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1. Miller indices and reciprocal lattice vector 

Here we discuss the reciprocal lattice vector which is defined by 

 

1 2 3h k l  G b b b  

 

where h, k, and, l are integers,  
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with 

 

,2i j i j a b   (Kronecker delta, ,i j =1 for i = j, 0 for i   j). 

 

Then we have 
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Index of planes 

 

Consider the (hkl) plane. where (hkl) are the smallest three integers (Miller indices). 

 

(a) Property-I 

 

The reciprocal lattice vector is defined by 

 

321 bbbG lkh  . 

 

G is perpendicular to the (hkl) plane. 

 

((Proof)) 
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Fig. Definition of (hkl) plane where h, k, and l are the smallest three integers. n = 1. 

 

First we find the intercepts on the axes in terms of the lattice constants a1, a2, and a3: a1/h, 

a2/k, a3/l (see the above figure). We take the reciprocals of these numbers and then reduces 

to three integers having the same ratio, usually the smallest three integers: (hkl). These 

indices (hkl) may denote a single phase or a set of parallel planes. If a plane cuts an axis on 

the negative side of the origin, the corresponding index is negative, indicated by placing a 

minus sign above the index )( lkh . 

 

Take the reciprocal 
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These two vectors are perpendicular to G. 
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by using the relations 

 

2332211  bababa  

 

Then the (hkl) plane is perpendicular to G. 

 

(b) Property II 

The distance between two parallel adjacent (hkl) planes is 

 

G

2
)( hkld  (nearest neighbor distance) 

 

where (hkl) indices are the smallest integers. 
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Fig. Adjacent (hkl) planes. 

 

 
 

Fig. The nearest neighbor distance between the adjacent (hkl) planes. 
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n (hkl) plane 
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Since (hkl) plane is perpendiculat to G, 
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(c) Property-III 

What is the separation distance between the n(hkl) plane and (n+m) (hkl) plane? 
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Fig. Two (hkl) planes. 
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(d) Intercept of the (h, k, l) plane with the translation vectors a1, a2, and a3 
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We determine the values of , , and  in the above figure from the conditions that 

 

� ∙ ���� − ��	
 = 0 
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 = 0 

 

Since � = ℎ�� + ��� + ���, we have 
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When we assume that these are equal to 2� (n is integer), we get the relations as 
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2. The reciprocal lattice vector for the conventional cell 

This is the case for the sc, fcc, and bcc structures where the primitive cell and the 

conventional cell can be defined 

 

 
 

We consider the conventional cubic cell.  

 

(1,0,0)x aa ,  (0,1,0)y aa ,  (0,0,1)z aa  

 

2
(1,0,0)x

a


b , 

2
(0,1,0)y

a


b , 

2
(0,0,1)z

a


b  



9 

 

 

Then the reciprocal lattice vector can be expressed by 

 

2
( , , )x y zh k l h k l
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
   G b b b . 

 

with 

 

2 2 22
h k l

a


  G . 

 

The equation of the ),,( lkh  plane is expressed by 

 

( ) 0x

n

h
  r a G  

 

or 

 

nalzkyhx   (1) 

 

where ),,( zyxr  is the position vector at the point P on the (hkl) plane. 

 

Suppose that the position vector OH
����

 is given by 
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where  is a constant to be determined. The vector R at the point H is on the (hkl) plane 

and perpendicular to the plane, leading to 
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and 
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The magnitude R  is obtained as 

 

G
R

n

lkh

na 2
222



  

 

with 

 

2222
lkh

a



G  

 

3. Mathematica Program for drawing the (hkl) plane 
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(i) Pick up one of three vectors as a vector . 
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(ii) Set up an equation for the plane with the Miller indices (h, k, l). 

 

( ) ( , , ) 0h k l  r α G  

 

We use ContourPlot3D program in the Mathematica to draw the (hkl) plane. 

 

 

 

((Mathematica)) 

 

Drawing (h, k, l) plane 
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Clear "Global` " ;

Face n1 , H1 , K1 , L1 :

Module eq1, eq2, a1, a2, a3, b1, b2, b3, O1, G1, G0, A1, A2, A3, s1,

s2, r1, x, y, z , O1 0, 0, 0 ; a1 1, 0, 0 ; a2 0, 1, 0 ; a3 0, 0, 1 ;

b1 2 1, 0, 0 ;

b2 2 0, 1, 0 ;

b3 2 0, 0, 1 ; G1 H1 b1 K1 b2 L1 b3;

G0
n1

H1
2

K1
2

L1
2

H1, K1, L1 ;

r1 x, y, z ;

