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Sir William Lawrence Bragg, (31 March 1890 – 1 July 1971) was an Australian-born 
British physicist and X-ray crystallographer, discoverer (1912) of Bragg's law of X-ray 
diffraction, which is basic for the determination of crystal structure. He was joint winner 
(with his father, William Henry Bragg) of the Nobel Prize in Physics in 1915: "For their 

services in the analysis of crystal structure by means of X-ray", an important step in the 
development of X-ray crystallography. Bragg was knighted in 1941. As of 2018, he is the 
youngest ever Nobel laureate in physics, having received the award at the age of 25 years. 
Bragg was the director of the Cavendish Laboratory, Cambridge, when the discovery of 
the structure of DNA was reported by James D. Watson and Francis Crick in February 
1953. 
https://en.wikipedia.org/wiki/Lawrence_Bragg 
 

Here we discuss the Bragg’s law in the x-ray diffraction of crystals with periodicity. 

The construction of the Ewald sphere is useful for our understanding of the Bragg’s law.  

 

1. Introduction 

1.1 x-ray source 
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Fig. Schematic diagram for the generation of x-rays. Metal target (Cu or Mo) is 

bombarded by accelerating electrons. The power of the system is given by P = 

I(mA) V(keV), where I is the current of cathode and V is the voltage between the 

anode and cathode. Typically, we have I = 30 mA and V = 50 kV: P = 1.5 kW. 

 

We use two kinds of targets to generate x-rays: Cu and Mo. 

The wavelength of CuK1, CuK2 and CuK lines are given by 

 

1K  540562.1  Å. 2K  = 1.544390 Å, K = 1.392218 Å. 

 

The intensity ratio of CuK1 and CuK2 lines is 2:1. The weighed average wavelength K

is calculated as 

 

3

2 21 



 KK

K


  = 1.54184 Å. 

 

((Note)) The wavelength of MoK is K
 = 0.71073 Å. Figure shows the intensity versus 

wavelength distribution for x rays from a Mo target. The penetration depth of MoK line 

is much longer than that of CuK line. 
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1K  = 0.709300 Å. 2K  = 0.713590 Å,  K = 0.632 Å 

 

3

2 21 



 KK

K


  = 0.71073 Å. 

 

 
 

Fig. Intensitry vs wavelength distribution for x-rays from a Mo target 

bombarded by 30 keV electrons from C. Kittel, Introduction to Solid State 

Physics. 
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Fig. x-ray spectrum. K line (from n = 2 to n = 1). K line (from n = 3 to n = 1). and L 

line (from n = 3 to n = 1). n is the principal quantum number. 

 

 

((Example)) Mo 
 

Atomic number: Z = 42 
proton 42, neutron 54 
Atomic mass = 95.94 u 

 
((Formula)) 
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with 
 

R = 1.0973731568539(55) x 107/m 
 
(a) 
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)(  K  = 0.0722798 nm = 0.722798 Å 

 

(b) 
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)(  K  = 0.060986 nm = 0.60986 Å 
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)(  K = 0.0578238 nm = 0.578238 Å 
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)( K = 0.0542098 nm = 0.542098 Å 

 
Link: 
http://www.xtal.iqfr.csic.es/Cristalografia/parte_02-en.html 
 
1.2 Principle of x-ray diffraction 

x-ray (photon) behaves like both wave and particle. In a crystal, atoms are periodically 

located on the lattice. Each atom has a nucleus and electrons surrounding the nucleus. The 

electric field of the incident photon accelerates electrons. The electrons oscillate around an 

equilibrium position with the period of the incident photon. The nucleus does not oscillate 

because of the heavy mass. 

Classical electrodynamics tells us that an accelerating charge radiates an 

electromagnetic field. 
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Fig. Schematic diagram for the interaction between an electromagnetic wave (x-

ray) and electrons surrounding nucleus. The oscillatory electric field (E = 

E0e
it) of x-ray photon gives rise to the harmonic oscillation of the electrons 

along the electric field. 

 

The instantaneous electromagnetic energy (radiation) flow is given by the pointing vector 

 

nS
2

22 sin

R

v ɺ
 . 

 

The direction of the velocity v (the direction of the oscillation) is along the x direction. The 

direction of the photon radiation is in the (x, y) plane.  
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Fig. The distribution of instantaneous radiation energy due to the oscillation of electrons 

along the x direction. 

 

1.3 Experimental configuration of x-ray scattering 

 

 
 

Fig. Example for the geometry of  (= ) – 2 scan for the (00L) x-ray 

diffraction. The Cu target is used. The direction of the incident x-ray is 2 

= 0. The angle between the detector and the direction of the incident x-ray 

is 2. W is the rotation angle of the sample. 
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((Example)) x-ray diffraction  

 

We show two examples of the x-ray diffraction pattern whicha are obtained in my 

laboratory 

(a) Stage- 3 MoCl5 graphite intercalation compound (GIC). MoCl5 are intercalated into 

empty graphite galleries. There are three graphene layers between adjacent MoCl5 

intercalate layers. 

 

(b) Ni vemiculite. Vermiculite is a layered silicate (a kind of clays). In the interlamellar 

space, Ni layer are sandwiched between two water layers. 
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Fig. (00L) x-ray diffraction pattern of stage-3 MoCl5 GIC (graphite intercalation 

compound) 
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Fig. (00L) x-ray diffraction pattern of Ni-vermiculite with two water-layer 

hydration state. 

 

2 Born approximation in quantum mechanics 

2.1 Green's function in scattering theory 

We start with the original Schrödinger equation. 
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under the potential energy )(rV . We assume that 
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We put 
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Using the operator 
 

22 kL r . 

 
we have the differential equation 
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Suppose that there exists a Green's function )(rG  such that 
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We will discuss about the derivation of this Green function later. Then )(r  is 
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where )(r  is a solution of the homogeneous equation satisfying 
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Note that 
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2.2 Born approximation 

We start with 
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Fig. Vectors r and r’ in calculation of scattering amplitude in the first Born 
approximation 

 
 
Fig. 

rr eu   

 

Here we consider the case of )()( r  

 

rr errr  ''  

 
rkek '  
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eeee r  for large r. 
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The first term denotes the original plane wave in the propagation direction k. The 
second term denotes the outgoing spherical wave with amplitude, ),'( kkf , 
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The first Born approximation: 
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when )()( r  is approximated by 
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Note that ),'( kkf  is the Fourier transform of the potential energy with the wave 

vector Q; the scattering vector; 
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2.3 Differential cross section 

 

 
 

 
 

We define the differential cross section 
d

d  as the number of particles per unit time 

scattered into an element of solid angle d  divided by the incident flux of particles. 
 
