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Peter Joseph William Debye FRS (March 24, 1884 – November 2, 1966) was a Dutch 

physicist and physical chemist, and Nobel laureate in Chemistry. 
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_________________________________________________________________________ 

Bertram Neville Brockhouse, CC, FRSC (July 15, 1918 – October 13, 2003) was a Canadian 

physicist. He was awarded the Nobel Prize in Physics (1994, shared with Clifford Shull) "for 

pioneering contributions to the development of neutron scattering techniques for studies of 

condensed matter", in particular "for the development of neutron spectroscopy". 
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Clifford Glenwood Shull (Pittsburgh, Pennsylvania, September 23, 1915 – March 31, 2001) 

was a Nobel Prize-winning American physicist. 

http://en.wikipedia.org/wiki/Clifford_Shull 

 

1. Heat capacity 

 

CV = heat capacity at constant volume 

Cp = heat capacity at constant pressure. 
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Where U is the energy and T is the temperature. The contribution of the phonons to the heat 

capacity of a crystal is called the lattice heat capacity. 

 

((Note)) 

Gitter: lattice (in German) 

 

The total energy of the phonons at T in a crystal may be written as 
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where ,kn  is the thermal equilibrium occupancy of phonons of wavevector k and 

polarization . ,kn  is the Planck distribution function given by 
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TkB

1
 , and kB is the Boltzmann constant. 

 

2. Planck's distribution 

We consider a set of identical harmonic oscillators 
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Fig. States of an oscillator that represents a mode of angular frequency . When the 

oscillator is in the state of energy nℏ, the state is equivalent to n photons in the 

mode. The zero point energy (ℏ/2) is omitted for simplicity. 

 

The ratio of the number of states 1n  (n+1 photons in the mode) to the number of states 

in n  (n photons in the mode) is 
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by the use of the Boltzmann factorm. Note that 
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We see that 
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where p = 0, 1, 2, .... (integer). For p = 1, we have 
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where 
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ℏ ex . 

 

We also have 
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Using the Mathematica, we get the table of pn  vs p 

 

Table   pn  vs p, (p = 1, 2, 3, 4, and 5), where ℏ ex . 

 

 
_______________________________________________________________________ 
3. Normal mode enumeration 

The total energy U is given by 
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Suppose that the crystal has  dD )(  modes of a given polarization  in the frequency 

range  - d 
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The lattice heat capacity is 
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4. Density of states in one dimension 

We consider the boundary value problem for vibrations of a 1D line of length L carrying 
(N+1) particles at separation a.  
 

 
 

Suppose that the particles s = 0 and s = N at the end of lines are held fixed. Each normal 
mode of the polarization l has the form of a standing wave, 
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where us is the displacement of the particle s;  ,k  (dispersion relation). 

Since us = 0 at s = 0 and s = N. 
 

0)sin( Nka , 

 
or 
 

Nka , 2,      , (N-1). 

s=0 s=N



7 
 

 
5. The method of periodic boundary conditions 
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From the periodic boundary condition, we have 
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where L = Na. The allowed values of k are 
 

s=0, s=N
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where n is integers, n = -N/2, ..-1, 0, 1, 2,   , N/2, ...... 

 

 
 

Fig. First Brillouin zone. There are N state for |k|≤/a. 

 

6. Density of states for 1D system 

 

 
 

Fig. Density of states for the 1D k-space. The factor 2 arises from the even function of 

the dispersion relation ( vs k) in the expression of the density of states (1D case). 

 

There is one allowed state per (2/L) in k-space.  Or  
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where the factor 2 comes from the even function of the dispersion relation ( vs k). Then 

we have 
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When vk , we get 
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Note that this is independent of . 

________________________________________________________________________ 

7. Density of states for 2D system 

There is one allowed states per (2/L)2 in 2D k-space. In other words, there are  
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using the linear dispersion relation, vk , 
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Fig. Density of states for the 2D k-space. There is one state per area 
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8. Density of states for the 3D system 

The total number of modes with wave number less than k, 
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Fig. Density of states in the 3D k-space.  