A1
n1

H1

a1; A2
n1

K1

a2;

A3
n1

L1

a3;

eq1 r1 A1 .G1 0;

s1 Graphics3D Arrowheads 0.05 , Black, Thick, Arrow O1, 1.3 a1 ,

Arrow O1, 1.3 a2 , Arrow O1, 1.3 a3 , Black, Line A1, A2, A3, A1 ,

Blue, Thick, Arrowheads 0.06 , Arrow O1, 0.05 G1 , PointSize 0.02 ,

Red, Point G0 , Boxed False ;

s2 ContourPlot3D Evaluate eq1 , x, 0, 2 , y, 0, 2 , z, 0, 2 ,

Mesh False, ContourStyle Green , Opacity 0.4 ; Show s1, s2 ;

p1 Graphics3D Text Style "na1 h", Black, 15, Italic , 0.45, 0, 0.05 ,

Text Style "na2 k", Black, 15, Italic , 0, 0.35, 0.05 ,

Text Style "na3 l", Black, 15, Italic , 0.02, 0.02, 0.55 ,

Text Style " n 1 a1 h", Black, 15, Italic , 0.9, 0, 0.05 ,

Text Style " n 1 a2 k", Black, 15, Italic , 0, 0.7, 0.05 ,

Text Style " n 1 a3 l", Black, 15, Italic , 0.02, 0.02, 1.01 ,

Text Style "G h,k,l ", Black, 15, Bold, Italic , 0.8 1, 1, 0.94 ,

Text Style " h,k,l plane", Black, 15, Italic , 0.3, 0.3, 0.54 ;

Show Face 1, 2, 3, 2 , Face 2, 2, 3, 2 , p1
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4 Simple cubic structure 

In this case the primitive cell is the same as the conventional cell. 
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Structure of simple cubic (sc) lattice, 
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jiji ,2 ba  

 

 
 

Fig. Reciprocal lattice points of scc. The vectors bx, by, and bz are the reciprocal lattice 

vectors. 

 

5. Miller indices of planes for the sc lattice 
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Fig. 1 xa a , 2 ya a , and 3 za a . The primitive cell is the same as the conventional 

cell. 

 

Note that the reciprocal lattice vectors  

 

( , , ) x y zh k l h k l  G b b b
,
 

 

with xg h , yg k , zg l  

 

are perpendicular to the plane with the Miller indices (h, k, l).  
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Equation for the plane with the Miller indices (h, k, l) can be expressed by 
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or 

 

nalzkyhx  . 

 

(a) (100) plane; h = 1, k = 0, and l = 0. 
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Fig. (100) plane. This figure is drawn using the Mathematica (ContourPlot3D for the 

planes and Graphics3D) 

 

(b) (110) plane; h = 1, k = 1, and l = 0. 
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The distance between the adjacent cubic (110) plane is 
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(110) plane 

 

(c) )011(  plane; h = 1, k = -1, and l = 0. 
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)011( plane 

 

(d) (111) plane; h = 1, k = 1, and l = 1. 
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The distance between the adjacent cubic (111) plane is given by 
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(111) plane 

 

(e) (200) plane; h = 2, k = 0, and l = 0. 
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The distance between the adjacent cubic (200) plane is given by 
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(200) plane 

 

(f) (210) plane; h = 2, k = 1, and l = 0. 
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The distance between the adjacent cubic (210) plane is given by 
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(210) plane. 

 

((Note)) 

For scc structure, it is required that 

 
222

zyx ggg  = 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 

24, 25, 26, 27, 29, 30, 32, .... 

 

_________________________________________________________________________ 

6. face-centered cubic (fcc) lattice 

The primitive cell by definition has only one lattice point, but the conventional fcc cell 

contains four lattice points. Note that the lattice point is defined as follows. The atomic 

arrangement in the crystal looks exactly the same to an observer at r' (one lattice point) as to 

an observer at r (another lattice point). 
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fcc structure 

 

 
Fig. Top view from the (111) direction in fcc structure. The red line indicates the 

direction of (111). 
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The primitive translation vectors of the fcc lattice are expressed by 
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2
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2

1
2 aa , )0,1,1(

2

1
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where there is one atom per this primitive cell. We can generate all the points of the fcc 

lattice is described by 

 

332211 aaal lll   

 

with l1, l2, and l3 integers. The volume of the primitive cell is 
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The corresponding reciprocal lattice vectors are given by 

 

)1,1,1(
2

)(

)(2

321

32
1 





a


aaa

aa
b  

 

)1,1,1(
2

)(

)(2

321

13
2 





a


aaa

aa
b  

 

)1,1,1(
2

)(

)(2

321

21
3 





a


aaa

aa
b  

 

The reciprocal lattice vector is described by 
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2

321321321332211 ggggggggg
a

ggg 

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where g1, g2, and g3 are integers. 