The probability flux associated with a wave function 
 

ikzi

k ee
2/32/3 )2(

1

)2(

1
)(


  rk

krr , 

 
is obtained as 
 

33

**

)2()2(

1
)]()()()([

2 



vk

zzi
JN kkkkzz 









ℏℏ

rrrr  

 

z

Detector
d

0

V(r)



 incident
plane wave

 spherical
wave

e
ikz fk(,)

r
e

ikz



 15

 
Fig. 
 

volume = 1

kℏ

 

 

1
2

ikze  means that there is one particle per unit volume. Jz is the probability flow 

(probability per unit area per unit time) of the incident beam crossing a unit surface 
perpendicular to OZ 
 
The probability flux associated with the scattered wave function 
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where Jr is the probability flow (probability per unit area per unit time) 
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The differential cross section 
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which is the Fourier transform of the potential with respect to Q, where 
 

kkQ  ' : scattering wave vector. 

 

sin2kQ Q  for the elastic scattering. 

 
The Ewald sphere is given by this figure. In the case of x-ray and neutron diffraction, 
we use the scattering angle 2, instead of . 
 
((Ewald sphere)) x-ray and neutron scattering 
 

r

d
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Detector

dS  r
2
d
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Fig. Ewald sphere used for the x-ray and neutron scattering experiments. ki = k. 

kf = k’. Q =q = k – k’ (scattering wave vector). Note that in the conventional 
x-ray and neutron scattering experiments, we use the angle 2, instead of  
for both the x-ray and neutron scattering,  

 

3. Bragg condition 

3.1. Bragg law 

The incident x-rays are reflected specularly from parallel planes of atoms in the crystal.  

(a) The angle of incoming x-rays is equal to the angle of outgoing x-rays. 

(b) The energy of x-rays is conserved on reflection (elastic scattering). 

 

The path difference for x-rays reflected from adjacent planes is equal to d = 2d sin. The 

corresponding phase difference is  

 

 = kd = (2/)2d sin. 
 

where k is the wave number (k = 2/) and  is the wave length. 

 

Constructive interference of the radiation from successive planes occurs when  = 2n, 

where n is an integer (Bragg’s law). 

 

2d sin=n 
 

The Bragg reflection can occur only for ≤2d. 

 

f
fê2

2q

O
O1

Q

ki ki

k f

Ewald sphere
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The Bragg law is a consequence of the periodicity of the lattice. The Bragg law does not 

refer to the composition of the basis of atoms associated with every lattice point. The 

composition of the bases determines the relative intensity of the various orders of 

diffraction. 

 

 

 
 

Fig. Geometry of the scattering of x-rays from planar arrays. The path difference 

between two rays reflected by planar arrays is 2d sin.  
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Fig. Path of ray-1 and ray-2; 
2


  . The path difference is denoted by the red line. 

The Bragg law is satisfied by  ld sin2 . 

 

3.2  Concept of Ewald sphere: introduction of reciprocal lattice 

 

 
 

Fig. The geometry of the scattered x-ray beam. The incident x-ray has the 

wavevector ki (= k), while the outgoing x-ray has the wavevector kf (= k’). 

 /2 fi kk
, where  is the wavelength of x-ray. 

 

Bragg law: 

 

 ld sin2 , 

 

where ki is incident wavevector, and kf is the outgoing wavevector, 

 


2

 fi kk
. 

 

Q is the scattering vector: 

 

fi kkQ 
, or if kkQ 
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Fig. The geometry of Fig.10 using a circle with a radius k (= 2/). The 

scattering vector Q is defined by Q = kf – ki.  

 

In the above configuration, Q is perpendicular to the surface of the system 

 

n
dd

n
i










2

2

4
sin

4
sin2  kQ  (Bragg condition). 

 

which coincides with the reciprocal lattice point. In other words, the Bragg reflections 

occur, when Q is equal to the reciprocal lattice vectors G. 

The Ewald sphere (shown below) is essential to understanding the above concept. The 

Bragg law means that the Bragg reflection occurs when the scattering vector Q coincides 

with the reciprocal lattice vector; 

 

GkkQ  if  
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Fig. Ewald sphere. ki (|ki| = 2/) is the wave vector of the incoming x-ray. kf 

is the wave vector of the outgoing x-xay. The scattering vector Q (= G) is 

parallel to the c axis of the sample located on the origin O. |Q| = (4/)sin. 

O1 is the origin of the reciprocal lattice space of the sample. 

 

4. 1D reciprocal lattice 

We consider a linear chain with a lattice constant a1 = a (a primitive cell). The 

corresponding reciprocal lattice is formed of a 1D reciprocal lattice with a reciprocal lattice 

constant b1 (=2/a1), where 

 

211  ba . 

 

 
 

Fig. 1 D lattice with a lattice constant a1. 
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Fig. 1D reciprocal lattice with a reciprocal lattice b1 (= 2/a1) 

 

5 2D Reciprocal lattice vector 

A different pattern of a crystal is a map of the reciprocal lattice of the crystal. 

5.1 Square lattice 

 

 
 

Fig. Real space for the square lattice and the corresponding reciprocal lattice 

plane. 

 

a1 and a2 are the lattice vectors, and b1 and b2 are the reciprocal lattice vectors. The 

direction of b1 (b2) is the same as that of a1 (a2). 

 

22211  baba  (inner product), 02121  baba  

 

211 ba , or 
1

1

2

a
b


  

222 ba , or 
2

2

2

a
b


  

 

5.2 Hexagonal lattice (or triangular lattice) 

 

b1H=2pêaL
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Fig. Real space for the hexagonal (triangular) lattice and the corresponding 

reciprocal lattice plane.  

 

a2 is perpendicular to b1. a1 is perpendicular to b2. 

 

22211  baba ,  02121  baba  

 

2)30cos(11 �ba , or 
1
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4

a
b


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)1,3(
3

2

1

1 
a


b  and  )1,0(

3

4

1

2 
a


b   

 

The angle between a1 and b1 is 30º. The angle between a2 and b2 is 30º.  

