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((James Watson and Francis Crick)) 

Watson and Crick shared the Nobel Prize in 1962 for their discovery, along with Maurice 

Wilkins (1916 - 2004), who had produced a large body of crystallographic data supporting the 

mode. Working in the same lab, Rosalind Franklin (1920 - 1958) had earlier produced the first 

clear crystallographic evidence for a helical structure. Crick went on to do fundamental work in 

molecular biology and neurobiology. Watson become Director of the Cold Spring Harbor 

Laboratory, and headed up the Human Genome Project in the 1990s. 

 



 
http://dataphys.org/list/wp-content/uploads/2014/12/Watson-Crick-DNA-model.jpg 

 

Fig. 1953 Watson and Crick with their DNA model 

 

Lames D. Watson, The Double Helix (Touchstone, 2001). 

 

1. X-ray diffraction of DNA (double helix) 

 

J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics, second edition 

(Wiley, 2011) 



 
 

Inspired by Pauling’s ideas, Cochran et al. calculated the generic diffraction pattern from a 

helix [Cochran et al., 1952]. As the scattering from helices has assumed such significance in 

structural biology an outline of this calculation is given here. The starting point is to imagine that 

a uniform and continuous distribution of material lies on an infinitely long helical string of period 

P. The problem in calculating the diffraction pattern is to add up the phase factor for each 

differential element along the helix. As the material is uniformly distributed the scattering 

amplitude is found by evaluating the integral, 
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where Q G  (Bragg condition), z is taken to be along the axis of the helix. For a helix with a 

period of P and a radius of R, any point r on the helix for 0 z P    

is given by 
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As the helix is periodic, the integral decomposes into a sum over all periods (or lattice sites) 
multiplied by the structure factor of a single period. The scattering amplitude then becomes 
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where n is an integer. To evaluate the phase G r , it is convenient to use cylindrical coordinates 
and express the scattering vector as 
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where G  is the radial component and  is the azimuthal angle. We note that 
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It is convenient to rewrite this as 
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where 
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Then we get 

 



2
( cos )

0

2
( ) ( )in i n in

z nS G n e d e e J
P


    

         

 

where 

 

����� = 1
2	�
 ��
��� ��������

�

�
 

 

or 

 

����−�� = ����� = 1
2	��
 ��
���� ��������

�

�
 

 

since 
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The scattered intensity given by the above equation is plotted in Fig. The scattering intensity is 

given by the form as 
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with the Gaussian distribution function 
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((Mathematica)) 



Clear "Global` " ;

g1 y , n , :
1

2

Exp
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2 2
y n

2 ;

f n , x , y , : BesselJ n, x
2 g1 y, n, 2;

h1 ContourPlot Evaluate f 1, x, y, 0.1 2, x, 10, 10 ,

y, 0, 10 , ContourStyle Red, Thick , PlotPoints 60 ;

h2 ContourPlot Evaluate f 2, x, y, 0.1 2, x, 10, 10 ,

y, 0, 10 , ContourStyle Red, Thick , PlotPoints 60 ;

h3 ContourPlot Evaluate f 3, x, y, 0.1 2, x, 10, 10 ,

y, 0, 10 , ContourStyle Red, Thick , PlotPoints 60 ;

h4 ContourPlot Evaluate f 4, x, y, 0.1 2, x, 10, 10 ,

y, 0, 10 , ContourStyle Red, Thick , PlotPoints 60 ;

h5 ContourPlot Evaluate f 5, x, y, 0.1 2, x, 10, 10 ,

y, 0, 10 , ContourStyle Red, Thick , PlotPoints 60 ;

h6 ContourPlot Evaluate f 6, x, y, 0.1 2, x, 10, 10 ,

y, 0, 10 , ContourStyle Red, Thick , PlotPoints 60 ;

h7 ContourPlot Evaluate f 7, x, y, 0.1 2, x, 10, 10 ,

y, 0, 10 , ContourStyle Red, Thick , PlotPoints 60 ;

f1 Show h1, h2, h3, h4, h5, h6, h7, PlotRange All ;

g1 Graphics Blue, Thick, Line 7, 0 , 7, 0 ,

Line 0, 7 , 0, 7 ; s1 Show f1, g1 ;

Graphics Translate s1 1 , 0, 0 , Rotate s1 1 , , 0, 0 ,

Text Style "Gz

P

2
", Black, 12, Italic , 1, 6.5 ,

Text Style "GxyR", Black, 12, Italic , 6.6, 0.4



 
 

 

Fig. Reciprocal lattice plane of double helix (Mathematica). 

 

Perhaps the most celebrated helical structure in biology is the double helix of DNA 

(deoxyribose nucleic acid). The structure of DNA was first solved by James Watson and Francis 

Crick [Watson and Crick, 1953], who mainly used stereo-chemical arguments to build a model 

which helped them deduce the correct structure. They were assisted greatly in their work by the x-

ray diffraction experiments performed around the same time by Wilkins et al. [Wilkins et al., 1953] 

and Franklin and Gosling [Franklin and Gosling, 1953]. These experiments established the helical 

nature of the DNA molecule, and provided decisive structural parameters, such as its period and 

radius. The discovery of the double helix probably ranks as one of the most important scientific 

advances of the twentieth century.  
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((Experimental results)) 



 
 



 
 

Fig. From the book of Als-Nielsen 



 
 

Fig. Model of double helix DNA. We use the parameters � = 2. � = 1, and ∆= �
�� = 0.75 
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It is evident that the diffraction pattern from DNA possesses some of the features predicted by 

Cochran et al. for the scattering from a helix. In particular there is a characteristic cross of Bragg 

peaks. From the position of these peaks along the meridional (vertical) axis the period of the helix 

is found to be 34 Å, while from the angle of the cross it can be deduced that the radius of the helix 

is 10 Å. The double nature of the helix is only apparent from a detailed analysis of the pattern. 

