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((William Lawrence Bragg))

Sir William Lawrence Bragg, (31 March 1890 — 1 July 1971) was an Australian-born
British physicist and X-ray crystallographer, discoverer (1912) of Bragg's law of X-ray
diffraction, which is basic for the determination of crystal structure. He was joint winner
(with his father, William Henry Bragg) of the Nobel Prize in Physics in 1915: "For their
services in the analysis of crystal structure by means of X-ray", an important step in the
development of X-ray crystallography. Bragg was knighted in 1941. As of 2018, he is the
youngest ever Nobel laureate in physics, having received the award at the age of 25 years.
Bragg was the director of the Cavendish Laboratory, Cambridge, when the discovery of
the structure of DNA was reported by James D. Watson and Francis Crick in February
1953.

https://en.wikipedia.org/wiki/Lawrence Bragg

Here we discuss the Bragg’s law in the x-ray diffraction of crystals with periodicity.
The construction of the Ewald sphere is useful for our understanding of the Bragg’s law.

1. Introduction
1.1 X-ray source
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Fig. Schematic diagram for the generation of x-rays. Metal target (Cu or Mo) is
bombarded by accelerating electrons. The power of the system is given by P =
I(mA) V(keV), where I is the current of cathode and V is the voltage between the
anode and cathode. Typically, we have /=30 mA and V'=50kV: P=1.5 kW.

We use two kinds of targets to generate x-rays: Cu and Mo.
The wavelength of CuKo1, CuKo2 and CuKp lines are given by

Aggr =1.540562 A, 2, =1.544390 A, A, ,=1.392218 A.

The intensity ratio of CuKa1 and CuKao: lines is 2:1. The weighed average wavelength 1,
is calculated as

A Ke2 =1.54184 A.
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((Note)) The wavelength of MoK is 1,, =0.71073 A. Figure shows the intensity versus

wavelength distribution for x rays from a Mo target. The penetration depth of MoKa line
is much longer than that of CuKa line.
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Intensitry vs wavelength distribution for x-rays from a Mo target
bombarded by 30 keV electrons from C. Kittel, Introduction to Solid State

Physics.
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Fig. x-ray spectrum. Ko line (fromn=2ton =1). Kp line (fromn=3ton =1). and La
line (from n =3 to n = 1). n is the principal quantum number.

((Example)) Mo

Atomic number: Z=42
proton 42, neutron 54
Atomic mass = 95.94 u

((Formula))

2 L1y 3 p7 gy
7K~ RZ-D G- =3 RZ-D

with
R =1.0973731568539(55) x 10’/m

(a)



(b)

Link:
http://www.xtal.igftr.csic.es/Cristalografia/parte_02-en.html

A(K,) =0.0722798 nm = 0.722798 A

1 1. 8
=R(Z-1)*(=—-—)=—R(Z-1)*
( )(12 3 9( )

AK )

A(K ;) =0.060986 nm = 0.60986 A

=R(Z —1)2(%—i) =%R(Z -1

MK, 1> 4

e

A(K,)=0.0578238 nm = 0.578238 A

1
A(K.)

0

=R(Z —1)%%—%) =R(Z -1)

A(K,)=0.0542098 nm = 0.542098 A

1.2

Principle of x-ray diffraction

x-ray (photon) behaves like both wave and particle. In a crystal, atoms are periodically
located on the lattice. Each atom has a nucleus and electrons surrounding the nucleus. The
electric field of the incident photon accelerates electrons. The electrons oscillate around an
equilibrium position with the period of the incident photon. The nucleus does not oscillate

because of the heavy mass.

Classical electrodynamics tells us that an accelerating charge radiates an

electromagnetic field.
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Fig. Schematic diagram for the interaction between an electromagnetic wave (x-
ray) and electrons surrounding nucleus. The oscillatory electric field (£ =
Eoe'®) of x-ray photon gives rise to the harmonic oscillation of the electrons
along the electric field.

The instantaneous electromagnetic energy (radiation) flow is given by the pointing vector

2 2
v-sin” @

S~ T n

The direction of the velocity v (the direction of the oscillation) is along the x direction. The

direction of the photon radiation is in the (x, y) plane.



Fig.  The distribution of instantaneous radiation energy due to the oscillation of electrons
along the x direction.

1.3  Experimental configuration of x-ray scattering

detector
28
CuKe line
28=0
A=154184 A
sample
Fig. Example for the geometry of Q2 (= 6) — 26 scan for the (00L) x-ray

diffraction. The Cu target is used. The direction of the incident x-ray is 26
= 0. The angle between the detector and the direction of the incident x-ray
is 26. W is the rotation angle of the sample.



((Example)) x-ray diffraction

We show two examples of the x-ray diffraction pattern whicha are obtained in my

laboratory

(a) Stage- 3 MoCls graphite intercalation compound (GIC). MoCls are intercalated into
empty graphite galleries. There are three graphene layers between adjacent MoCl5
intercalate layers.

(b) Ni vemiculite. Vermiculite is a layered silicate (a kind of clays). In the interlamellar
space, Ni layer are sandwiched between two water layers.

stage-3 MoCl; GIC
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Fig. (00L) x-ray diffraction pattern of stage-3 MoCls GIC (graphite intercalation

compound)
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Fig. (00L) x-ray diffraction pattern of Ni-vermiculite with two water-layer
hydration state.
2 Born approximation in quantum mechanics

2.1 Green's function in scattering theory
We start with the original Schrédinger equation.

_2h_vzl//(r) +V(r)w(r)=Ey(r),
u
or

(V4 i—é‘E»w(r) - ;—é‘V(r)wm -

under the potential energy V (r) . We assume that

2
E:Ekzzkz,

We put



f(r)= V(r)w(r)
Using the operator

L=V+I.

r

we have the differential equation
Ly(r)=(V* + K Yyr) ==/ (r).

Suppose that there exists a Green's function G (r) such that
(V. +K)G (1,1 ==0(r —1"),

with

exp(ik|r - r'|)

(+) " —
G = 47r|r—r'|

(Green function)

We will discuss about the derivation of this Green function later. Then y (r) is
formally given by

v ()= g(r)+ j dr'G " (r,r) £ ()

exp(1k|r -r |)

~ p(r) - 25 [ar V()

where ¢(r) is a solution of the homogeneous equation satisfying

(V2 +£°)f(r) =0,

or

1 .
<5 exp@k-r), (plane wave)

0 =tk) =51

with

k=

10



Note that

(V2 + 2w (r) = (V> + E2)d(r) + j dr' (V2 + k)G (1) £ (1)

=—[dr'ser—rf(r)
=—f(r)

2.2 Born approximation
We start with

J-d 'exp(zk|r r|)

w () =¢(r)— vy,

P)r)= <’” ‘k> (27:)3 —€xp(k-r), (plane wave).