 

5.3 Graphite 2D lattice (honeycomb) 

There are two atoms per cell. The lattice constant a is equal to 2.46 Å. 
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Fig. Two dimensional lattice for graphite layer (honeycomb). There are two 

carbon C atoms per unit cell. 

 

The lattice constant of graphite is a = 2.46 Å. The graphite has a A-B stacking sequence 

along the c axis. We now consider the reciprocal lattice plane of the graphite lattice. The 

vectors a1 and a2 are the in-plane lattice vectors. The vectors b1 and b2 are the reciprocal 

lattice vectors. Note that 021  ba  and 012  ba . The angle between a1 and b1 is 30º.  

 

 
 

Fig. In-plane structure and the corresponding reciprocal lattice of the graphite 

lattice. a1 = 2.46 Å. b1 = 4/( 13a ) = 2.95 Å-1. 

 
22211  baba  
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2)30cos(11 �ba , or 95.2
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Å-1. 
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a

b


Å-1. 

 

6. 3D Reciprocal lattice vector 

6.1 Definition 

The reciprocal lattice vector G is expressed by 
 

321 bbbG lkk  . 

 
where h, k, and l are integers and 
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Note that 
 

)(2)()( 321332211321 lukuhuuuulkh  aaabbbTG . 

 
We also note that 
 

ijji 2ba  

 
where ij is the Kronecker delta function. We note that 
 

b1  a2, a3 (b1 is perpendicular to a2 and a3). 
 

b2  a3, a1 (b2 is perpendicular to a3 and a1). 
 

b3  a1, a2 (b3 is perpendicular to a1 and a2). 
 
6. Reciprocal lattice vector: Simple cubic (sc) structure (primitive cell) 
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Fig. Crystal structure of sc system. ax, ay and az are the primitive lattice 

vectors. The lattice constant is a. 
 
The primitive translation vectors for sc are given by 
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The corresponding reciprocal lattice vectors are 
 

)0,0,1(
2

)(

)(2

azyx

zy

x









aaa

aa
b , 

 

)0,1,0(
2

)(

)(2

azyx

xz
y








aaa

aa
b , 

 

)1,0,0(
2

)(

)(2

azyx

yx

z









aaa

aa
b . 

 

ax

ay

az

a
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Fig.23 Reciprocal lattice points for the scc lattice. The vectors bx, by, and bz are 

the reciprocal lattice vectors. 
a

bbb zyx

2
 . 

________________________________________________________________________ 
7. Reciprocal lattice vector: face-centered cubic (fcc) lattice 

The primitive cell by definition has only one lattice point, but the conventional fcc cell 
contains four lattice points. Note that the lattice point is defined as follows. The atomic 
arrangement in the crystal looks exactly the same to an observer at r' (one lattice point) as 
to an observer at r (another lattice point). 
 

 
 

bx by

bz

2pêa

a1
a2

a3

ax

ay

az
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fcc structure 

 
Fig. Translation vectors of the primitive unit cell and conventional unit cell for 

the fcc. 
 
The primitive translation vectors of the fcc lattice are expressed by 
 

)1,1,0(
2

1
1 aa , )1,0,1(

2

1
2 aa , )0,1,1(

2

1
3 aa  

 
where there is one lattice point  (or atom) per this primitive cell. We can generate all the 
points of the fcc lattice is described by 
 

332211 aaal lll   

 
with l1, l2, and l3 integers. The volume of the primitive cell is 
 

4
)(

3

321

a
 aaa . 

 
The corresponding reciprocal lattice vectors are given by 
 

)1,1,1(
2

)(

)(2

321

32
1 






a


aaa

aa
b  

 

)1,1,1(
2

)(

)(2

321

13
2 






a


aaa

aa
b  

a1

a2

a3

ax

ay

az
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)1,1,1(
2

)(

)(2

321

21
3 






a


aaa

aa
b  

 
The reciprocal lattice vector is described by 
 

),,(
2

321321321332211 ggggggggg
a

ggg 


bbbG  

 
where g1, g2, and g3 are integers. The translation vectors of the conventional unit cell 

(cubic) are expressed by 

 

)0,0,1(ax a ,  )0,1,0(ay a ,  )1,0,0(az a  

 
where there are two atoms per this conventional unit cell. The volume of the cubic cell is 
 

4
)(

3a
zyx  aaa

. 
 
The reciprocal lattice vectors are defined by 
 

)0,0,1(
2

)(

)(2

azyx

zy

x









aaa

aa
b  

 

)0,1,0(
2

)(

)(2

azyx

xz
y









aaa

aa
b  

 

)1,0,0(
2

)(

)(2

azyx

yx

z









aaa

aa
b  

 
In general, the reciprocal lattice vector is given by 
 

),,(
2

zyxxzyyxx ggg
a

ggg


 bbbG  

 
with 
 

321

321

321

gggg

gggg

gggg

z

y

x






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There are relations between (gx, gy, gz) and (g1, g2, g3). Note that all indices of (gx, gy, gz) 
are odd or even. There is a selection rule for the indices (gx, gy, gz). 
 
_______________________________________________________ 
gx gy gz    g1 g2 g3 

__________________________________________________________________________________ 
1 1 1 1 1 1 
2 0 0 0 1 1 
2 2 0 1 1 2 
3 1 1 1 2 2 
2 2 2 2 2 2 
4 0 0 0 2 2 
3 3 1 2 2 3 
4 2 0 1 2 3 
4 2 2 2 3 3 
5 1 1 1 3 3 
______________________________________________________ 
 
Selection rule for the indices (gx, gy, gz) for fcc. 
 
((Note)) 
For fcc structure, it is required that 
 

222

zyx ggg  = 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 32, 35, 40, 36, 43, 44, 48   

________________________________________________________________________
9. Reciprocal lattice vector: body-centered cubic (bcc) structure 

The primitive cell by definition contains only one lattice point, but the conventional 
bcc cell contains two lattice points. 
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Fig. 

 
 

a1

a2

a3

ax

ay

az

a1
a2

a3

ax

ay

az



 33

The primitive translation vectors of the bcc lattice are expressed by 
 

)1,1,1(
2

1
1  aa , )1,1,1(

2

1
2  aa , )1,1,1(

2

1
3  aa  

 
where there is one atom per this primitive cell. We can generate all the points of the bcc 
lattice is described by 
 

332211 aaal lll   

 
with l1, l2, and l3 integers. The volume of the primitive cell is 

2
)(

3

321

a
 aaa  

 
The corresponding reciprocal lattice vectors are given by 
 

)1,1,0(
2

)(

)(2

321

32
1

a









aaa

aa
b  

 

)1,0,1(
2

)(

)(2

321

13
2

a









aaa

aa
b  

 

)0,1,1(
2

)(

)(2

321

21
3

a









aaa

aa
b  

 
The reciprocal lattice vector is described by 
 

),,(
2

213132332211 gggggg
a

ggg 


bbbG  

 
where g1, g2, and g3 are integers. 

