sigma_{x}+k_{y} \sigma_{y}\right) \\
& =\hbar v_{0}|\boldsymbol{k}|\left(\frac{k_{x}}{|\boldsymbol{k}|} \sigma_{x}+\frac{k_{y}}{|\boldsymbol{k}|} \sigma_{y}\right) \\
& =\hbar v_{0}|\boldsymbol{k}|\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right)
\end{aligned}
$$

where

$$
\tan \theta=\frac{k_{y}}{k_{x}}
$$

$$
\begin{aligned}
& |+\boldsymbol{n}\rangle=\frac{1}{\sqrt{2}}\binom{1}{e^{i \theta}}, \quad|-\boldsymbol{n}\rangle=\frac{1}{\sqrt{2}}\binom{1}{-e^{i \theta}} \\
& H_{\boldsymbol{K}}(\boldsymbol{k})|+\boldsymbol{n}\rangle=\hbar v_{0}|\boldsymbol{k} \|+\boldsymbol{n}\rangle, \quad \quad H_{\boldsymbol{K}}(\boldsymbol{k})|-\boldsymbol{n}\rangle=-\hbar v_{0}|\boldsymbol{k} \|-\boldsymbol{n}\rangle
\end{aligned}
$$

where \boldsymbol{n} is parallel to \boldsymbol{k}. Note that $\binom{1}{0}$ and $\binom{0}{1}$ are two-component spinors representing the function $\psi_{\boldsymbol{K}}{ }^{A}(\boldsymbol{r})$ and $\psi_{\boldsymbol{K}}{ }^{B}(\boldsymbol{r})$.

Fig. Energy dispersion at the Dirac points. The effective mass is zero at the Dirac points.
(b) The case of $\boldsymbol{q}=\boldsymbol{K}^{\prime}+\boldsymbol{k}$ around the K^{\prime} point We have

$$
\begin{aligned}
\Gamma\left(\boldsymbol{K}^{\prime}+\boldsymbol{k}\right) & =e^{i \boldsymbol{k} \cdot \boldsymbol{\delta}_{1}}+e^{i \frac{2 \pi}{3}} e^{i \boldsymbol{k} \cdot \delta_{2}}+e^{-i \frac{2 \pi}{3}} e^{i \boldsymbol{k} \cdot \boldsymbol{\delta}_{3}} \\
& =\exp \left[i a_{0}\left(\frac{1}{2} k_{x}-\frac{\sqrt{3}}{2} k_{y}\right)\right]+e^{i \frac{2 \pi}{3}} \exp \left[i a_{0}\left(\frac{1}{2} k_{x}+\frac{\sqrt{3}}{2} k_{y}\right)\right]+e^{-i \frac{2 \pi}{3}} \exp \left(-i a_{0} k_{x}\right) \\
& =1+i a_{0}\left(\frac{1}{2} k_{x}-\frac{\sqrt{3}}{2} k_{y}\right)+e^{i \frac{2 \pi}{3}}\left[1+i a_{0}\left(\frac{1}{2} k_{x}+\frac{\sqrt{3}}{2} k_{y}\right)\right]+e^{-i \frac{2 \pi}{3}}\left(1-i a_{0} k_{x}\right) \\
& =i a_{0}\left[\left(\frac{1}{2} k_{x}-\frac{\sqrt{3}}{2} k_{y}\right)+e^{i \frac{2 \pi}{3}}\left(\frac{1}{2} k_{x}+\frac{\sqrt{3}}{2} k_{y}\right)-e^{-i \frac{2 \pi}{3}} k_{x}\right] \\
& =i a_{0} \frac{3}{2} e^{i \pi / 3}\left(k_{x}+i k_{y}\right)
\end{aligned}
$$