11



Fig. Vectors r and »’ in calculation of scattering amplitude in the first Born
approximation

Fig. u =e¢
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) = —explik - ,,)_Z_ﬂie_

@ )3/2 Id eV (Y ()

or

ikr

1 ik-r e_ '
)" L™+ Sk K)]

y(r)=

The first term denotes the original plane wave in the propagation direction k. The
second term denotes the outgoing spherical wave with amplitude, 7 (k', k),

' 1 Z/J v ik ' + '
Sk ) == Q@) P fdr eV ).
The first Born approximation:

FK' k) = —iz—” j dr'e ™"V (r)e™”

—i(k'—k)-r'

when l//(+) (¥) is approximated by

()~ Lk

(272_)3/2 €

Note that f(k', k) is the Fourier transform of the potential energy with the wave
vector Q; the scattering vector;

0 =k'—k

Formally f (k' k) can be rewritten as

S Ry=— "

(k1K)
(iV])

47z,u

where

13



(kP|K)= jd3r<k'|r>V(r)<r|k>
1
@y

J‘d3refi(k'fk)-rV(r)
with
1
(r|k)= Wexp(t‘k r)

2.3 Differential cross section

dQ
Detector

>» z

P

| W

f k( 95 ¢) eikz
r
incident spherical
plane wave wave

We define the differential cross section j—g as the number of particles per unit time

scattered into an element of solid angle dQ) divided by the incident flux of particles.

The probability flux associated with a wave function

| R | R
¢k(r)=<r\k>=me "o

1s obtained as

o
&

1 h_k __ v
Q) u  Q2n)

N = = 2 -4 )=
L 0z
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Fig.

volume = — x1

U

#[* _ 1 means that there is one particle per unit volume. J; is the probability flow

le
(probability per unit area per unit time) of the incident beam crossing a unit surface
perpendicular to OZ

The probability flux associated with the scattered wave function

1 ikr

7 :W% f(6) (spherical wave)
1S

Sl oy Ly k|

Y v T T
Since

dA = r*dQ
we have

v f@) v 2
AN =J dA = G r2dQ = Gy ()| d&

where J; is the probability flow (probability per unit area per unit time)

15



Detector

The differential cross section

do AN 2
g £ (O] dD

z

or
22—y or-
First-order Born amplitude:
Sk k) = —i(zzf ;—ﬁ‘<k’|V|k>

which is the Fourier transform of the potential with respect to Q, where

0 = k'-k : scattering wave vector.
|Q| =Q=2ksinf for the elastic scattering.

The Ewald sphere is given by this figure. In the case of x-ray and neutron diffraction,
we use the scattering angle 26, instead of 6.

((Ewald sphere)) x-ray and neutron scattering

16



Ewald sphere

Fig. Ewald sphere used for the x-ray and neutron scattering experiments. ki = k.
ke=k’. Q =q = k— k’ (scattering wave vector). Note that in the conventional
x-ray and neutron scattering experiments, we use the angle 26, instead of &
for both the x-ray and neutron scattering,

3. Bragg condition
3.1. Bragglaw
The incident x-rays are reflected specularly from parallel planes of atoms in the crystal.
(a) The angle of incoming x-rays is equal to the angle of outgoing x-rays.
(b) The energy of x-rays is conserved on reflection (elastic scattering).

The path difference for x-rays reflected from adjacent planes is equal to Ad = 2d siné. The
corresponding phase difference is

APp=kAd = (21 2)2d sin6.
where £ is the wave number (k= 27/1) and A is the wave length.

Constructive interference of the radiation from successive planes occurs when A¢ = 2nr,
where 7 is an integer (Bragg’s law).

2d sin@ = nA,

The Bragg reflection can occur only for A<2d.

17



The Bragg law is a consequence of the periodicity of the lattice. The Bragg law does not
refer to the composition of the basis of atoms associated with every lattice point. The
composition of the bases determines the relative intensity of the various orders of
diffraction.

Incoming heam Qutgoing heam

0A=0B=d sing

Fig. Geometry of the scattering of x-rays from planar arrays. The path difference
between two rays reflected by planar arrays is 2d siné.
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Fig. Path ofray-1 and ray-2; 6+ ¢ = % . The path difference is denoted by the red line.

The Bragg law is satisfied by 2dsin@=IA.

3.2  Concept of Ewald sphere: introduction of reciprocal lattice

Fig. The geometry of the scattered x-ray beam. The incident x-ray has the
wavevector ki (= k), while the outgoing x-ray has the wavevector kr (= k).
= ‘kf ‘ =2mia , where A is the wavelength of x-ray.

Bragg law:

2dsin@ =14

where k; is incident wavevector, and ks is the outgoing wavevector,
2
k|=\k |=—
| l| ‘ f‘ Y '
Q is the scattering vector:

Q:ki_kf Q:kf_ki

, or

20



Fig. The geometry of Fig.10 using a circle with a radius £ (= 27/1). The
scattering vector Q is defined by Q = kr— ki.

In the above configuration, @ is perpendicular to the surface of the system

4 4 nA 2rx ...
= 2|k |sin @ = —sin § = — —— = ——n (Bragg condition).
|Q| | l|sm /I sin 2 n (Bragg )

which coincides with the reciprocal lattice point. In other words, the Bragg reflections
occur, when @ is equal to the reciprocal lattice vectors G.

The Ewald sphere (shown below) is essential to understanding the above concept. The
Bragg law means that the Bragg reflection occurs when the scattering vector Q coincides
with the reciprocal lattice vector;

Q:kf -k =G

21



Ewald sphere

Fig. Ewald sphere. & (|ki| = 277/1) is the wave vector of the incoming x-ray. kr
is the wave vector of the outgoing x-xay. The scattering vector Q (= G) is
parallel to the c axis of the sample located on the origin O. |Q| = (4 7/ 1)siné.
Ol is the origin of the reciprocal lattice space of the sample.

4. 1D reciprocal lattice

We consider a linear chain with a lattice constant a; = a (a primitive cell). The
corresponding reciprocal lattice is formed of a 1D reciprocal lattice with a reciprocal lattice
constant b1 (=2 /a1), where

a, b =2n.
® ® ® ® ® ® ® ® ® ® ®

g

aj

Fig. 1 D lattice with a lattice constant a.
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bi(=2n/a)
Fig. 1D reciprocal lattice with a reciprocal lattice b1 (= 27/a1)
5 2D Reciprocal lattice vector

A different pattern of a crystal is a map of the reciprocal lattice of the crystal.
5.1 Square lattice

I & @ *
bg‘
¥y P ® . 2 ®
Reciprocal
a |a lattice plane
[ 2 ® . 2 &
bz
il - > & ® s & -
a by by
Fig. Real space for the square lattice and the corresponding reciprocal lattice

plane.

a, and a> are the lattice vectors, and b1 and b are the reciprocal lattice vectors. The
direction of b1 (b>) is the same as that of a1 (a2).

a,-b =a,-b,=27 (inner product), a,-b,=a,-b,=
2
ab, =2r, or bl =
a,
2
a,b, =27, or b, =—
a,

5.2 Hexagonal lattice (or triangular lattice)

23



b2
az
60
T ’
30 a1
by
Fig. Real space for the hexagonal (triangular) lattice and the corresponding

reciprocal lattice plane.
a> is perpendicular to bi. a; is perpendicular to b».

a -b=a,-b,=2r1, a,-b,=a,-b,=0

abcosB0)=27. or blzjg—ﬁ
a

4r
b,cosB0)=2x, or b =——
a,b, cosB0) ) «/§a2
(«/_ -1) and b, =4—7[(O,—1)
f V3a
The angle between a1 and b, is 30°. The angle between a2 and b is 30°.