The translation vectors of the conventional unit cell are expressed by 
 

)0,0,1(ax a ,  )0,1,0(ay a ,  )1,0,0(az a  

 
where there are two atoms per this conventional unit cell. The reciprocal lattice vectors 
are defined by 
 

)0,0,1(
2

)(

)(2

azyx

zy

x









aaa

aa
b  
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)0,1,0(
2

)(

)(2

azyx

xz
y









aaa

aa
b  

 

)0,1,0(
2

)(

)(2

azyx

yx

z









aaa

aa
b  

 
The reciprocal lattice vector is given by 
 

),,(
2

zyxxzyyxx ggg
a

ggg


 bbbG  

 
with 
 

21

31

32

ggg

ggg

ggg

z

y

x







 

 
There are relations between (gx, gy, gz) and (g1, g2, g3). Note that 
 

)(2 321 gggggg zyx 

 
 
which is even. 
 
_______________________________________________________ 
gx gy gz    g1 g2 g3 

__________________________________________________________________________________ 
1 1 0 0 0 1 
2 0 0 -1 1 1 
2 1 1 0 1 1 
2 2 0 0 0 2 
3 1 0 -1 1 2 
2 2 2 1 1 1 
3 2 1 0 1 2 
4 0 0 -2 2 2 
______________________________________________________ 
Selection rule for the indices (gx, gy, gz) for the cubic bcc 
 
For bcc structure, it is required that 
 

222

zyx ggg  = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, ' 
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Fig. 

 
 

The reciprocal lattice vectors, b1, b2, and b3 for the primitive cell and bx, by, and bz for the 
cubic cell (conventional cell) for the bcc lattice. The reciprocal lattice points (denoted by 
solid blue circles) are located on a fcc lattice with  
 
11. Origin of the Reciprocal lattice vector 

 
For simplicity we discuss the case of one dimension (1D). We consider the Fourier 

transform of the number density of electrons in the periodic lattice. In the free space, the 
electron propagating to the positive x direction, has the form of plane wave as a wave 
function, 
 

ikx

k e   

 
In free space, the number density ( )n x of electrons can be expressed by the superposition 

of the plane waves with any wave number k. Here we assume the duality of wave and 
particle in quantum mechanics. In this case, using the Fourier transform, ( )n x  can be 

expressed by 
 

( ) ikx

k

k

n x n e   

 
Suppose that the electrons are in the quantum box with the size L. The wave number k is 
not continuous any more. When we use the periodic boundary condition, 

b1b2

b3

bx
by

bz

O
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( )ik x L ikxe e   

 
or 
 

1ikLe   
 
or 
 

2 2 2m m m
k

L Na a N

  
    (n: integer) 

 
where L Na , and m, and N are integer numbers. Thus the number density of electrons is 
rewritten by 
 

2

( )
m

i x
a N

m

m

n x n e


   

 
Now we assume the periodic condition that 
 

( ) ( )n x a n x   

 
Then we get 
 

2
( )

2 2

2
2

( )

( )

m
i x a

a N
m

m

m m
i a i x

a N a N
m

m

m m
i i x

N a N
m

m

n x a n e

e n e

e n e

n x



 





 













 

 
In order to have the above condition, we need the condition for m, 
 

m sN (s = 0, 1, 2, 3,...   ). 

 
The final expression for ( )n x  is 

 
2

( )
i sx

iGxa
s G

s G

n x n e n e


    

 
where G is the reciprocal lattice 
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2

G
a


  (the minimum value) 

 

 
 
Fig. The distribution of wave number k in the 1D system. The discreteness of k (the 

separation 2 / L ) comes from the size of the system L. The blue points denote 
the reciprocal lattice points G which is equal to integer times 2 / a , where a is 
the lattice constant (the space periodicity) 

 
This means that only the plane wave with the wave number of the reciprocal lattice 
contributes to the number density of electrons in a periodic lattice. This discussion can be 
extended to both the 2D and 3D systems. In general, we have  
 

( ) i
n n e

 G r

G

G

r  

 
with the reciprocal lattice vector 
 

1 2 3h k l  G b b b  

 

where ,.2i j i j a b .For any translation vector 

 

1 1 2 2 3 3u u u  T a a a  

 
we have ( )n r  satisfies the periodic condition, 

 
( )( )

( )

i

i i

n n e

e n e

n

 

 

 









G r T

G

G

G T G r

G

G

r T

r

 

 
Note that 1ie  G T , since 
 

1 2 3 1 1 2 2 3 3

1 2 3

( ) ( )

2 ( )

h k l u u u

hu ku lu

      

  

G T b b b a a a
 

 

0 G 2GG2G
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Fig. Reciprocal lattice plane for the 2D hexagonal lattice. 
 
 
12. Electron density: Fourier analysis 

A crystal is invariant under any translation of the form 

 

332211 aaaT uuu  , 

 

where u1, u2, u3 are integers and a1, a2, a3 are the periods along the crystal axes. Any local 

physical property of the crystal is invariant under T: charge concentration, electron number, 

magnetic moment density. Electron number density n(r) is a periodic function of r, with 

periods a1, a2, a3 in the directions of the three axes. 

 
)()( rTr nn   

 

We consider the Fourier series 

 

O G1G1

G2

G2 G1 G2

G1 G2
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)exp()(  
G

rGr inn G  

 

)()exp()]exp[)](exp[)( rrGTGTrGTr
GG

niniinn GG    

 

or 

 

2TG  x integer 

 

The extension of the Fourier analysis to periodic function n(r) in the 3D, 

 

)exp()(  
G

rGr inn G  

 

where G is the reciprocal lattice vectors, and nG determine the x-ray scattering amplitude. 

G is described by 

 

321 bbbG lkh   

 

where h, k, and l are integers. b1, b2, and b3 need to satisfy the condition 

 

ijji 2ba  

 

where ij  is the Kronecker delta symbol: ij  = 1 for i = j and ij  = 0 for i = j. Then we 

have 

 

)(2)()( 321332211321 lukuhuuuulkh  aaabbbTG  

 

13. Fourier component nG and the structure factor SG. 

We now calculate the Fourier component nG. 