 

For k - k + dk (corresponding to  -  + d) 
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Then the density of states for each polarization (L or T) is 
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for the density of states for the 3D system. 
 

 
 
Fig. Density of states in the Debye model. 
________________________________________________________________________ 
9. Heat capacity of 1D system 
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where the factor 3 denotes the number of polarization. We introduce a new variable x as 
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At low temperatures where T<<,  
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which is proportional to T. 

 

10. Heat capacity of 2D system 

((Problem 5-4 , Kittel)) Hint. 

We calculate the heat capacity of 2D systems in the Debye approximation. The ther mal 

energy is given by 
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for each polarization type (2 TA, 1 LA). For simplicity, we assume that the phonon velocity 

is independent of the polarization (vt = vl = v). Then we get 
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The heat capacity is 

 

 























D

ed

d
d

dT

d

v

L

T

U
C











 0

2

2

2

12
3

ℏ

ℏ
 

 

or 

 

 















D

e

e
d

Tkv

L

T

U
C

B









0

2

3

22

2

12
3

ℏ

ℏ
ℏℏ

 

 

Here we note that 
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11. Heat capacity of 3D system 

In the Debye model approximation, the velocity of sound is taken constant  
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where v is the constant velocity of sound. The density of states becomes 
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where V = L3. The dimension of D() is [ ]
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In the Debye model, we do not allowed modes of wavenumber larger than kD. 
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 is the Debye temperature, and is defined by 
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We introduce a new variable x defined by 
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We now consider the contribution of one longitudinal acoustic (LA) mode and the two 

transverse acoustic (TA) mode. Here for simplicity, we assume that 
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The heat capacity is evaluated from the direct derivative of U given by Eq.(1), 
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It is clear that C is derived by a scaling function of a reduced temperature T/. In other words, 

C depends only on the variable T/. 

______________________________________________________________________ 

(a) For 1

T

  (the high temperature limit) 
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The heat capacity is independent of T as 

 

BNkC 3 .  (Dulong-Petit law). 

 

(b) For 1


T
  (the low temperature limit) 

The upper limit of the integral may be taken to be infinite for all practical purposes. The 

integral then tends to be a constant. The total energy is evaluated as 

 

15
9

1
9

43

0

33























 
 T

TNkdx
e

xT
TNkU BxB ,  Debye T3 law 

 

where 



19 
 

 

151

4

0

3 





dx
e

x
x

. 

 

Then the heat C is obtained as 
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which is well-known T3 law of specific heat, valid at low temperatures. The heat capacity 

can be evaluated directly as 

 

 

 
3443

0 2

43

/

0 2

43

5

12

15

4
9

1
9

1
9






















































T
Nk

T
Nk

dx
e

exT
Nk

dx
e

exT
NkC

BB

x

x

B

T

x

x

B

 

 

where 
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12. Physical meaning of 3TCV  at low temperatures. 

 

 BDD kvkℏℏ ,  Tkvk BT ℏ . 

 

Only those lattice modes having TkBℏ  will be excited to any appreciable extent at T, 

 

The fraction occupied by the excited modes is 
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The total number of states is 3N for 1 TA and 2 LA modes (N for each branch). Then there 

are of the order of  

 

3)(3

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N , 

 

excited modes, each having kBT. The energy is 
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T
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and the heat capacity is 
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Fig. Definition of kT and kD (the Debye model) for the 3D spherical k-space. 

 

13. Numerical calculation of the heat capacity 
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where NA is the Avogadro number, and R is the gas constant and R = NAkB. 

 

R = 8.3144621 J/(mol K), 

 

or 

 

R = 1.9858775 cal/(mol K). 

 

Note that 
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At low temperature (T<<),  
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At low temperature (T>>),  
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Fig. Scaling relation of CM/3R vs T/, which is predicted from the Debye model. 

CM is the molar specific heat. R is the gas constant. The blue line denotes the 

approximation valid for low temperatures (T/<<1). The green line denotes 

the Dulong Petit law at high temperatures (T/>>1) 
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Fig. Specific heat CM/3R as s function of T, where  is changed as a parameter. 