5.3 Graphite 2D lattice (honeycomb)
There are two atoms per cell. The lattice constant a is equal to 2.46 A.

24



>

Fig. Two dimensional lattice for graphite layer (honeycomb). There are two
carbon C atoms per unit cell.

The lattice constant of graphite is @ = 2.46 A. The graphite has a A-B stacking sequence
along the c axis. We now consider the reciprocal lattice plane of the graphite lattice. The
vectors a1 and a; are the in-plane lattice vectors. The vectors b1 and b; are the reciprocal
lattice vectors. Note that 4, -5, = 0 and a, - b, = 0 . The angle between a) and b, is 30°.

bz

|

h
az !

bz

by

- 3

Y
®

Reciprocal lattice plane

Fig. In-plane structure and the corresponding reciprocal lattice of the graphite

lattice. a1 = 2.46 A. by = 4m/(~3a,) = 2.95 AL,

a -b =a,-b,=2r

25



abcosB0)=27z, or b, =43—7z=2.95 Al
a

A 954,

\3a,

a,b,cosB0)=27, or b, =

6. 3D Reciprocal lattice vector
6.1 Definition
The reciprocal lattice vector G is expressed by

G=Fkb +kb, +Ib,.
where 4, k, and [ are integers and

a, xa,

la,,a,,a;] ’

a xa,

b =2r ——, b T
[a,,a,,a;] [a,a,,a;]

Note that

G-T=(hb, +kb, +1b,)- (u,a,+u,a, +ua) =27(hy, +ku, +u,).
We also note that

a,-b, =270,
where ¢ is the Kronecker delta function. We note that

b L ar, a3 (b1 1s perpendicular to a> and a3).

b | az, a1 (b2 is perpendicular to a3 and ax).

b L a, a (b3 is perpendicular to a1 and a).

6. Reciprocal lattice vector: Simple cubic (sc) structure (primitive cell)

26



Fig. Crystal structure of sc system. ax, ay and a, are the primitive lattice
vectors. The lattice constant is a.

The primitive translation vectors for sc are given by

a. = a(l,0,0) , a,= a(O,l,O) , a.=a(0,0,1),
with

a -(a,xa.) =a’.
The corresponding reciprocal lattice vectors are

2z(a xa
= ( y z) =2_7T(1’0’0)’
a

a, -(ay xXa,)

_ 272'(az Xax) :2_72-(0,1’0),
" oa.(a,xa) a

2r(a, xa
:(x—y):2_7f(070’1).
a -(a,xa) a

z

27



Fig.23 Reciprocal lattice points for the scc lattice. The vectors bx, by, and b, are

the reciprocal lattice vectors. b =b =b_ = 2—”
a
7. Reciprocal lattice vector: face-centered cubic (fcc) lattice

The primitive cell by definition has only one lattice point, but the conventional fcc cell
contains four lattice points. Note that the lattice point is defined as follows. The atomic
arrangement in the crystal looks exactly the same to an observer at ' (one lattice point) as
to an observer at r (another lattice point).

a:

/

aj
a

as

Ay
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fce structure

Fig. Translation vectors of the primitive unit cell and conventional unit cell for
the fcc.

The primitive translation vectors of the fcc lattice are expressed by

a, = %a(oalal) > a, = %a(laoal) > a; = %a(l,l,O)

where there is one lattice point (or atom) per this primitive cell. We can generate all the
points of the fcc lattice is described by

I=la +La +La,

with /1, 2, and /5 integers. The volume of the primitive cell is

3
a
a,-(a, xa3):?,

The corresponding reciprocal lattice vectors are given by

2n(a, xa;) 2rx
bl == =

-1L1
a -(a,xa;) a ( )

_ 27(a, xa,) :2_72(1,_1’1)

? a -(a,xa;,) a

29



b :M:z_ﬂ(l,la_l)
a -(a,xa) a

The reciprocal lattice vector is described by
27
G=gibi+8:b,+ by =——(-81+ 8+ 81,8~ 8, + 85,81+ 8~ &)

where g1, g2, and g3 are integers. The translation vectors of the conventional unit cell
(cubic) are expressed by

a_=a(10,0), a,=a(0,1,0), a.=a(0,0,)

where there are two atoms per this conventional unit cell. The volume of the cubic cell is

3
a
a.(a, X“z)zq

The reciprocal lattice vectors are defined by

2r(a, xa
_2r(a, xa.) _ 2_”(1,0’0)
a

X

ax '(ay ><az)

_2maxa) 27 610
a

¥

a.-(a,xa)

2r(a, xa
:MZZ_”(O’OJ)
ax '(ay Xaz) a

z

In general, the reciprocal lattice vector is given by
2z
G=gb +gb, +gb, =7(gx,gy’gz)
with

g8 ="81T& 18
g£,=8 -8 1&
8.8 188

30



There are relations between (gx, gy, g-) and (g1, g2, g3). Note that all indices of (gx, gy, g2)
are odd or even. There is a selection rule for the indices (gx, gy, g2).

.
A
%
g2
09
(o)
09
W

— DO = O = OO -

N A P WERADNDWNDDND—
— NN WO —=DNO —
— N = NON = =0 -
W W RN == —
W LW W W RN DN = —

Selection rule for the indices (gx, gy, g) for fcc.

((Note))

For fcc structure, it is required that

g +g +8.7=3,4,8,11,12,16, 19, 20, 24, 27, 32, 35, 40, 36, 43, 44, 48

9. Reciprocal lattice vector: body-centered cubic (bec) structure
The primitive cell by definition contains only one lattice point, but the conventional
bece cell contains two lattice points.

31



Fig.
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The primitive translation vectors of the bcc lattice are expressed by

a, = %a(_lylal) > a, = %a(l,—l,l) > a; = %a(l’l’_l)

where there is one atom per this primitive cell. We can generate all the points of the bee
lattice is described by

l=la+la +la

with /1, 2, and /5 integers. The volume of the primitive cell is
3

a
a ’(az ><a3):?

The corresponding reciprocal lattice vectors are given by

_ 2n(a, xay) _2z

b, (O,LI)

a,-(a,xa;) a

p, = @ x@) 27 )
a,-(a,xa;) a

b — 27(a, xa,) :2_7z(1,1,0)
a-(a,xa;)) a

The reciprocal lattice vector is described by
2
G=gb +g,b,+gb, = 7(g2 +85,8 1858 +8,)

where g1, g2, and g3 are integers.
The translation vectors of the conventional unit cell are expressed by

a_=a(10,0), a,=a(0,1,0), a. =a(0,0,1)

where there are two atoms per this conventional unit cell. The reciprocal lattice vectors
are defined by

2r(a, xa
)
a

aX '(ay va)
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by _ 2”(“2 Xax) :2_71-(0,1,0)
a (a,xa) a

2 X
) =M=2—”(0,1,0)
a, -(ay xa,) a

The reciprocal lattice vector is given by

2
G=gb +gb, +gb, =7(gx,gy’gz)

with
g8, =& 1+&;
gy :gl+g3
gz :gl+g2

There are relations between (gx, gy, g2) and (g1, g2, g3). Note that
g +8, T&. =2g +&+g)

which is even.