 

Vndendeenden i

V

ii

V

i

G

G

rGG

G

rG

G

rG

G

rG
rrrr    

'

)'(
'

'

'
')(  

 

where  
GG

rGG r ,'
)'( Vdei , and V is the total volume of the system. So we get 
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 
V

i den
V

n rr
rG

G )(
1

 

 

where N is the total number of atoms and cellV NV . 

 

 
 

Fig. System consisting of periodic cells. T is the translation vector. r =T + r'. 

 

Since 

 

'rTr  , 

 

we get 

 

)'()'()( rrTr nnn  . 

 

We also note that 

 
')'( rGTrGrG   iii eee . 

 

Then we have 

 

  
cellcell V

i

cellV

i

cell

den
V

denN
NV

n rrrr rGrG

G )(
1

])([
1

 

 

Here we define the structure factor as 

 

( )
cell

i

V

S n e d   G r

G
r r  
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or 

 

GG S
V

n
cell

1
  

 

14. One dimensional case 

For simplicity, we consider a function n(x) with a period a in the x direction (one 

dimensional case). 

 
)()( axnxn   

 

Suppose that n(x) may be expressed by 

 

)exp()( igxnxn
g

g  

 

)()()exp()exp()exp()](exp[)( xnxnigaigxnigaaxignaxn
g

g

g

g    

 

Then we have 

 

)exp( iga =1 

 

or 

 

l
a

g
2

  

 

Thus we have 

 

)exp()( igxnxn
g

g  

 

with 

 

 
a

igx

g exdxn
a

n
0

)(
1  

 

((Example-1)) What is the value of ng? We consider the simplest case. 
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Fig. A simple one dimensional array with a lattice constant a. 

 

a
edxx

a
n

a

g

1
)(

1

0

    

 

with l
a

g
2

  

 

where )(x  is the Dirac delta function. 

 

((Example 2)) 

There are two atoms in each unit cell with the lattice constant a. 

 

 

 
 

Fig. One dimensional array with to atoms per unit cell with a lattice constant a. 
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with l
a

g
2

  

 

((Mathematica)): 
2

gn  vs l where a = 1 and b = 0.3. 

 

 

 

Fig. Intensity 
2

gn  vs Bragg index l for the 1D system shown in Fig.22. 

 

15. Structure factor 

SG is called the structural factor and defined as an integral over a single cell. 

 

 

 
 

Fig. Unit cell having more than two atoms. j r r ρ . 

 

Let ( )j jn r r  be defined by the contribution of atom j to the electron concentration. 
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



s

j

jj rnn
1

)()( rr , 

 

over the s atoms of the basis. 

 

 
 

Fig. Electron distribution around the nucleus. j r r ρ  

 

Then we have 

 

1

( ) ( )
cell cell

s
i i

j j

jV V

S n e d n e d   



   G r G r

G
r r r r r , 

 

or 

 

  
j V

i

j

i

cell

j deneS ρρ
ρGrG

G )( . 

 

where j r r ρ . We now define the atomic form factor as 

 

r j

r

nucleus

electron

n j r r j
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 
cellV

i

jj denf ρρ
ρG)( . 

 

The atomic form factor is a measure of the scattering power of the j-th atom in the unit cell. 

The value of f involves the number and distribution of atomic electrons. Then SG is given 

by the form 

 

 
j

i

j
jefS

rG

G . 

 

The structure factor SG need not to be real because the scattering intensity will involve 

 
2

* GGG SSS   

 

where 
*S

G  is the complex conjugate of GS . 

 

16. General expression for structure factor  

The electron density is expressed by 
 

���� = � ���	�� − �� − ��
�
��,
,�

� 
 
where �� is the atomic form factor. The Fourier transform of ���� is defined by 
 

��������⋅����� = ��������⋅� � ���	�� − �� − ��
�
��,
,�

� 

= � �����⋅������������⋅��
��,
,�

 

=�	��� − ����������⋅��
��

 

=�	��� − ���������⋅��
��

 

 
 
where 
 

��
� = � ! + � # + $ % 
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Fig. Position of the j-th atom within the unit cell is specified by &�. 
 
We note that the structure factor is defined by 
 

'( = ∑ ������⋅���    (structure factor) 
 
We also use the Poisson sum rule; 
 

� �����⋅����
�,
,�

=�	��� − ��
(

 

 

17. Atomic form factor 

When G = 0, fj is equal to the total number of electrons around the nucleus (Z) 

 

Zdnf

cellV

jj   ρρ)( . 

 

The value of f for atoms may be found in the international tables for x-ray crystallography. 

Suppose that the electron distribution is spherically symmetric about the origin: 

 

a1

a2

a3

r j

O
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)()( jj nn ρ , 

 

 
 

Fig. Relation between G and in the Cartesian coordinates. 

 

Let  make an angle  with G. Then we get 
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)sin(
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. 

 

Then the atomic form factor is dependent on G. When G = 0, 1
)sin(





G

G
; 

 



 48

Zndf jj   )(4 2  , 

 

where Z is the number of atomic electrons. The atom has a size comparable to the 

wavelength of the x-rays., and scattered rays leaving different parts of the atomic charge 

cloud are not exactly in phase. The difference in phase is zero at zero diffraction angle, but 

increases markedly as the angle increases. The atomic factor thus decreases with the angle 

of diffraction. 

 

 
 

Fig. x-ray atomic form factors of oxygen (blue), chlorine (green), Cl- (magenta), 

and K+ (red); smaller charge distributions have a wider form factor. 




44

sin GQ
 . In this Fig, f is plotted as a function of G/4.  

http://en.wikipedia.org/wiki/Atomic_form_factor 
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Fig. x-ray atomic form factors for H (Z = 1) to Ne (Z = 10). The atomic form 

factor tends to show tail to higher Q as Z increases. This means that the 

orbital radius of the inner shells become smaller for the larger charges of Ze 

of the nucleus.  

http://www.crl.nitech.ac.jp/~ida/education/structureanalysis/3/3.pdf 

 

((Example)) 

We now calculate the form factor of atomic hydrogen in the ground state. The number 

density is given by 

 

0/2

3
0

1
)( ar

e
a

n



 . 

 

where a0 is the Bohr radius (a0 = 0.53 Å) 

 

22

0
2 )4(

16

aG
fG


 . 