 

 
 

Fig. Specific heat CM/3R as s function of T (a logarithmic scale of the T axis). 

 

14. Einstein model of the heat capacity 

In the Einstein model, only the optical mode contributes to the specific heat. In this case, 

there exists only the optical phone: 3N states at . In the case of diatomic model, there are 2 

branches (acoustic and optical branches). For the optical branch, there are 3N states (N for 

longitudinal modes and 2N for transverse modes).   
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Fig. Density of states in the Einstein model. 
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The heat capacity of the oscillators is 
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The characteristic temperature E is defined by 
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Then  
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Type equation here. 
 

Fig. Heat capacity for the Einstein model. 

 

((Note)) Specific heat in the Debye model 

 

Table: Calculation of CM/3R vs T/. 
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15. General result for D() 

In general, the density of states can be expressed as 
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where 
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Fig. The volume element in the k space. dkn = dk.  dkdSdkdSkd n 
3  

 

The group velocity is defined by 

 

kk v , 

 

which is normal to the surface of  = constant. We note that from the definition, we have 

 

kvk ddd kk   . 

 

When d = 0 ( = constant surface), k  is perpendicular to any vector on the surface ( 

= constant). In other words, the group velocity kk v  is normal to the surface with  = 

constant.  

Since the magnitude of the group velocity is given by 
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


k

v kg


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or 

 

 dkd kv , 

 

we have the k-space volume element as 
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Then we get 
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The integral is taken over the area of the surface with constant , in the k space. 

 

 
 

Fig. Actual lattice spectrum. 

 

The spectrum for the crystal starts as 2 for small , but discontinuities develop at singular 

points. 
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______________________________________________________________________ 

16. Melting criterion  for the 3D case 

((Lindeman criterion)) 

Solid melts because the vibrations of the atoms about their equilibrium positions becomes 

too large. 

 

 
 

The mean squares amplitude of vibration is defined as 
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The solid melts where 2

iR  becomes comparable to a2, where a is the lattice constant. Here 

we use the Debye model; 
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where )(3 D  is the density of states for the 3D system, 
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Note that  is defined by. 
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which is proportional to T. 
 
((Melting criterion)) Lindemann criterion 
We define the parameter f 
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When f = fc, the melting occurs at T = Tm; 
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where fc = 0.2 - 0.3 (typically). 

 

((Example)) 

Al (aluminium) 

 = 428 K. a = 4.05 Å (fcc). Density  = 2.375 g/cm3. 

Tm = 933.47 K. Molar mass = 26.9815386 g. 

 

Then we have 

 
2

185696 cm fT   

 

leading to 

 

fc = 0.07. 

 

Rb (rubidium) 

 = 56 K. a = 5.585 Å, (bcc). Density  = 1.532 g/cm3. 

Tm = 312.46 K. Molar mass = 85.4678 g. 

 
2

7.19149 cm fT  , 

 

leading to  

 

fc = 0.128. 

 

17. Stability of the 2D system: Lindemann criterion  

Let us calculate  
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for the 2D system,where 

 

2

2

2
2

)(
v

L
D




  , 
Tk

x
B

ℏ
 , 

TTkB

D 


ℏ
 

 

Note that  is defined as follows. 
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The integral does not converge 
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 1

1
lim

0 xx e
. 

 

The calculation of the mean quadratic displacement in the plane (or in the chain) leads to a 

divergent value at any temperature. Thus 2D crystals are unstable in the harmonic 

approximation. Some 3D interaction (whatever small with respect to intralayer or interchain 

interaction is necessary to stabilize the low dimensional system. 

 

18. Summary 

((Density of states)) 

In d-dimensional harmonic crystal, the low frequency density of states varies as 1d . 

 

For the 1D system 
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For the 2D system 
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where A is the area for the 2D system and V is the volume of the 3D system. 

 

((Heat capacity)) 

 

For the 1D system 
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For the 2D system 
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19. Debye-Waller factor in the x-ray scattered intensity 

As the temperature of the crystal is increases, the intensity of Bragg reflection decreases. 