The translation vectors of the conventional unit cell (cubic) are expressed by 

 

)0,0,1(ax a ,  )0,1,0(ay a ,  )1,0,0(az a  

 

where there are two atoms per this conventional unit cell. The volume of the cubic cell is 
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The reciprocal lattice vectors (the conventional unit cell) are defined by 
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In general, the reciprocal lattice vector is given by 

 

),,(
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zyxxzyyxx ggg
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
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with 
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There are relations between (gx, gy, gz) and (g1, g2, g3). Note that all indices of (gx, gy, gz) 

are odd or even. There is a selection rule for the indices (gx, gy, gz). 

 

_______________________________________________________ 

gx gy gz    g1 g2 g3 

__________________________________________________________________________________ 

1 1 1 1 1 1 

2 0 0 0 1 1 

2 2 0 1 1 2 

3 1 1 1 2 2 

2 2 2 2 2 2 

4 0 0 0 2 2 

3 3 1 2 2 3 

4 2 0 1 2 3 

4 2 2 2 3 3 

5 1 1 1 3 3 

______________________________________________________ 

 

Selection rule for the indices (g1, g2, g3) for fcc. 

 

((Note)) 

For fcc structure, it is required that 

 
222

zyx ggg  = 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 32, 35, 40, 36, 43, 44, 48   
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The reciprocal lattice vectors, b1, b2, and b3 for the primitive cell and bx, by, and bz for the 

cubic cell (conventional cell) for the fcc lattice. The reciprocal lattice points are denoted by 

solid blue circles). 
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Reciprocal lattice vectors 

________________________________________________________________________ 

7. Miller indices of planes for the fcc lattice 

 

(a) (111) cubic plane (conventional) 
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a
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The distance between the adjacent (111) plane is 
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a
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We consider a plane which passes through (n ax/1) and is perpendicular to G. 

 

0)1/(  Gar xn  

 

where n is an integer.  

 

 
(111) cubic plane for fcc 

 

((Another method)) Primitive cell 

 

 
321 bbbG 
 

 

We consider a plane which passes through (n a1/1) and is perpendicular to G. 

 

0)1/( 1  Gar n  

 

where n is an integer. This plane is the same as that obtained above. 
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(b) (200) cubic plane 
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The distance between the adjacent cubic (200) plane is 
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2
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a
d 
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We consider a plane which passes through (n ax/2) and is perpendicular to G, 

 

0)2/(  Gar xn  

 

where n is an integer. 

 

 
(200) cubic plane for fcc 
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((Another method)) Primitive cell 

 

32 bbG 
 

 

We consider a plane which passes through (n a3/1) and is perpendicular to G. 

 

0)1/( 3  Gar n  

 

where n is an integer. This plane is the same as that obtained above. 

 

(c) (220) cubic plane 
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The distance between the adjacent cubic (220) plane is 
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2
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a
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G
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We consider a plane which passes through (n ax/2) and is perpendicular to G. 

 

0)2/(  Gar xn  

 

where n is an integer. 
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(220) cubic plane for fcc 

 

((Another method)) Primitive cell 

 

321 2bbbG 
 

 

We consider a plane which passes through (n a1/1) and is perpendicular to G. 

 

0)1/( 1  Gar n  

 

This plane is the same as that obtained above. 

 

_________________________________________________________________________ 

8. body-centered cubic (bcc) structure 

The primitive cell by definition contains only one lattice point, but the conventional bcc 

cell contains two lattice points. 
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The primitive translation vectors of the bcc lattice are expressed by 
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2

1
1  aa , )1,1,1(
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2

1
3  aa  

 

where there is one atom per this primitive cell. We can generate all the points of the bcc 

lattice is described by 

 

332211 aaal lll   

 

with l1, l2, and l3 integers. The volume of the primitive cell is 

 

2
4

2
111

111

111

2
)(

333

321

aaa





















 aaa  

 

a1

a2

a3

ax

ay

az
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The corresponding reciprocal lattice vectors are given by 

 

)1,1,0(
2

)(

)(2

321

32
1

a








aaa

aa
b  

 

)1,0,1(
2

)(

)(2

321

13
2

a








aaa

aa
b  

 

)0,1,1(
2

)(

)(2

321

21
3

a








aaa

aa
b  

 

The reciprocal lattice vector is described by 

 

),,(
2

213132332211 gggggg
a

ggg 


bbbG  

 

where g1, g2, and g3 are integers. 