8x 8y 8z g1 &2 g3
1 1 0 0 0 1
2 0 0 -1 1 1
2 1 1 0 1 1
2 2 0 0 0 2
3 1 0 -1 1 2
2 2 2 1 1 1
3 2 1 0 1 2
4 0 0 -2 2 2

Selection rule for the indices (gx, gy, g-) for the cubic bee

For bcec structure, it is required that

g +g, +8.7=2,4,6,8,10, 12, 14, 16, 18, 20, 22, 24,

34



Fig.

The reciprocal lattice vectors, b1, b2, and b3 for the primitive cell and by, by, and b, for the
cubic cell (conventional cell) for the bee lattice. The reciprocal lattice points (denoted by
solid blue circles) are located on a fcc lattice with

11. Origin of the Reciprocal lattice vector

For simplicity we discuss the case of one dimension (1D). We consider the Fourier
transform of the number density of electrons in the periodic lattice. In the free space, the
electron propagating to the positive x direction, has the form of plane wave as a wave
function,

ikox

V,=¢€
In free space, the number density n(x) of electrons can be expressed by the superposition

of the plane waves with any wave number k. Here we assume the duality of wave and
particle in quantum mechanics. In this case, using the Fourier transform, n(x) can be

expressed by
n(x) = aneﬂ“
k

Suppose that the electrons are in the quantum box with the size L. The wave number £ is
not continuous any more. When we use the periodic boundary condition,
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eik(x+L) — kx

ei

or

or

k= - =27 n: integer
v ( ger)

where L= Na, and m, and N are integer numbers. Thus the number density of electrons is
rewritten by

2z m

n(x)= anel a N’
m

Now we assume the periodic condition that
n(x+a)=n(x)
Then we get

(x+a)

2zm
n(x+a)= ane a N
m

i—N t—Nx
— a a
= Ze n,e

m

27— zz—ﬁxx

— a
= Ze n,e

m
=n(x)

In order to have the above condition, we need the condition for m,
m=sN (s =0, +1,+2,+3,...).

The final expression for n(x) is

2r
I—SXx {Gk
n(x)= Znse ¢ = che
s G

where G is the reciprocal lattice
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G = 27 (the minimum value)

a

000000000000000000000000000000000000000
-2G -G 0 G 2G

Fig. The distribution of wave number £ in the 1D system. The discreteness of k (the
separation 27 / L) comes from the size of the system L. The blue points denote
the reciprocal lattice points G which is equal to integer times 27/a, where a is
the lattice constant (the space periodicity)

This means that only the plane wave with the wave number of the reciprocal lattice

contributes to the number density of electrons in a periodic lattice. This discussion can be
extended to both the 2D and 3D systems. In general, we have

n(r)= che’c"
G
with the reciprocal lattice vector
G=hb, +kb, +1b,

where @; 'bj = 27[5, ;-For any translation vector

T=ua +ua, +ua,
we have n(r) satisfies the periodic condition,
n(r+T)= z nge' s
G
— Z eiG-TnGeiG»r
G
=n(r)
Note that ¢“” =1, since

G-T =(hb, +kb,+1b,)-(u,a, +u,a, +u,a,)
=27 (hu, + ku, + lu;)
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Fig. Reciprocal lattice plane for the 2D hexagonal lattice.

12. Electron density: Fourier analysis
A crystal is invariant under any translation of the form

T=ua +u,a +ua,,

where u1, u2, u3 are integers and a1, a», a3 are the periods along the crystal axes. Any local
physical property of the crystal is invariant under 7: charge concentration, electron number,
magnetic moment density. Electron number density n(r) is a periodic function of r, with
periods a1, a2, a3 in the directions of the three axes.

n(r+T)=n(r)

We consider the Fourier series

38



n(r)= ZnG exp(iG-r)

n(r+T)=>Y n;expliG-(r+T)]=expliG-T)]D ng exp(iG-r) =n(r)

or
G-T =27 x integer

The extension of the Fourier analysis to periodic function n(r) in the 3D,

n(r)= ZnG exp(iG-r)

where G is the reciprocal lattice vectors, and nc determine the x-ray scattering amplitude.
G is described by

G=hb, +kb, +Ib,
where h, k, and / are integers. b1, b2, and b3 need to satisfy the condition

a -bj :27ré;j

where 5,~j is the Kronecker delta symbol: 5,-j =1 fori=j and 5,~j = 0 for i =j. Then we

have
G-T=(hb, +kb, +1b,) (wa +ua, +ua,)=27(hy, +ku, +lu)

13.  Fourier component nc and the structure factor Sc.
We now calculate the Fourier component ng.

J.n(r)e_ic"dr = J.ch.eic"'e"ic"dr = ZnG,J.ei(G'_G)"dr =ngV
G' G'

vV Vv

where I e O"dr =V, ; , and Vis the total volume of the system. So we get
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ng = %J.n(r)e_’c"dr
Vv

where N is the total number of atoms and V' = NV

cell *

l’7

) /4

Fig. System consisting of periodic cells. T is the translation vector. r =T + r'.
Since

r=T+r",
we get

n(r)y=n(T +r')=n(r").
We also note that
e i6T — o IG(rHT) _ p-iGor'

Then we have

1
NVcell

ng =

—iG-r _ 1 —iG-r
[N ”n(r)e dr]—V—jn(r)e dr

V. cell ¥,y

Here we define the structure factor as

S = I n(rye " dr

Vrdl
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or

14. One dimensional case
For simplicity, we consider a function n(x) with a period a in the x direction (one
dimensional case).

n(x)=n(x+a)

Suppose that n(x) may be expressed by

n(x)= an exp(igx)

n(x+a)= Zn L, explig(x+a)]= exp(iga)Zn . €Xp(igx) = exp(iga)n(x) = n(x)

Then we have
exp(iga) =1

or

Thus we have

n(x)= an exp(igx)
g
with
1 T —igx
n, = Zjdxn(x)e
0

((Example-1)) What is the value of ns? We consider the simplest case.
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-

Fig. A simple one dimensional array with a lattice constant a.
1 ¢ 1
n, = —I5(x)ea’x = —
a 0 a

with g =271
a

where §(x) is the Dirac delta function.

((Example 2))
There are two atoms in each unit cell with the lattice constant a.

Fig. One dimensional array with to atoms per unit cell with a lattice constant a.

"= ]1.[5(’6) +6(x —b)le " dx = l(1 +e7e)
a

¢
asy

_(+e)A+e?) 4 ( g_b)

2 2
g8 a a
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with g =27
a

((Mathematica)): |ng|2 vs [ where a =1 and b= 0.3.