 

((Mathematica)) 
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Fig. The atomic form factor of hydrogen in the ground state 

 

18. The structure factor for 1D, 2D and 3D systems 

18.1 One dimensional case 

The structure factor for the 1D case is given by 

 

   dzezndenS
ziG

D

iG

D
zD )()( 11

1 rr
r

G
 

 

where 

 

),0,0(1 zz zD  er . 

 

SG depends only on Gz, which leads to the Bragg plane. 
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Fig. Bragg plane (kz = (2l/a, l: integer) in the reciprocal lattice space, which is 

a significant feature common to the 1D system where atoms are arranged 

along the z axis with a lattice constant a. 

 

18.2  Two dimensional case 

The structure factor SG for the 2D case is given by 

 

 
  dxdyeyxndenS

yGxGi

D

i

D
yxD

)(

22 ),()( 2 rr
rG

G
 

 

where 

 

)0,,(2 yxyx yxD  eer , 

 

SG depends only on Gx and Gy, which leads to the Bragg ridge (or Bragg rod. or reciprocal 

rod). 

 

 
 

Fig. Bragg ridge (or rod) in the reciprocal lattice space (in the case of square 

lattice), which is a significant feature common to the 2D system (see 

"electron diffraction") 

 

18.3  Three dimensional case 

The structure factor SG for the 3D case is given by 

 

  
  dzdxdyezyxndenS

yGxGi

D

i

D
yxD

)(

33 ),,()( 3 rr
rG

G
 

 

where 

 

),,(3 zyxzyx zyxD  eeer , 
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SG depends only on Gx, Gy, and Gz, which leads to the Bragg point. 

 

19. Diffraction conditions 

19.1 Scattering amplitude 

The set of reciprocal lattice vectors determines the possible x-ray reflections. 

 

 

 

Fig. Geometry of the x-ray scattering. 

 

ki= k,   is the incident wavevector. 

kf = k'  is the outgoing wavevector. 
 

The difference in phase factor is exp[i(k-k').r] between beams scattered from volume 

elements r apart. The amplitude of the wave scattered from a volume element is 

proportional to the local electron concentration n(r). 

The scattering amplitude F is 

 

   
G

rGrQrkk rrr i

G

ii enedendF )'()(
, 

 

where Q is the scattering vector 

 
kkQ  ' . 

 

Then F is rewritten as 
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  
G

rQGr )(i

G ednF

. 

 

From theses we have 

 

F = nGV  for  Q = k' – k = G,  

 

and 

 

F = 0  otherwise.  

 

This is a Bragg’s law.  

In elastic scattering (energy is conserved), 
kk '

. Then we have 

 

GkGkGkk  2)(' 2222

 
 

or 

 

22 GGk  ,  or  
0

2
)

2
( 

GG
k

 

 

 
 

Fig. Geometry of k, k, and reciprocal lattice vector G. 

 

The vector (k+G/2) is always perpendicular to the vector G/2. 
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Fig. The Brillouin zone for the 3D reciprocal lattice space. k = k' + G.  

 

19.2 Brillouin zone 

If G is a reciprocal lattice vector, so is –G. With this substitution, we have 

 

Gkk  '  
 

and 

 
02/)2/(  GGk . 
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Fig. Condition for the Bragg reflection. It is required that the wavevector k is 

located at the zone boundary of the first Brillouin zone in the reciprocal 

lattice plane. When k is not on the zone boundary, no Bragg reflection 

occurs. 

 

We construct a plane normal to G at its midpoint. This plane forms a part of the zone 

boundary. A x-ray beam will be diffracted if its wavevector k has the magnitude and 

direction required by 

 
22 GGk  . 

 

The diffracted beam will then be in the direction k' = k – G. 

 

The set of planes that are the perpendicular bisectors of G is of general importance in the 

theory of wave propagation in crystals. The first Brillouin zone is the smallest volume 

entirely enclosed by planes that are perpendicular bisectors of the reciprocal lattice vectors 

drawn from the origin. 

 

(1) The Brillouin zone exhibits all wavevector (-ki), which can be Bragg reflected by 

a crystal. 
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(2) A Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lattice. 

(3) A wave whose wavevector drawn from the origin terminates on any of these planes 

will satisfy the condition of diffraction: x-ray, phonon, magnon, and electron. 
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Fig. When the Bragg reflection (G = kf - ki = k' - k) occurs, the wave vector (-ki) 

always lies on the Brillouin zone (Bz). kf (= G + ki) is the wavevector of the 

outgoing wave  

 

(a) Brilloun zone for square lattice with the unit cell of a x a 

 

 
 

Fig. 2D Brillouin zone for the square lattice. The number denotes the Brillouin 

zone number. 

 

(b) Brillouin zone for the triangular lattice  
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Fig. Brillouin zone for the 2D triangular lattice. 

 

19.3 One dimensional case 

We now consider the 1D case of the Brillouin zone. The Bragg condition occurs when 

k - k' = 2/a. 
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Fig.58 First Brillouin zone for the 1D system with a lattice constant a. Bragg 

reflection occurs only at k = /a. 

 

20. Ewald sphere and scattering 

20.1 Construction of Ewald sphere 

 

 
 

Fig. Ewald sphere. The origin of the reciprocal lattice is located at the end of the 

wavevector k of the incident beam. 

 

We draw a sphere of radius k=2/ about the starting point of k. The origin of the reciprocal 

lattice plane corresponding to the real space of the sample is at the end point of k. A 

diffracted beam will be formed if this sphere intersects any other point in the reciprocal 

lattice. The Ewald sphere intercepts a point connected with the end of k by a reciprocal 

lattice vector G. This construction is due to Paul Peter Ewald. 

 

Paul Peter Ewald: He was born in Berlin Germany on January 23, 1888. He was a U.S. 

(German-born) crystallographer and physicist. He was a pioneer of the x-ray diffraction 

methods. He was also the eponym of Ewald construction and the Ewald sphere. He was a 

Professor of Physics Department, Brooklyn Polytechnic Institute (1949 – 1959), New York. 
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He was the father-in-law of Prof. Hans Bethe (the late). He died at Ithaca, New York on 

August 22, 1985. He was awarded the Max Planck medal in 1978. 

 

20.2 Experimental configuration 

 

 is the angle of sample 

2 is the angle between the direction of the incident x-ray and the outgoing x-ray.  