The translation vectors of the conventional unit cell are expressed by 

 

)0,0,1(ax a ,  )0,1,0(ay a ,  )1,0,0(az a  

 

where there are two atoms per this conventional unit cell. The reciprocal lattice vectors are 

defined by 

 

)0,0,1(
2

)(

)(2

azyx

zy

x









aaa

aa
b  

 

)0,1,0(
2

)(

)(2

azyx

xz
y








aaa

aa
b  

 

)0,1,0(
2

)(

)(2

azyx

yx

z









aaa

aa
b  

 

The reciprocal lattice vector is given by 
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),,(
2

zyxxzyyxx ggg
a

ggg


 bbbG  

 

with 

 

21

31

32

ggg

ggg

ggg

z

y

x







 

 

There are relations between (gx, gy, gz) and (g1, g2, g3). Note that 

 

)(2 321 gggggg zyx 

  

which is even. 

 

_______________________________________________________ 

gx gy gz    g1 g2 g3 

__________________________________________________________________________________ 

1 1 0 0 0 1 

2 0 0 -1 1 1 

2 1 1 0 1 1 

2 2 0 0 0 2 

3 1 0 -1 1 2 

2 2 2 1 1 1 

3 2 1 0 1 2 

4 0 0 -2 2 2 

______________________________________________________ 

Selection rule for the indices (gx, gy, gz) for the cubic bcc 

 

For bcc structure, it is required that 

 
222

zyx ggg  = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, ' 
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The reciprocal lattice vectors, b1, b2, and b3 for the primitive cell and bx, by, and bz for the 

cubic cell (conventional cell) for the bcc lattice. The reciprocal lattice points (denoted by 

solid blue circles) are located on a fcc lattice. 

b1b2

b3

bx
by

bz

O

b1
b2

b3

bx

by

bz

O



40 

 

 

9. Miller indices of planes for the bcc lattice 

 

(a) (110) cubic plane 

 

)0,1,1(
2

a
yx


 bbG , or 3bG   

 

2
2

a


G  

 

The distance between the adjacent cubic (110) plane is 

 

2
(110)

2

a
d


 

G
 

 

We consider a plane which passes through (n ax/1) and is perpendicular to G. 

 

0)1/(  Gar xn  

 

where n is an integer. 

 



41 

 

 
(110) cubic plane for bcc 

 

((Another method)) Primitive cell 

 

 
3bG 

 
 

We consider a plane which passes through (n a3/1) and is perpendicular to G. 

 

0)1/( 3  Gar n  

 

where n is an integer. This plane is the same as that obtained above. 

 

(b) (200) cubic plane 

 

)0,0,2(
2

2
a

x


 bG , or 321 bbbG   

 

2
2

a


G  
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The distance between the adjacent cubic (200) plane is 

 

2

2
)200(

a
d 

G


 

 

We consider a plane which passes through (n ax/2) and is perpendicular to G. 

 

0)2/(  Gar xn  

 

where n is an integer. 

 

 
(200) cubic plane for bcc 
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((Another method)) Primitive cell 

 

 
321 bbbG 
 

 

We consider a plane which passes through (n a3/1) and is perpendicular to G. 

 

0)1/( 3  Gar n  

 

where n is an integer. This plane is the same as that obtained above. 

 

(c) (211) plane (cubic) 

 

)1,1,2(
2

2
a

zyx


 bbbG , or 32 bbG   

 

5
2

a


G  

 

The distance between the adjacent cubic (211) plane is 

 

5

2
)211(

a
d 

G


 

 

We consider a plane which passes through (n ax/2) and is perpendicular to G. 

 

0)2/(  Gar xn  

 

where n is an integer. 
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(211) cubic plane for bcc 

 

((Another method)) Primitive cell 

 

32 bbG 
 

 

We consider a plane which passes through (n a3/1) and is perpendicular to G. 

 

0)1/( 3  Gar n  

 

where n is an integer.  

 

(d) (222) cubic plane 

 

)2,2,2(
2

222
a

zyx


 bbbG , or 321 bbbG   
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23
2

a


G  

 

The distance between the adjacent cubic (222) plane is 

 

23

2
)222(

a
d 

G


 

 

We consider a plane which passes through (n ax/2) and is perpendicular to G. 

 

0)2/(  Gar xn  

 

where n is an integer. 

 

 
(222) cubic plane for bcc 
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((Another method)) Primitive cell 

 

321 bbbG   

 

We consider a plane which passes through (n a1/1) and is perpendicular to G. 