This result can be explained as follows. Suppose that the position of atom depends on time t 

as 
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Then the structure factor is given by 
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where <..> denotes thermal average, jR  is the position vector of j-th atom in the unit cell in 

thermal equilibrium, and fj is the atomic form factor. Using the series expansion, we get 
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where  is the angle between G and u. Note that u is a random thermal displacement 

uncorrelated with the direction of G. Then we have 
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for the isotropic system; 
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Then  
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The scattered intensity is 
 

]2exp[]
3

1
exp[ 0

22
0

* WIuGISSI GGG  , 

 
where I0 is the scattered intensity from the rigid lattice. The exponential factor W is the 

Debye-Waller factor. Here 2u  is the mean square displacement of an atom. The thermal 

average potential energy of a simple harmonics in the 3D system is 
 

TkKUuM B
2

3

2

1 22  , 

 

where U  and K  are the average of the potential energy and the average of the kinetic 

energy. Then we have  
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Then the intensity is evaluated as 
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The intensity exponentially decreases with increasing temperature. 
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Fig. The dependence of intensity on temperature for the (h00) x-ray reflections of Al. 

Reflections (h00) with h odd are forbidden for a fcc structure (R.M. Nicklow and R.A. 

Young, Phys. Rev. 152, 591 (1966). ). [This figure is obtained from the book of 

“Introduction to Solid State Physics, by C. Kittel 8-th edition]. 

 

 

20. Debye-Waller factor (quantum mechanical treatment) 

Here we calculate the Debye-Waller factor calculation based on the quantum 

mechanical treatment. First we define the Debye temperature . 
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The Debye-Waller factor is given by 
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We assume that vq . Then we get 
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When 1/  T  (high temperatures), we get 
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where we use the approximation 
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21. Neutron inelastic scattering 

Thermal neutrons interact with matter through the interaction with nucleus via the so-
called strong force. The interaction is strong, but extends only over a distance of the order of 
10 fm (femtometers), the size of the atomic nucleus. 

 
1 fm = 10-15m = 10-13 cm. 

 
It can have the effect of the neutron being scattered by the nucleus. In this sense, the form 
factor bj is independent of the related wavevectors, unlike the case of x-ray scattering. 

Now we consider the case when the incoming neutron (wavevector ki = k, energy Ek) is 

scattered by a system. In this process, a phonon (wavevector q, energy qℏ ) are absorbed or 

emitted. After that, the outgoing neutron has a wavevector kf = k', energy Ek'. where k is the 
wavevector of the incoming neutron, 
 

n

k
M

k

2

22
ℏ

ℏ  ,  (the energy of incoming neutron with mass Mn) 

 

n

k
M

k

2

'22

'

ℏ
ℏ  .  (the energy of outgoing neutron) 
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Fig. Schematic diagram of the inelastic neutron scattering. ki = k. kf = k'. 

 

We consider the scattering amplitude defined by 

 

  ),()( .0 tVedetS
iti

rr
rQ , 

 

where 

 

 
j

jjj tbtV )]([),( uRrr  , 

 

is the interaction potential [for simplicity we neglect the term) )/2( 2 mℏ and bj is the 

scattering length for atoms for neutron scattering. We note that the potential  

 

  

j

jj

i beVV )()( Rrr rG

G

G   

 

satisfies the periodic condition such that 
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)()( rTr VV  . 

 

The Fourier component VG is calculated as 

 



 














j

i

j

j

jj

i

i

jeb

bed

VedV

RG

rG

rG

G

Rrr

rr

)(

)(

  

 

which is similar to the structure factor when bj is equal to the atomic form factor fj for the x- 

ray diffraction. Thus we get 
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where Q is the scattering vector and is defined by 

 

kkQ  ' , 

 

and 

 

kk   '0 . 

 

 

_______________________________________________________________________ 

((Note)) In typical textbooks of neutron scattering, Q and 0 are defined as 

 

'kkQ  , 

 

and 
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'0 kk   . 