2.5 5 7.5 10 12 5 15

Fig. Intensity |”g|2 vs Bragg index [ for the 1D system shown in Fig.22.

15. Structure factor
S is called the structural factor and defined as an integral over a single cell.

—/ T~

SR

cell

Fig.  Unit cell having more than two atoms. r=r, +p.

Let n,(r—r;) be defined by the contribution of atom j to the electron concentration.
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n(r)zinj(r—rj),

over the s atoms of the basis.

Fj
nucleus

Fig.  Electron distribution around the nucleus. r—r; = p

Then we have

S; = I n(r)e " dr = i j nj(,._rj)e—iordr,

Veen I=N Ve

or

Sg=>e" " jnj(P)e‘iG‘”dp.
j

Veen

where r =r; + p. We now define the atomic form factor as
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fy= [n(p)e dp.

Veen

The atomic form factor is a measure of the scattering power of the j-th atom in the unit cell.
The value of finvolves the number and distribution of atomic electrons. Then Sg is given
by the form

Sy = Z fje_iG"" .

j
The structure factor Sg need not to be real because the scattering intensity will involve

Se*Se =|Sa[

where SG* is the complex conjugate of Sg.

16. General expression for structure factor
The electron density is expressed by

n(r) = Z ijs(r — 1) = Rynp)

mnp j
where f; is the atomic form factor. The Fourier transform of n(r) is defined by

jdVe‘i“"'rn(r) = f dVe idkr Z ijd(r —7; — Rynp)

mnp j

_ z e—iAk~Rmnpz]c.e—iAk-rj
mn,p

Z(S(Ak G)Zfe“‘””l
Z(S(Ak G)Zfe“”l

where

Rmnp =maq + na, + pas
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Fig.  Position of the j-th atom within the unit cell is specified by ;.
We note that the structure factor is defined by
S =2j f]-e_ia"’i (structure factor)

We also use the Poisson sum rule;

Z e—iAk.Rmnp — Z (S(Ak _ G)
G

mn,p

17. Atomic form factor
When G = 0, f; is equal to the total number of electrons around the nucleus (2)

fi=[n(p)dp=2.
Vz‘ell

The value of f for atoms may be found in the international tables for x-ray crystallography.
Suppose that the electron distribution is spherically symmetric about the origin:
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nj(p):nj(p)a

Fig. Relation between G and p in the Cartesian coordinates.

Let p make an angle o with G. Then we get

iGpcosa

~
Il

27p°n, (p)dpj sinadae”

—-iGpcosa ]7[
0

1
270%n (p)do[—e
p°n;(p) p[l.Gp

27p°n,(p)
iGp

Il
S8 Oy § O'-—;8

dp(eiGp _ e—iGp)

—47rfdpp n,(p)SCP) (Gp)

s1n(Gp)

f; =4 dpp’n, (D)=

sin(Gp)

Then the atomic form factor is dependent on G. When G = 0, G
0

47

~1.
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S, =4x[dpp’n;(p)=Z,

where Z is the number of atomic electrons. The atom has a size comparable to the
wavelength of the x-rays., and scattered rays leaving different parts of the atomic charge
cloud are not exactly in phase. The difference in phase is zero at zero diffraction angle, but
increases markedly as the angle increases. The atomic factor thus decreases with the angle

of diffraction.

20 I | |
15
?
g 10
k>
G
St
5
0 | | | |
0 0.1 0.2 0.3 0.4 05 0.6
sin(8)/A (1/A)

x-ray atomic form factors of oxygen (blue), chlorine (green), Cl” (magenta),
and K" (red); smaller charge distributions have a wider form factor.

sinf O

Fig.

= = i In this Fig, f is plotted as a function of G/4 .
A 4r  4Ar

http://en.wikipedia.org/wiki/Atomic_form_factor
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10 — —

N\ B
2 \\\ Y -
==
05 | | | T
0.0 0.5 1.0 15 20
(sin®) /21 (A™)
Fig. x-ray atomic form factors for H (Z = 1) to Ne (Z = 10). The atomic form

factor tends to show tail to higher Q as Z increases. This means that the
orbital radius of the inner shells become smaller for the larger charges of Ze
of the nucleus.
http://www.crl.nitech.ac.jp/~ida/education/structureanalysis/3/3.pdf

((Example))
We now calculate the form factor of atomic hydrogen in the ground state. The number
density is given by

1
n(p) :_3672;'/(10

7,
where ay is the Bohr radius (a0 = 0.53 A)

16

((Mathematica))
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Fig. The atomic form factor of hydrogen in the ground state
The structure factor for the 1D case is given by
Se = In(rw Ye o dr = J.n(z)e_iGzzdz
where
r, =ze,=(0,0,z).

S¢ depends only on G, which leads to the Bragg plane.

i

NN/
/VV
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Fig. Bragg plane (k. = (2nl/a, [: integer) in the reciprocal lattice space, which is
a significant feature common to the 1D system where atoms are arranged
along the z axis with a lattice constant a.

18.2 Two dimensional case
The structure factor S¢ for the 2D case is given by

So = [n(rp)e™ " dr,, = [ [nGr, e dxdy
where
hLp=xe +ye, =(x,2,0),

S depends only on G and Gy, which leads to the Bragg ridge (or Bragg rod. or reciprocal
rod).

Bragg ridge or Bragg rod

Fig. Bragg ridge (or rod) in the reciprocal lattice space (in the case of square
lattice), which is a significant feature common to the 2D system (see
"electron diffraction")

18.3 Three dimensional case
The structure factor S¢ for the 3D case is given by

S¢ = Jn(rw Ye 'Cnrdry, = J_”n(x,y,z)eii(G”HG"y”dxdy dz
where

r,=xe +ye +ze =(x,),z),
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S¢ depends only on Gy, Gy, and G, which leads to the Bragg point.

19. Diffraction conditions
19.1 Scattering amplitude
The set of reciprocal lattice vectors determines the possible x-ray reflections.

Crystal specimen

Incident heam Outgoing heam

Fig. Geometry of the x-ray scattering.
k= k, is the incident wavevector.
ke=k' is the outgoing wavevector.

The difference in phase factor is exp[i(k-k')r] between beams scattered from volume
elements r apart. The amplitude of the wave scattered from a volume element is
proportional to the local electron concentration n(r).

The scattering amplitude F'is

F = J. drn(r)e’* " = J. dre’iQ";nGeiG"

where Q is the scattering vector

0=k-k

Then F is rewritten as



F= Z ng I dre'' 92"
G .

From theses we have

F=ngV for 0=k-k=0G,
and

F=0 otherwise.

This is a Bragg’s law.

In elastic scattering (energy is conserved), ‘k" :‘k‘ . Then we have
kK’ =(k+Gy =k +G" +2k-G

or

(k+

) a0

N Q
N Q

2kG:_G2 or

Fig. Geometry of k, k', and reciprocal lattice vector G.

The vector (k+G7/2) is always perpendicular to the vector G/2.
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Fig. The Brillouin zone for the 3D reciprocal lattice space. k = k' + G.