 

 

 
 

Fig. Schematic diagram of (hkl) scan for the x-ray scattering experiment. 

 

20.2.1.  (00l) scattering 

 

 (= -2scan 

 

Ewald sphere-1 (-2 scan) 
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Fig. 

 

Ewald sphere-2 (-2 scan) 

 

 
 

Fig. 
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Ewald sphere-3 (-2 scan) 

 

 

 
 

Figs. Examples for the Ewald construction for the (00L) x-ray diffraction.  (= ) – 2 

scan. 

 

20.2.2 In-plane (h, k,0) scattering 

 

=(90º +- 2 scan 
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Figs. Example for the Ewald construction for the (H00) x-ray diffraction.  (= 

º) – 2 scan. 

 

20.2.3 Rocking curve around (00l) Bragg point. 

 

2 is fixed, while  is rotated. 

 

Note that constQ  



sin
4

 

 
 

Fig. Schematic diagram of the reciprocal plane for the rocking curve experiment. 
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Fig. Example for the Ewald construction for the rocking curve where 2 = fixed. 

 is rotated. 

 

Using this curve, one can estimate the mosaic spread of the sample. 

 

21. X-ray diffraction in Low dimensional systems 

21.1 One dimensional system 

For the one dimensional system with the lattice constant d, there exist Bragg planes 

with kz = (2/dc)l. The Bragg reflections occur on the surface of Ewald sphere where the 

Bragg planes intersect with the sphere. The incident beam of x-ray is perpendicular to the 

line of atoms.  
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Fig. Schematic diagram of the Ewald construction. Because of the 1D chain, 

there are Bragg planes in the reciprocal lattice plane. The direction of 1D 

chain is the same as the direction of incident beam. 

 

The interference condition is  

 

k cos = (2/d)n. 

 

Since k = 2/, this is rewritten as (2/) cos = (2/d)n. or d cos = n, where d is the 

lattice constant of the 1D system. 

We also consider the case when the incident beam of x-ray is parallel to the line of 

atoms. We note that a 1D system has Bragg planes in the reciprocal lattice. The direction 

of diffracted beam is determined using the Ewald sphere. 
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Fig. Schematic diagram of the Ewald construction. Because of the 1D chain, 

there are Bragg planes in the reciprocal lattice plane. The direction of 1D 

chain is perpendicular to the direction of incident beam. 

 

The interference condition is  

 

k (1-cos)= (2/d)n. 

 

Since k = 2/, this is rewritten as (2/) 2 sin2(/2) = (2/a)n.  

 

or 

 

n
d


)

2
(sin2 2 . 

 

21.2 Two dimensional system 

A single plane of atoms form a square lattice of lattice constant a. The plane is normal 

to the incident beam. There exist Bragg rods (Bragg ridge, reciprocal rod). The Bragg 

reflections occur on the surface of Ewald sphere where the Bragg rods intersect with the 

sphere. 
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Fig. Schematic diagram of the Ewald construction. Because of the 2D system, 

there are Bragg rods (ridges) in the reciprocal lattice space. The direction of 

2D plane is perpendicular to the direction of incident beam. 

 

21.3 Relation between the lattice and reciprocal lattice for the 2D square and 

hexagonal lattice 

 

For the square lattice, the shape of the lattice and the reciprocal lattice is the same. The 

rotation angle between these two lattices is equal to 0º. 
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Fig. Relation of the real space and the reciprocal space for the 2D square lattice. 

The rotation angle between the a1 axis and b1 axis is 0º. 

 

For the hexadonal lattice, the shape of the lattice and the reciprocal lattice is the same. The 

rotation angle between these two lattices is equal to 30º. 

 

 

 
 

Fig. Relation of the real space and the reciprocal space for the 2D triangular 

(hexagonal) lattice. The rotation angle between the a1 axis and b1 axis is 30º. 

 

22. Debye-Scherrer powder method 

In the powdered method, the incident x-ray beam strikes a finely powdered 
polycrystalline sample contained in a thin-walled capillary tube. The distribution of 
crystallite orientations will be nearly continuous. Diffracted x-rays leave sample along the 
generators of cones concentric with the original incident beam. The generators make an 
angle 2q with the direction of the incident beam. The cones intercept the x-ray film in a 
series of concentric rings. 
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Fig. Schematic diagram for the Debye-Schrerrer powder method. Ewald sphere 

is also drawn. The outgoing x-ray beam intercepts the x-ray film (ring 
shape). 
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Fig. Construction of the Ewald sphere with |k|=|k'|= 2/. Q = k' - k = G 

(Bragg condition).  
 
Bragg condition for the x-ray powder diffraction, 
 





sin
4

 GQ , 

 
with 
 

321)( bbbGG lkhhkl  . 

 
If (hkl) are the smallest three integers, we have 
 

)(

2
)(

hkld
hkl


G  

 
where d(hkl) is the shortest distance between adjacent (hkl) planes. 
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(a) Selection rule for the sc 

 
2222

sin
4

zyx ggg
a








G  

 
where 
 

),,(
2

zyxxzyyxx ggg
a

ggg


 bbbG  

 
where gx, gy, and gz are integers. For the sc structure, it is required that 
 

222

zyx ggg  = 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 

24, 25, 26, 27, 29, 30, 32, .... 
 
______________________________________________________________________ 
(b) Selection rule for the fcc 

 
2222

sin
4

zyx ggg
a








G  

 
The reciprocal lattice vector is given by 
 

),,(
2

zyxxzyyxx ggg
a

ggg


 bbbG , 

 
with 
 

321

321

321

gggg

gggg

gggg

z

y

x







 

 
where g1, g2, g3 are integers. There are relations between (gx, gy, gz) and (g1, g2, g3). Note 
that all indices of (gx, gy, gz) are odd or even. There is a selection rule for the indices (gx, 
gy, gz). 
 
__________________________________________________ 
gx gy gz    g1 g2 g3 
___________________________________________________________________________ 
1 1 1 1 1 1 
2 0 0 0 1 1 
2 2 0 1 1 2 
3 1 1 1 2 2 
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2 2 2 2 2 2 
4 0 0 0 2 2 
3 3 1 2 2 3 
4 2 0 1 2 3 
4 2 2 2 3 3 
5 1 1 1 3 3 
__________________________________________________ 
 
Selection rule for the indices (gx, gy, gz) for the fcc. 
 