 

______________________________________________________________________ 

Using the Taylor expansion, we get 
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Here we note that 

 
)(

)(
ti

qj
qjeut

 Rq
eu , 

 

where eq is the polarization vector of phonon (LA, TA, LO, TO branches of phonon), and u 

is the amplitude of oscillation in the displacement. So we have 
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The first term is the elastic scattering (time-independent term except for ti
e 0 ). We use 

 

 
j

i

jelastic
jebS

RQ
, 

 

where the Bragg condition  

 

k' = kBragg,  Q = kBragg - k = G. 

 

is satisfied and 

 

kBragg = k + G 

 

which lies on the Ewald sphere; 

 


2

 kBragg kk . 
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The second term is the inelastic scattering (time-dependent term), 

 

 
j

tii

qjinelatic
qj euebtS

)()( 0)()(
RqQ

eQ , 

 

where 

 

GqQ  , 

 

with 

 
kkQ  ' . 

 

Note that k' is no longer equal to kBragg on the Ewald sphere, 

 

qkk  Bragg' .  

 

Using these relations, we get the momentum conservation, 

 

qGqkkkqkkkQ  )()(' BraggBragg , 

 

We note that the wavevector q of the phonon is in the first Brillouin zone centered around G 

in the reciprocal lattice space. 

From the integral over time t, we get 

 

)(2 0

)( 0

q

ti qdte  


, 

 

leading to the energy conservation law 

 

qkk   '0 . 

 

where q  is the angular frequency of the phonon with the wavevector q. 

 

22. The absorption and emission of phonon 

We assume that the displacement vector uj is given by 
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eu , 

 

where q is the wavevector of phonon, qe  is the polarization vector, and uq is the displacement 

amplitude (in general, a complex number). Then the inelastic scattering term is rewritten as 
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Taking the integral over time t, we have 
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The first term corresponds to the absorption of phonon and the second term corresponds to 

the emission of phonon. For simplicity, bj is independent of j. Then we get 

 

)}()(

)()(){(2),(

0

*

00

Gq

GqeQQ





Qu

QubNiS

qq

qqqinelastic




 

 

Here we use the notation 
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from the previous chapter and the consideration from the quantum mechanics of the simple 

harmonics,  

 

11ˆ 
qqqq nnna , for the creation of phonon, 

 

1ˆ  qqqq nnna . for the destruction of phonon. 

 

Finally we get the scattering intensity which is proportional to 
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Using the factor 2)( qeQ  , we can select the branch. if qeQ  , the branch does not contribute 

to the inelastic neutron scattering. 

 

 
 

Fig. Selection rule. The transverse phone mode (eq//q). The longitudinal mode (eqq). In 

this configuration, the scattering vector Q is nearly perpendicular to the vector q. Thus 

G Q

ki

k f

kBragg

q
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the transverse phonon mode can be observed mainly. The first Brillouin zone is the 

smallest square region surrounding around the point (q = 0). 

 

23. Ewald sphere for the inelastic neutron scattering  

We rewrite the energy and momentum conservation laws for neutrons 

 

qkk EEE  ℏℏ  0' , 

 

qGQkkk  ' , 

 

where qℏ  and q are the energy and momentum, lost (or gained) by a lattice vibration 

(phonon). q is the wavevector of phonon and is in the first Brillouin zone centered at the 

reciprocal lattice vector G in the reciprocal lattice. If we know Ek and k and measure Ek' and 

k', we can obtain qℏ  and q, which give us a point on the dispersion curve of the phonon.  

The modified Ewald sphere is given below. We note that kBragg and k lie on the Ewald 

sphere and 

 


2

 kBragg kk . 
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Fig. Modified Ewald construction for inelastic neutron scattering measurement. k 

and Gkk Bragg  lie on the Ewald sphere. The angle between kBragg and k, 

is the angle 2Bragg. The Bragg reflection occurs at kBragg on the Ewald sphere. 

qkGkk  'Bragg . qkk EEE  ℏℏℏ  '' . Q = k' - k (the 

scattering vector). The phonon dispersion curve can be obtained from the 

relation between qℏ  and q in the first Brillouin zone around the reciprocal 

lattice vector G (the q = 0 point). O is the origin of the reciprocal lattice space. 