19.2  Brillouin zone
If G is a reciprocal lattice vector, so is —G. With this substitution, we have

k-k'=G
and

(k-G/2)-G/2=0
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Fig. Condition for the Bragg reflection. It is required that the wavevector k is
located at the zone boundary of the first Brillouin zone in the reciprocal
lattice plane. When k is not on the zone boundary, no Bragg reflection
occurs.

We construct a plane normal to G at its midpoint. This plane forms a part of the zone
boundary. A x-ray beam will be diffracted if its wavevector k has the magnitude and
direction required by
2k-G =G

The diffracted beam will then be in the direction k' =k — G.

The set of planes that are the perpendicular bisectors of G is of general importance in the
theory of wave propagation in crystals. The first Brillouin zone is the smallest volume
entirely enclosed by planes that are perpendicular bisectors of the reciprocal lattice vectors

drawn from the origin.

(1) The Brillouin zone exhibits all wavevector (-ki), which can be Bragg reflected by
a crystal.
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(2) A Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lattice.
3) A wave whose wavevector drawn from the origin terminates on any of these planes
will satisfy the condition of diffraction: x-ray, phonon, magnon, and electron.
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Fig. When the Bragg reflection (G = k¢ - ki = k' - k) occurs, the wave vector (-k;)
always lies on the Brillouin zone (Bz). kr (= G + ki) is the wavevector of the
outgoing wave

(a) Brilloun zone for square lattice with the unit cell of a x a

10
1 8 2 0
2 7
8 8
;
9 e 9
) 3,5 N0 8l
4 4
3
3
9 4 4
10 X817 2 ) 2 718%10
4 4 o
3 3
4 4
0 0\ 8 3 2 3 7 A |
8
9 13 Y 9
7 8
—38
10
Fig. 2D Brillouin zone for the square lattice. The number denotes the Brillouin

zone number.

(b) Brillouin zone for the triangular lattice
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2
5 5
V& g 7 ’
5 3 5
2 2
4 4
5 3 5
7 3 >
7 2 ® 2 7
7
7
5 3 3 5
4 4
2 2
5 3 5
7 4 7
7 ) g 7
7 7
Fig. Brillouin zone for the 2D triangular lattice.

19.3 One dimensional case

We now consider the 1D case of the Brillouin zone. The Bragg condition occurs when
k-k=2n/a.

zone boundary

-2nia {nia 0 wa Pria
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Fig.58 First Brillouin zone for the 1D system with a lattice constant a. Bragg
reflection occurs only at k = 7/a.

20. Ewald sphere and scattering
20.1 Construction of Ewald sphere

b3
by
az
0
28 reciprocal lattice
Cll
k
sample
Ewald sphere
Fig. Ewald sphere. The origin of the reciprocal lattice is located at the end of the

wavevector k of the incident beam.

We draw a sphere of radius k=2 774 about the starting point of k. The origin of the reciprocal
lattice plane corresponding to the real space of the sample is at the end point of k. A
diffracted beam will be formed if this sphere intersects any other point in the reciprocal
lattice. The Ewald sphere intercepts a point connected with the end of k by a reciprocal
lattice vector G. This construction is due to Paul Peter Ewald.

Paul Peter Ewald: He was born in Berlin Germany on January 23, 1888. He was a U.S.
(German-born) crystallographer and physicist. He was a pioneer of the x-ray diffraction
methods. He was also the eponym of Ewald construction and the Ewald sphere. He was a
Professor of Physics Department, Brooklyn Polytechnic Institute (1949 — 1959), New York.
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He was the father-in-law of Prof. Hans Bethe (the late). He died at Ithaca, New York on
August 22, 1985. He was awarded the Max Planck medal in 1978.

20.2 Experimental configuration

Qis the angle of sample
26 1s the angle between the direction of the incident x-ray and the outgoing x-ray.

b3 (h,0.) scan
‘I O o‘//

O &—0

(00D scan | —@—@

Q O 9 O
O ® L 4 @
*—o—o &—» by
o
(h00) scan
Fig. Schematic diagram of (%k/) scan for the x-ray scattering experiment.

20.2.1. (00I) scattering
(= 6)-20scan

Ewald sphere-1 (£-26scan)
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Fig.

Ewald sphere-2 (6-2 6 scan)

Fig.

61
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Ewald sphere-3 (6-2 6 scan)

b9

Figs. Examples for the Ewald construction for the (00L) x-ray diffraction. 22 (= 6) — 26
scan.

20.2.2 In-plane (h, k,0) scattering

£2=(90° +6) - 2@ scan
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b1

b3

a3

Figs. Example for the Ewald construction for the (H00) x-ray diffraction. 2 (=
0 +90°) — 2@ scan.

20.2.3 Rocking curve around (00/) Bragg point.

20is fixed, while £2is rotated.

Note that QO = 47ﬂsin 0 = const

b3
A
Rocking curve
- h9
Fig. Schematic diagram of the reciprocal plane for the rocking curve experiment.
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Fig. Example for the Ewald construction for the rocking curve where 2 6= fixed.
£ is rotated.

Using this curve, one can estimate the mosaic spread of the sample.

21. X-ray diffraction in Low dimensional systems
21.1 One dimensional system

For the one dimensional system with the lattice constant d, there exist Bragg planes
with k, = (2n/d.)l. The Bragg reflections occur on the surface of Ewald sphere where the
Bragg planes intersect with the sphere. The incident beam of x-ray is perpendicular to the
line of atoms.
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2qid
""" Origin of
reciprocal lattice
-2nid
Qrigin of real space
Fig. Schematic diagram of the Ewald construction. Because of the 1D chain,

there are Bragg planes in the reciprocal lattice plane. The direction of 1D
chain is the same as the direction of incident beam.

The interference condition is
k cos@= (2n/d)n.

Since k = 27/ 4, this is rewritten as (27/4) cos@ = (2n/d)n. or d cos@ = nA, where d is the
lattice constant of the 1D system.

We also consider the case when the incident beam of x-ray is parallel to the line of
atoms. We note that a 1D system has Bragg planes in the reciprocal lattice. The direction
of diffracted beam is determined using the Ewald sphere.
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Origin of reciprocal lattice

1D sampl,

Fig. Schematic diagram of the Ewald construction. Because of the 1D chain,
there are Bragg planes in the reciprocal lattice plane. The direction of 1D
chain is perpendicular to the direction of incident beam.

The interference condition is

k (1-cos@)= (2n/d)n.

Since k = 2774, this is rewritten as (2774) 2 sin*(82) = 2n/a)n.

or
0, A
2sin’ (=) ==n.
sin (2) dn

21.2 Two dimensional system

A single plane of atoms form a square lattice of lattice constant a. The plane is normal
to the incident beam. There exist Bragg rods (Bragg ridge, reciprocal rod). The Bragg
reflections occur on the surface of Ewald sphere where the Bragg rods intersect with the
sphere.
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\03
Bragg rod

2D system
b1
Bragg rod

Fig. Schematic diagram of the Ewald construction. Because of the 2D system,
there are Bragg rods (ridges) in the reciprocal lattice space. The direction of
2D plane is perpendicular to the direction of incident beam.