 

0)1/( 1  Gar n  

 

where n is an integer. This plane is the same as that obtained above. 

 

_______________________________________________________________________ 
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APPENDIX-I 

H.P. Myers; Introductory Solid State Physics 

 

In our prescription for establishing the Miller index we have said that we must form the 

triplet of lowest indices. Thus the planes (200), (300), (400),..., (n00) should all reduce to 

(100)! Furthermore, if we try to illustrate say the planes (300), what do we find? As Fig. 

shows, these are planes parallel to (100) but with an interplanar spacing one third that of the 

(100) spacing. Most of the planes (300) do not pass through lattice points and such planes 

can hardly have physical significance. Surely only the planes (100) are ‘real’ and all planes 

of the form (n00), (nn0) and (nnn), n>1 are redundant. It therefore seems that our definition 

over-determines the reciprocal lattice with regard to the number of physically significant 

planes in the direct lattice. However, next we shall see that this problem is very simply 

resolved. For the moment we declare that it is physically justifiable to accept planes of the 

forms (nh nk nl) for all values of n, even though the majority of these planes do not pass 

through lattice points. In consequence we also declare that all the points of the infinite 

reciprocal lattice are physically significant 
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Fig H.P. Myers 

 

Bragg’s law is ordinarily discussed in terms of Bragg reflection as a result of constructive 

interference of rays diffracted from successive planes of a given family (hkl).where  

 

2��ℎ��
 sin � = �� 

 

n is the order of diffraction. How are we to take account of the different orders of 

diffraction? Let us rewrite Bragg’s law in the form 

 

2
��ℎ��


�
sin � = � 

 

Now the planes (nh nk nl) have interplanar spacing 
"����


�
, so nth-order diffraction in planes 

(hkl) is equivalent to first-order diffraction in planes (nh nk nl). If we choose to describe 

diffraction by crystals as always arising in first order then we must introduce planes of the 

form (nh nk nl). It was planes of just this kind that we found redundant as described in Note-

1. Thus our redundancy problem is resolved if we assume that lattices (i.e crystals) always 

diffract x rays, neutrons, electrons or any other particle in first order.  

 

((Consideration-1)) 

(100) plane and (200) plane 
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(a) 

Intercept a1  1 x (1/1 0 0) (100) plane with n = 1 

 

What is another (100) plane? 

 

Intercept 2a1  2 x a1  (100) plane with n = 2 

 

Intercept 3a3  3 x a1 (100) plane with n = 3 

 
(b) 

Intercept a1/2  1 x (1/(1/2) 0 0) (200) plane with n = 1 

 

What is another (200) plane? 

 

Intercept a12 x a1/2  

 

(200) plane with n = 2. 

(100) plane with n = 1 

 

Intercept 3a1/23 x a1/2 

 

(200) plane with n = 3. 

 

x

y

z

-2a1-a1Oa12a13a1

-3
a1

2-
a1

2O
a1

23
a1

25
a1

2
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Intercept 2a14 x a1/2  

 

(200) plane with n = 4. 

(100) plane with n = 2 

 

Intercept 5a1/25 x a1/2 

 

(200) plane with n = 5. 

 

((Consideration-2)) 

(001) plane and (002) plane 
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Intercept a3  1 x (00 1/1) (001) plane with n = 1 

 

What is another (001) plane? 

 

Intercept 2a3  2 x a3 (001) plane with n = 2 

 

Intercept 3a3  3 x a3 (001) plane with n = 3 

x

y

z

O

a3

2a3

3a3

4a3

5a3

6a3



51 

 

 

 
 

Intercept a3/2 (00 2) (002) plane 

 

What is another (002) plane? 

 

Intercept a12 x a3/2  

 

(002) plane with n = 2. 

(001) plane with n = 1 

 

Intercept 3a3/23 x a3/2 

 

(002) plane with n = 3. 

 

Intercept 2a34 x a3/2  

x

y

z

O

a3

2

a3

3

2
a3

2a3

5

2
a3

3a3
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(002) plane with n = 4. 

(001) plane with n = 2 

 

Intercept 5a3/25 x a3/2 

 

(002) plane with n = 5. 

 

APPENDIX-II Miller indexes for the 2D plane 

 

I found a very nice figure in the book of  

Robert A. Levy, Principles of Solid State Physics *Academic Press, 1968). 

 

Designating an origin at some unit cell, the intercepts of the plane occur at a/3, and b/4. Upon 

taking reciprocals, this becomes 3 and 4. and upon reducing to integers, the Miller indices 

are (3,4).  
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