 

 

((Scattering diagrams)) 
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Energy gain Energy gain 

 

Fig. Gkk  iBragg . Qkk  if . qGQ  . ki>kf (energy loss). ki<kf (energy gain). In the 

configuration (the right side), q is perpendicular to Q. No longitudinal mode can be 

measured. 
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Energy gain Energy gain 

 

  
 

Energy gain Energy gain 

 

Fig. q//Q. No transverse mode can be observed.  
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Energy is conserved Energy loss 

 

  
 

Energy loss Energy loss 

GQ

ki

k f

kBragg

q

GQ

ki

k f

kBragg

q

GQ

ki

k f

kBragg

q

G
Q

ki

k f

kBragg

q



50 
 

  
 

Energy loss Energy loss 

 

  
 

Energy loss Energy loss 
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24. Triple axis spectrometer for the inelastic neutron scattering. 
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Fig. Schematic diagram for the triple-axis spectrometer for the measurement of 

inelastic neutron scattering. 

 



53 
 

 
 

Fig. Triple-Axis Spectrometer (HB-3). Oak Ridge National Laboratory. The triple-
axis spectrometer is one of the most versatile instruments for measuring 
excitations in solids via neutron scattering. HB-3 is a colossal flux thermal 
neutron three-axis spectrometer designed for inelastic measurements on single 
crystals over a wide range of energy and momentum transfers. While the 
energy and momentum range for measurements is quite large at HB-3, the 
instrument is the ideal location to perform experiments at high energy 
transfers. This is due to a combination of its location directly at the end of the 
beam tube and the availability of a beryllium monochromator.  
http://neutrons.ornl.gov/instruments/HFIR/HB3/ 

 

((Example-1))  Inelastic neutron scattering of NaI 

Phonon dispersion determined from the inelastic neutron scattering experiment. 
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Fig. Phonon dispersion curve of NaI. Wood, Cochran and Brookhause, Phys. Rev. 119, 

980 (1960). 

 

((Example-2))  Inelastic neutron scattering of Si 
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((Example-3))  Inelastic neutron scattering of phonon in Cu 

 

G. Shirane, S.M. Shapiro, and J.M. Tranquanda, Neutron Scattering with a Triple-Axis 

Spectrometer (Cambridge, 2004). 
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Fig. Phonon dispersion curves for fcc Cu at 296 K as measured by Svensson, Brookhouse, 

and Rowe (1967). 

 

1 THz = 4.13567 meV. 
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Fig. Brillouin zone of fcc Cu 

 

((Example-4)) Inelastic neutron scattering of alkali-metal graphite intercalation 

compounds 

 

Measured phonon energies of [00q] L modes in alkali-metal graphite intercalation 

compounds at room temperature. KC8, RbC8, CsC8 (stage-1). KC24, RbC24, CsC24 (stage-2). 

KC36, CsC36 (stage-3). 

 

(i) Staging structure of alkali-metal graphite intercalation compounds 
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(ii) Phonon dispersion of the (00q) L modes in alkali-metal graphite intercalation 

compounds at room temperature. 

 

KC8, RbC8, CsC8 (stage-1). KC24, RbC24, CsC24 (stage-2). KC36, CsC36 (stage-3). 
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26. Raman scattering and Brillouin scattering 

We consider the acoustic phonon. The velocity of acoustic phonon v is on the order of 

105 cm/s. The wavenumber k is on the order of 108/cm. Then the angular frequency  is  

 

1
2

1010

22

58

 Hz
vk

f



THz. 

 

When k = 0,  is equal to zero. Therefore  changes from 0 to 10 THz as the wavenumber 

changes. The wavelength of the laser is 

 

nm633 . 

 
for typical He-Ne laser. If the excitation is an acoustic phonon, the inelastic light scattering process 

is called Brillouin scattering, while light scattering by optical phonons is called Raman scattering.  
 