For fcc structure, it is required that 
 

222

zyx ggg  = 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 32, 35, 40, 36, 43, 44, 48  (fcc) 

 
________________________________________________________________________ 
(c) Selection rule for the bcc 

 
2222

sin
4

zyx ggg
a








G . 

 

The reciprocal lattice vector is given by 
 

),,(
2

zyxxzyyxx ggg
a

ggg


 bbbG  

 
with 
 

21

31

32

ggg

ggg

ggg

z

y

x







 

 
where g1, g2, g3 are integers. There are relations between (gx, gy, gz) and (g1, g2, g3). Note 
that 
 

)(2 321 gggggg zyx 

 
 
which is even. 
 
__________________________________________________ 
gx gy gz    g1 g2 g3 
___________________________________________________________________________ 
1 1 0 0 0 1 
2 0 0 -1 1 1 
2 1 1 0 1 1 
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2 2 0 0 0 2 
3 1 0 -1 1 2 
2 2 2 1 1 1 
3 2 1 0 1 2 
4 0 0 -2 2 2 
_________________________________________________ 
Selection rule for the indices (gx, gy, gz) for the bcc 
 
For bcc structure, it is required that 
 

222

zyx ggg  = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, ..... (bcc) 

 
_______________________________________________________________________ 
23. Structure factor calculations of KCl and KBr (NaCl type structure) 

 

In KCl, the numbers of electrons of K+ (18 electrons) and Cl- ions are equal (18 electrons)  

 

f(K+) ≈ f(Cl-). 

 

K+ (1/2, 0, 0), (0,1/2,0), (0, 0, 1/2), (1/2, 1/2, 1/2) 

Cl- (0, 0, 0), (0,1/2,1/2), (1/2, 0, 1/2), (1/2, 1/2, 0). 

 

The crystal looks to x-rays as if it were a monatomic simple cubic lattice with a lattice 

constant a/2. 

 

][

]1[),,(
)(

)()()(
321

321321

211332

vvvivivivi

K

vvivvivvi

ClG

eeeef

eeefvvvS












 

 

where gx = v1, gy = v2, and gz = v3. 

 

gx gy gz  ),,( 321 vvvSG  

___________________________________________________________________________ 
1 1 1 4(-fK+fCl) = 0 
2 0 0 4(fK+fCl) 
2 2 0 4(fK+fCl) 
3 1 1 4(-fK+fCl) = 0 
2 2 2 4(fK+fCl) 
4 0 0 4(fK+fCl) 
3 3 1 4(-fK+fCl) = 0 
4 2 0 4(fK+fCl) 
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In KBr, the form factor of Br- (36 electrons) is quite different from that of K+ (18 

electrons) 

 

gx gy gz  ),,( 321 vvvSG  

___________________________________________________________________________ 
1 1 1 4(-fK+fBr) 
2 0 0  4(fK+ fBr) 
2 2 0  4(fK+ fBr) 
3 1 1  4(-fK+ fBr) 
2 2 2  4(fK+ fBr) 
4 0 0  4(fK+ fBr) 
3 3 1  4(-fK+ fBr) 
4 2 0 4(fK+ fBr) 
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Fig.74 Comparison of x-ray reflections from KCl and KBr powers. (Kittel, ISSP 
4th edition, Fig.31, p. 81)  

 

____________________________________________________________________ 

APPENDIX-I  Form factor of 1D x-ray diffraction 

For simplicity, we consider the electron number density N(x) with a period a in the x 
direction (one dimensional case). 
 

)()( axNxN  . 

 
Then N(x) may be expressed in terms of the Fourier series. 
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and that 
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Then the expression of N(x) can be rewritten as 
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For simplicity we use the notation 
 

)exp()( igxNxN
g
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where 
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The electron number density satisfies the periodic condition, 
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Thus we have 
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APPENDIX-II Poisson summation formula 

(a) Poisson summataion formula 

For appropriate functions f(x), the Poisson summation formula may be stated as 
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mn

mkFnxf )(2)(  , (1) 

 
where m and n are integers, and F(k) is the Fourier transform of the function f(x) and is 
defined by 
 


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Note that the inverse Fourier transform is given by 
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1
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
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The factor of the right hand side of Eq.(1) arises from the definition of the Fourier transform.  
 
((Proof)) The proof of Eq.(1) is given as follows. 
 
From the definition of the Fourier transform, we have 
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We evaluate the factor 
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It is evident that )(kI  is not equal to zero only when k = 2m (m; integer). Therefore )(kI

can be expressed by 
 







m

mkAkI )2()(  , 

 
where A is the normalization factor. Then 
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The normalization factor, A, is readily shown to be 2 by considering the symmetrical 
case 
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________________________________________________________________________ 
((Mathematica)) 

 
______________________________________________________________________ 
Since 
 

f@x_D = ExpA−π x
2E;

FourierTransform@f@xD, x, k,

FourierParameters → 80, −1<D

�
−
k
2

4 π

2 π
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Using this formula, we have 
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(b)  Dirac comb 

When we put xk 2  in I of Eq.(2) 
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Fig. Plot of the Dirac comb as a function of x: 





m

mx )( . 

 
(c) Convolution of Dirac comb: another method in the derivation of 

Poisson sum formula 

The convolution of functions f(x) and g(x) is defined by 
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The Fourier transform of the convolution is given by 
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Here we assume that 
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The Fourier transform of g(x) is 
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The convolution f*g is obtained as 
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The Fourier transform of the convolution is 
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Here we use the Poisson summation formula; 
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The inverse Fourier transform of ]*[ gfF  is obtained as 
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Finally we get 
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When a = 1, we get 
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When x = 0, 
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This is the Poisson sum formula. 
 
(d)  Fourier transform of periodic function 

We consider a periodic function N(x); 
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where a is the periodicity. The function N(x) can be described by 
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where a>0. Note that f(x) is defined only in the limited region (for example, -a/2≤x≤a/2). 
G is the reciprocal lattice defined by 
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The Fourier coefficient NG is given by 
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where f(x) is just like a Gaussian distribution function around x = 0. 
 

 
 
Fig. Plot of N(x) as a function of x. a is the lattice constant of the one-dimensional chain. 
 
((Example)) 

Suppose that f(x) is given by a Gaussian distribution, 
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where erf(x) is the error function and is defined by 
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Figure shows the intensity 
2

GN  vs n, where n
a

G
2

 . 

 
 

Fig. a = 1.  = 0.1. n
a

G
2

 . The intensity 
2

GN  vs n (= integer). 
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