21.3 Relation between the lattice and reciprocal lattice for the 2D square and
hexagonal lattice

For the square lattice, the shape of the lattice and the reciprocal lattice is the same. -

\

/{ Origin of reciprocal space

Qrigin of real space




Fig. Relation of the real space and the reciprocal space for the 2D square lattice.
The rotation angle between the a1 axis and b axis is 0°.

For the hexadonal lattice, the shape of the lattice and the reciprocal lattice is the same. The
rotation angle between these two lattices is equal to 30°.

\

|
] QOrigin of reciprocal space
Qrigin of real space
Fig. Relation of the real space and the reciprocal space for the 2D triangular

(hexagonal) lattice. The rotation angle between the a1 axis and b axis is 30°.

22.  Debye-Scherrer powder method

In the powdered method, the incident x-ray beam strikes a finely powdered
polycrystalline sample contained in a thin-walled capillary tube. The distribution of
crystallite orientations will be nearly continuous. Diffracted x-rays leave sample along the
generators of cones concentric with the original incident beam. The generators make an
angle 2q with the direction of the incident beam. The cones intercept the x-ray film in a
series of concentric rings.
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Fig.

Schematic diagram for the Debye-Schrerrer powder method. Ewald sphere
is also drawn. The outgoing x-ray beam intercepts the x-ray film (ring
shape).
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Fig. Construction of the Ewald sphere with |k|=|k'|=27/1. O=k'- k=G
(Bragg condition).

Bragg condition for the x-ray powder diffraction,
4 .
=|G|=—sind,
o]=/6]= s
with
G =G(hkl)=hb, +1b, +1b,.
If (hkl) are the smallest three integers, we have

2r
d(hkl)

G(hkT) =

where d(hkl) is the shortest distance between adjacent (4k/) planes.
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(a) Selection rule for the sc

A . 2 2 2 2
—sinf =|G|=— + +
/1 G| ; Jel e v e
where
27
ngxbx+gyby+gsz:7(gx’gy"gz)

where gx, gy, and g, are integers. For the sc structure, it is required that

g +g, +2.°=1,2,3,4,5,6,8,9,10,11,12, 13, 14, 16, 17, 18, 19, 20, 21, 22,
24,25,26,27, 29, 30, 32, ....

(b) Selection rule for the fcc

4r . 2 2 2 2
—sinf =|G|=— + +

f G| ; N
The reciprocal lattice vector is given by

2
G = gxbx +gyby + gsz :T(gx’gy’gz)’
with

g&:="871T8&1E&;
g, =888
g:.=8 18 ~&;
where g1, g2, g3 are integers. There are relations between (gx, gy, g2) and (g1, g2, £3). Note

that all indices of (gx, gy, g2) are odd or even. There is a selection rule for the indices (gx,
gy, 87)-

8x 8y 8z g1 &2 g3
1 1 1 1 1 1
2 0 0 0 1 1
2 2 0 1 1 2
3 1 1 1 2 2
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[V, T S SO US I SN O}
—_— NN WO N
—_— N = NO N
W W NN NN
W W W W NN

—_—NN O = O N

Selection rule for the indices (gx, gy, g-) for the fcc.

For fce structure, it is required that

gx2 —|—gy2 +g22= 3,4,8,11, 12, 16, 19, 20, 24, 27, 32, 35, 40, 36, 43, 44, 48 (fcc)

(¢) Selection rule for the bee

4r . 2 2 2 2
—sinf =|G|=— + + .
f G| ; N
The reciprocal lattice vector is given by

27
G=gb +gb +gb = 7(gx,gy,gz)

with
gx :g2+g3
gy :g1+g3
gz :g1+g2

where g1, g2, g3 are integers. There are relations between (gx, gy, g2) and (g1, g2, £3). Note
that

g tg *&. =2g +8+8;)

which is even.

8x 8y 8z g1 82 g3
1 1 0 0 0 1

0 -1 1 1
2 1 1 0 1 1



B W WP

S NN =N

S =N O O
—

N === O

[N NS R (SR )

Selection rule for the indices (gx, gy, &) for the bce

For bcec structure, it is required that

g +g +8."=2,4,6,8,10,12, 14, 16, 18, 20, 22, 24, ..... (bcc)

23. Structure factor calculations of KCl and KBr (NaCl type structure)

In KCl, the numbers of electrons of K (18 electrons) and CI ions are equal (18 electrons)
AKY) = ACK).

K+ (1/2,0,0),(0,1/2,0), (0, 0, 1/2), (1/2, 1/2, 1/2)
Cl (0,0,0),(0,1/2,1/2), (1/2, 0, 1/2), (1/2, 1/2, 0).

The crystal looks to x-rays as if it were a monatomic simple cubic lattice with a lattice
constant a/2.

S (V Vo ):fl[1+e—i7r(v2+v3)+e—i7r(v3+v1)+e—i7[(v1+v2)]
G\"1>"2°73 Cl

inv, +e—i7zv3 +e—i7z(v|+v2+v3)]

+fK[e_’A”Vl +e”

where gx = vi, gy = w2, and g, = vs.

8x 8y gz S (Vi35 v3)
1 1 1 A(-fxtfe) =0
2 0 0 4(fxtfcr)
2 2 0 4(fxtfc)
3 1 1 4(-fxtfc)=0
2 2 2 4(fK+fCl)
4 0 0 4(fxtfcr)
3 3 1 4('fK+fCl) =0
4 2 0 4(fxtfcr)
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In KBr, the form factor of Br (36 electrons) is quite different from that of K (18
electrons)

8x 8y 8z Se (Vi v2,v3)
1 1 1 4(-fk+7Br)
2 0 0 4(fx+ far)
2 2 0 4(fx+ fr)
3 1 1 4('fK+fBr)
2 2 2 4(fx+ fr)
4 0 0 4(fx+ far)
3 3 1 4(-fk+ fBr)
4 2 0 4(fK+ fBr)
T T T I
200) i
|
K1
I
|
(23N :I
(420 (Ao 22
ﬁ. j |
: . *—-?“'“;ﬂ;"—'—'—
; KEr
i
| 220)
i
4200 {22
(80
ﬁ (331
fu . et | E— -
B 768 B 0 ane o 208
—a0
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Fig.74 Comparison of x-ray reflections from KCI and KBr powers. (Kittel, ISSP
4th edition, Fig.31, p. 81)

APPENDIX-I Form factor of 1D x-ray diffraction
For simplicity, we consider the electron number density N(x) with a period a in the x
direction (one dimensional case).

N(x)=N(x+a)

Then N(x) may be expressed in terms of the Fourier series.