Most tellingly the reflections from the 4-th order layer are missing on the film, although the 3-rd 

and 5-th order are clearly apparent. Indeed Rosalind Franklin herself was aware that this feature 

of the diffraction pattern could be explained naturally by assuming that DNA is formed from two 

intertwined helices. If the two helices are displaced along the common z axis by an amount Δ, the 

scattering amplitude becomes 
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with #& = �,�
* . The waves scattered by the two helices interfere in such a way that the intensity of 

the 4-th layer reflections becomes vanishingly small when Δ/P=1/8, 3/8, 5/8, etc.  It can be seen 

that it accounts for most of the qualitative features of the central part of the diffraction pattern. To 

obtain better agreement it would obviously be necessary to specify the position of all the molecules 

in the structure and their scattering factors. One feature not accounted for by the simple model 

described here is the existence of strong, but diffuse reflections on the meridional axis close to the 

10-th layer. These reflections arise from the fact that the double helix has 10 pairs of bases per 

period. 

 

______________________________________________________________________________ 

2. x-ray diffraction of 1D system (fiber) 

Part-1 

(a) Consider a line of atoms ABAB…AB, with an A-B bond length of a/2. The form factors 

are fA, fB for atoms A, B, respectively. Show that the intensity of the diffracted beam is 

proportional to 
2

BA ff  for n odd and to 
2

BA ff   for n even. Explain what happens if 

BA ff  . 

 

Part-II 

(b) The incident beam of x-rays is perpendicular to the line of atoms with the lattice 

constant a. Show that the Bragg condition is  cosan  , where  is the angle between 

the diffracted beam and the line of atoms. Note that this Bragg condition can be derived by 

using the Ewald sphere, where the 2D Bragg plane is formed for the one-dimensional 

system.  

 



 



 
 

((Solution)) 

(a) The structure factor is given by 
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Then we have 
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The intensity is 
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For odd n,  

 
2

BAn ffI   

 

For even n, 
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(b) 

((Method-1)) 

 
 

The path difference between two adjacent x-rays is given by 

 

cosaL  . 
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The Bragg reflections occur when nL  , where  is the wavelength and n is an integer. Then 

we get the Bragg condition; 

 

 na cos . 

 

((Method-2)) 

For the one dimensional system with the lattice constant d (=a) there exist Bragg planes with 

kz = (2/d)n. The Bragg reflections occur on the surface of Ewald sphere where the Bragg planes 

intersect with the sphere. The incident beam of x-ray is perpendicular to the line of atoms.  

 
 

Fig. Schematic diagram of the Ewald construction. Because of the 1D chain, there are 

Bragg planes in the reciprocal lattice plane. The direction of 1D chain is the same 

as the direction of incident beam. 

 



 
 

Fig. Reciprocal space.  

 

The interference condition is  

 

k cos = (2/d)n. 

 

Since k = 2/, this is rewritten as (2/) cos = (2/d)n. or d cos = n, where d is the lattice 

constant of the 1D system. 

 

______________________________________________________________________________ 

3. Debye-Scherrer diffractogram 

In a Debye-Scherrer diffractogram, we obtain a measure of the Bragg angles . In a 

particular experiment with Al (Aluminium) powder, the following  data were obtained 

when CuK radiation (the wavelength  = 1.54184 Å) was used: 

 

19.48°, 22.64°, 33.00°, 39.68°, 41.83°, 50.35°, 57.05°, 59.42°. 

 

Aluminium has atomic weight 27 g/mol and density 2.7 g/cm3. (c) Show that Al has a fcc 

(face centered cubic) structure, where 222 lkh  = 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 32, 

35, 40, 36, 43, 44, 48. (d) What is the lattice parameter of Al of the conventional cubic unit 

cell? (e) Calculate the Avogadro’s number. 

Hint: The basis consists of four lattice points if the cell is taken as the conventional cube 

for fcc. 
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((Solution)) 

We use the Bragg condition given by 
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where h, k, l are the integers, a is the lattice constant of the conventional cubic lattice.  = 1.54184 

Å for CuK. This formula can be rewritten as 
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Suppose that Al has a fcc structure. In this case, it is expected that 

 
222 lkh  = 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 32,..... 

 

We make a plot of the date of 


sin
2

 as a function of 222 lkh  . 

 

 = 19.48°,  3222  lkh  

 = 22.64°,  4222  lkh  

 = 33.00°,  8222  lkh  

 = 39.68°,  11222  lkh  

 = 41.83  12222  lkh  

 = 50.35°,  16222  lkh  

 = 57.05°,  19222  lkh  

 = 59.42°.  20222  lkh  

 



 
 

The least-squares fit of the data yield the lattice constant a as a = 4.0045 Å. 

The Avogadro number can be evaluates as follows, based on the lattice constant a. In Al (fcc), 

there are 4 Al toms in the conventional cubic lattice. 

 

The volume for Al 1mol is  
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where M = 27 g/mol and  = 2.7 g/cm3. There are NA (Al atoms) in this volume VA. Then we have 
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The Avogadro number is evaluated as 
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A  =6.229 x 1023 

 

Note that the correct value is 6.023 x 1023. 

 

4. 2D Bragg rods 

2

l
sinHqL

h2 + k2 + l2

0.2 0.4 0.6 0.8 1.0 1.2

1

2

3

4



 
 

 
 



Fig. Bragg rod (ridge) for the 2D system 

 

5. Ewald sphere; theta-two theta scattering 
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