27. Brillouin scattering (acoustic phonon) 
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The light scattering experimental technique is an exceedingly valuable tool for the study 

of fundamental excitations in solids, such as phonons. We now consider the Brillouin 

scattering when the incident light interacts with phonon (acoustic phonon). 

 

 
 

Fig. Brillouin scattering. Stokes line at  12  . Anti-Stokes line at  12   

 

The Brillouin scatterings are schematically shown in the above figure, in which ω1 and ω2 

is the frequency of the incident and outgoing light.  

 

)(12 q . (energy conservation) 

 

qkk  21   (momentum conservation) 

 

)(qΩ  is the angular frequency of phonon at the wave vector q. The photon at  12   is 

called the Stokes line and that at  12   is called the anti-Stokes line. The intensity of 

the Stokes line involves the matrix element for phonon creation, 

 

Stokes Anti Stokes

2

11 1

Scattering Intensity
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)1(1ˆ)(
2

12  qqq nnunI   

 

where qn  is the initial population of phonon mode q.  

 

 
 

Fig. Brillouin scattering. Stokes line. Creation of phonon. Red (photon). Blue (phonon). 

 

The intensity of the anti-Stokes line involve the matrix element for phonon annihilation, 

 

qqq nnunI 
2

12 ˆ1)(   

 

 

1

2

1

2
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Fig. Brillouin scattering. Anti-Stokes line. Annihilation of phonon. Red (photon). Blue 

(phonon). 

 

If the phonon population is initially in thermal equilibrium at temperature T, the intensity 

ratio of the two lines is 
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where qn  is the Planck’s distribution function 

 

1

1


 ℏ

e
n

q
. 

 

Note that the intensity of the Stokes line is stronger than that of the anti-Stokes line. 

 

28. Determination of the velocity of acoustic phonon: Brillouin scattering 

 

 
 

Fig. Brillouin scattering configuration. The wavevectors of incident light and scattered 

light, k and k’. �� − � = �. 
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q

k

2
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In the Brillouin scattering (due to the acoustic phonon), we have 

 

� = 2� sin

2

=
4


sin

2

 

 

The maximum of the wavenumber q for phonon is 
�


. Since  = ��, ��� is on the order of 

2 × 10"# (1/s). From the experimental results of the dispersion relation 

 

 = �� = � �


sin 

$
, 

 

the phonon velocity v can be determined. The measurement of   vs the angle  yields the 

value of the velocity v. Note that 
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Therefore the measurement of f  can be measured using the Brillouin Scattering. 

 

29. Classical model for the Brillouin scattering 

The polarizability of atom is dependent on the displacement of atom, u. The dipole 

moment p is 

 

% = && + &�()* 

 

where 

 

( = (# cos[&�) -],  * = *# cos&# -), 

 

Where E is the electric field. Thus the electric dipole moment can be calculated as 

 

% = &*# cos&# -), +&�(# *#cos[&�) -] cos&# -) 

= &*# cos&# -), + "

$
&�(#*#  {cos[&# + &�))-] +  cos[&# − &�))-]} 
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So the scattered light has the frequency of 

 

" = # 1 &�). 

 

30. Experimental result (Brillouin scattering) 

W. Cochran, The Structures and Properties of Solids 3, The Dynamics of 

Atoms in Crystals (Edward Arnold, 1973). 

 

 

 
 

Fig. Raman spectrum of quartz. The intensity vs frequency (in the units of cm-1). A small 

peak at 147 cm-1 is considered to arise from a non-harmonic term. 1 cm-1 = 

29.9792458 GHz=0.0299792458 THz. [Shapiro, O’Shea, and Cummins, Phys. Rev. 

Lett. 19, 361 (1967).] 
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Fig. Brillouin spectrum of quartz. The scattering from all three acoustic modes is observed. 

The horizontal axis is the change of frequency (in units of cm-1). 1 cm-1 = 29.9792458 

GHz=0.0299792458 THz [Shapiro, O’Shea, and Cummins, Phys. Rev. Lett. 19, 361 

(1967)]. 