N(x) = %0 + Z {a, sin(n%”x) +b, cos(n%”x)}
= by + Z[a—”_{exp(iz—mx) - exp(—iz—mx)} + b—”{exp(iz—mx) + exp(—iz—mx)}]
2 o020 a a 2 a a
by Z[—ia—”{exp(iz—mx) = exp(=i 2o+ 2o exp (127 ) + exp(—i 27 )
2 2 a a 2 a a
= %0 + ;[(—ia—z” + %”) exp(i%mx) + (ia—z" + %”) exp(—i%mx)]
where
2 pa
by == jo N(x)dx
¢ =2 [N sin(Z7" x)dx
a’ a
b =2 [N cos(Z™ x)dx
a a
We note that
a,=-a,
b*n = n
a,=0
and that
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.a_, b .a, b
(i—+—")=i"+"
2 2 2 2

Then the expression of N(x) can be rewritten as

2 a b 2/m a b 27
N(x) =22+ 3 [(—i 24—y exp(i = x) + (i~ + ) exp(—i =~ x
(x) 5 n:l[( 5 2) p( » ) (2 2) p( » )]

o 4, by 2m
= >l 5 +2)6Xp(l ., x)]

where
27
g, =
a
a b 1 (e 27
N =——2+—2=—| N(x)exp(i—x)dx
p=oi = [N exp(i= =)
N—?‘l: ﬂ*
N0=—iﬁ+b—°=ﬁ
2 2 2

For simplicity we use the notation

N(x)=Y'N, exp(igx)

where
N,=N,
g, =8

The electron number density satisfies the periodic condition,

N(x+a)=) N, explig(x+a)]=expliga) Y N, exp(igx) = exp(iga) N (x) = N(x)

where
. .27m
exp(iga) =exp(i—a) =1
a

Thus we have
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N(x)=)_N, expligx)
g
with
N, = ljde(x)e_igx
g a o

APPENDIX-II Poisson summation formula
(a) Poisson summataion formula
For appropriate functions f{x), the Poisson summation formula may be stated as

if(x=n)=w/ﬂ iF(k=m), (1)

m=—o0

where m and n are integers, and F(k) is the Fourier transform of the function f{(x) and is
defined by

F(k) = FLf(x)] = ﬁ & £ (x)dx.

00

Note that the inverse Fourier transform is given by

(k) dk .

1 o0

X)=——|e
=g

The factor of the right hand side of Eq.(1) arises from the definition of the Fourier transform.

((Proof)) The proof of Eq.(1) is given as follows.

From the definition of the Fourier transform, we have

(ke = —— '[F(k)dke”‘”

| =
f(x:n):ﬁ_[ce \/g

and

i flr=m)=—r DCF(k)dk i oL wF(k)dk[(k)
‘ NeY 27

We evaluate the factor
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I(k)= ieik".

It is evident that /(k) is not equal to zero only when k = 27zm (m; integer). Therefore I(k)
can be expressed by

1(k) =4 f‘p(k —2mmm),

m=—x0

where 4 is the normalization factor. Then

i flx=n)= b j F(k)dk[ A i Sk —27m)]

pe oo 27 oo

27 e 2,
A4 F(k =27m)
27 e
A iF(k = 27m)
N2 =

The normalization factor, 4, is readily shown to be 27 by considering the symmetrical
case

fGr=m)=e™"

Flk=2m)=——e™

]

((Mathematica))
flx ]-= Exp[—ﬂ x2] ;
FourierTransform[f[x], x, k,

FourierParameters » {0, -1}]

k2

e 4

y

Since
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g N2mfa=m o
F(k =27m)

or

Using this formula, we have

(b) Dirac comb
When we put k£ =2x in I of Eq.(2)

iez’m =2 ié‘(2ﬂx —27mm)

n=—0o m=—o0

=§—Z ié‘(x—m)

m=—0n

= i&(x —m)

m=—o0

or

8
8
3
g
g

3

)

(Poisson sum formula)

(Dirac comb)

8

8

8

3)

8




Fig.  Plot of the Dirac comb as a function of x: 25 (x—m).

m=—0

(c) Convolution of Dirac comb: another method in the derivation of
Poisson sum formula
The convolution of functions f{x) and g(x) is defined by

. 17 17
f*g= ﬁj fx=Og()ds == j f(©)g(x—&)dE

The Fourier transform of the convolution is given by
F[f*gl=F[f]F[g].

Here we assume that
g(x)= 25(x —na). (Dirac comb)

The Fourier transform of g(x) is

o0

G(k) = Flg(x)] = ﬁ [ 3 80x— naytx = ﬁ 3 e

n=-—w

The convolution f*g is obtained as

frg= f
S [ /(-85 ~ nayde. @

(x=&) _ia(ﬁ — na)dé

1
NeTd
1
NeTd
zﬁ Zf(x—na)

The Fourier transform of the convolution is
1 ik
Fl*al=F(k)G(k)=—F(k e,

Here we use the Poisson summation formula;
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0 0

Ze—ikna — Zeikna — i 5(k_a_m)

C iSatem
- T;T mi@(k -2m,
where o(ax) = ﬁé (x), and
S = Yo, (Dirac comb)

with x = ka . Then we get
27

F[f k g] :%F(k) ie—ilma — %F(k) ieikna

/_1 |a Z5<k 2’””)F<k>
27zm
F k—
f| TR (k==" =

The inverse Fourier transform of F[ f * g] is obtained as

% 1 T % ikx
f g:ELF[f gle™dk

2ﬂm)F(k—

1
=—— | "dk— Sk —
e 2o
Ls 7 o [ ks — 2™
—;m_zF(k—jm)J;e dko(k ~ =)

where

F(k=2—”m)=\/;_ﬂje_'a F(x)dx .
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Finally we get

2mm
1 X

S N TN T N _2mm,
S g—mn;wf(x na) ZF(k )e

PR

When a =1, we get

or

i f(x-n)y=+27 iF (k = 2mm)e™ . (6)
When x =0,

This is the Poisson sum formula.

(d) Fourier transform of periodic function
We consider a periodic function N(x);

N(x+a)=N(x),

where a is the periodicity. The function N(x) can be described by

where a>0. Note that f{x) is defined only in the limited region (for example, -a/2<x<a/2).
G is the reciprocal lattice defined by

G=—m

a

The Fourier coefficient Ng is given by
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2z

N, =YL Fk=0G)
a

© al2 *
1 j % f(x)dx = j ¢ £ (x)dx
a —o0 a -al2

where f{(x) is just like a Gaussian distribution function around x = 0.

N(x)

AUAUAW/\WAUAWAS

|———

a

Fig. Plot of N(x) as a function of x. a is the lattice constant of the one-dimensional chain.

((Example))
Suppose that f{x) is given by a Gaussian distribution,
1 x’
X)= exp(—).
f(x) \/ZO‘ p( 202)

Then we get

1Y & 1 1 ., 1-2iGo? 1+2iGo?
N.=— |e™ f(x)dx =—exp(——G o) erf (————) + erf (————)],
o= [ f(x)dr=Zexp(— Nerf (— o)+ el (o)

—al2

where erf(x) is the error function and is defined by

erf (z) = %je"zdt
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Figure shows the intensity |N G |2 vs n, where G = 2—7[11 .
a

(INGD?

1.0

0.8 -

04l

02) °

.. ® o o ¢ o o o o0
4 6 8

Fig. a=1.0=0.1.G= 27, The intensity [N, |2 vs n (= integer).
a
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