Neglecting the extra phase factor ($i e^{i \pi / 3}$) the Hamiltonian near K takes on the form

$$
H_{K^{\prime}}(\boldsymbol{k})=\frac{3}{2} \gamma a_{0}\left(\begin{array}{cc}
0 & k_{x}+i k_{y} \\
k_{x}-i k_{y} & 0
\end{array}\right)=\hbar v_{0}\left(\begin{array}{cc}
0 & k_{x}+i k_{y} \\
k_{x}-i k_{y} & 0
\end{array}\right)
$$

where

$$
\frac{3}{2} \gamma a_{0}=\hbar v_{0}
$$

We solve the eigenvalue problem

$$
\begin{aligned}
H_{K^{\prime}}(\boldsymbol{k}) & =\hbar v_{0}\left(k_{x} \sigma_{x}-k_{y} \sigma_{y}\right) \\
& =\hbar v_{0}|\boldsymbol{k}|\left(\frac{k_{x}}{|\boldsymbol{k}|} \sigma_{x}-\frac{k_{y}}{|\boldsymbol{k}|} \sigma_{y}\right) \\
& =\hbar v_{0}|\boldsymbol{k}|\left(\cos \theta \sigma_{x}-\sin \theta \sigma_{y}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \tan \theta=\frac{k_{y}}{k_{x}} \\
& \left|+\boldsymbol{n}^{\prime}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{e^{-i \theta}}, \quad\left|-\boldsymbol{n}^{\prime}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{-e^{-i \theta}} \\
& H_{\boldsymbol{K}^{\prime}}(\boldsymbol{k})|+\boldsymbol{n}\rangle=\hbar v_{0}|\boldsymbol{k} \|+\boldsymbol{n}\rangle, \quad H_{\boldsymbol{K}^{\prime}}(\boldsymbol{k})|-\boldsymbol{n}\rangle=-\hbar v_{0}|\boldsymbol{k}||-\boldsymbol{n}\rangle
\end{aligned}
$$

The wavefunction of the electron can be thought of as having a pseudospin associated with it. This pseudospin is pointed either parallel or antiparallel to \boldsymbol{k}, depending on whether the state is in the

$$
\begin{array}{ll}
|+\boldsymbol{n}\rangle=\frac{1}{\sqrt{2}}\binom{1}{e^{i \theta}} & \text { for the energy } \varepsilon=\hbar v_{0}|\boldsymbol{k}| \\
|-\boldsymbol{n}\rangle=\frac{1}{\sqrt{2}}\binom{1}{-e^{i \theta}} & \text { for the energy } \varepsilon=-\hbar v_{0}|\boldsymbol{k}|
\end{array}
$$

In fact, the form $| \pm \boldsymbol{n}\rangle$ explicitly shows that the wavefunction is a linear combination of Bloch sums of π orbitals on the two sublattices with a relative amplitude of 1 to $s e^{i \theta}(s= \pm 1)$. The orientation of the pseudo-spinor thus gives the bonding character of the state with respect to the neighboring atoms. It is in this sense that the carriers in graphene have chiral character, in analogy with the 2 D massless neutrinos. We note here that the pseudospin has nothing to do with the real spin of electrons. The states at $\varepsilon=0$ are, in fact, eightfold degenerate since there are two valleys, \boldsymbol{K} and \boldsymbol{K}^{\prime}, and the real spin of the electron introduces two more degree of freedom.

Fig. Figure from the book of Alloul.

4. Density of states

We find that the energy dispersion at the Dirac points is given by

$$
\varepsilon= \pm \hbar v_{F}|\boldsymbol{k}|
$$

The density of states:

$$
\begin{aligned}
D(\varepsilon) d \varepsilon & =\frac{2 A}{(2 \pi)^{2}} 2 \pi k d k \\
& =\frac{2 A}{(2 \pi)^{2}} 2 \pi \frac{\varepsilon}{\hbar v_{F}} d \frac{\varepsilon}{\hbar v_{F}} \\
& =\frac{A}{\pi \hbar^{2} v_{F}^{2}} \varepsilon d \varepsilon \\
D(\varepsilon)= & \frac{A}{\pi \hbar^{2}{v_{F}}^{2}} \varepsilon
\end{aligned}
$$

It is proportional to the energy ε.

REFERENCES

H. Alloul, Introduction to the Physics of Electrons in Solids (Springer, 2007).
M.L. Cohen and S.G. Louie, Fundamentals of Condensed Matter Physics (Cambridge, 2016).