 

31. Raman scattering (optical phonon) 

((Introduction)) 

Like inelastic neutron scattering, Raman scattering involves the scattering of photons 

from phonons with change in energy and wave vector. However the fact that the wave vector 

of light is small means that the changes in the wave vector through the scattering process 

must also be small. In effect, this means that measurements are restricted to phonons with 

wave vectors that are barely different from zero when compared with the range of wave 

vectors within the Brillouin zone. To illustrate this, consider an incident light beam from an 

Ar laser with wavelength and frequency 

 

2 = 514.5 nm, '2 = 582.686 THz 

 

The wave vector of the incident laser beam is 

 

�2 =
2
2

= 1.22122 × 109:Å9" 

 

With the precision available with optics, changes in the frequency as small as 0.01 THz can 

be measured (although most phonon peaks are intrinsically much broader than this, and this 

will limit the resolution of a measurement). We now calculate the scattering vector for a one-

phonon interaction that changes the frequency by 5 THz; 
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'< = 587.686 THz,  < = 510.123 nm 

 

�< =
2
<

= 1.2317 × 109:Å9" 

 

This will lead to a change in the wave vector of around 1%. If this beam is scattered through 

90◦, the scattering vector Q will be close to 

 

? = √2�2 = 1.727 × 109:Å9" 

 

When we compare this value with the typical reciprocal lattice vector, which is of order,  

 

A

≈ 1 Å9" 

 

we can see that the scattering vectors for Raman scattering are very close to Q ∼ 0. In effect, 

Raman scattering measures optic phonons with k = 0 (the corresponding processes that lead 

to scattering from acoustic modes give rise to Brillouin scattering. This is strikingly different 

from neutron scattering, which can measure phonons with wave vectors across a wide range 

of reciprocal space. On the other hand, Raman scattering can achieve a resolution that is 

virtually unattainable by single-crystal neutron inelastic scattering, whilst covering a wide 

range of energies that is hard to cover by neutron scattering, and on a time scale that is much 

faster (as well as being a much cheaper technique. 

 

((Theory)) 

Optical phonon at q = 0 can be measured using the Raman scattering, where 

 

qif    

 

and 

 

0 qkk if  

 

From the measurement of  , we can determine the frequency of the optical phonon. 

 

qif    
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The stokes component and the anti-Stokes component are defined as 

 

< = 2 − D , < = 2 + D  

 

respectively. 

 

 
 

Fig. Schematic diagram of Raman scattering. Unshifted Rayleigh line (0). Stokes 

line (emission, 0 - q) and anti-Stokes line (absorption, 0 + q). The ratio 

of the Stokes to ant-Stokes can be used to estimate the temperature of the 

phonon system 
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Fig. Raman spectra of three zinc-blende-type semiconductors showing the TO and LO 
phonons in both Stokes and ant-Stokes scattering. (M.S. Dresselhaus, Solid State 

Physics, Part II, Optical Properties of Solids). Note that ' = 10 THz corresponds to 
333.565 cm-1. 

 

((Stokes line)) 
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Fig. Raman scattering. Stokes’ line. 21  ℏℏ  fi EE  (energy conservation). 

112 )(  ℏℏℏ  if EE  since if EE  . A Stokes’ line in atomic spectra is more 

reddish than that of the incident radiation. The inelastic scattering. 

 

((Anti Stokes-line) 

a

c

b

1 2
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Fig. Raman scattering. Anti-Stokes’ line. 21  ℏℏ  fi EE  (energy conservation). 

112 )(  ℏℏℏ  fi EE  since if EE  . A Stokes’ line in atomic spectra is more 

violet than that of the incident radiation. The inelastic scattering. 

 

a

c

b

1 2
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Fig. Schematic diagram for the Stokes’ line, Rayleigh scattering, and anti-Stokes’ line. 

 
The intensity of the Stokes line involves the matrix element for the phonon creation, as 
 

E&" − ) ∝ &G� + 1) 

 

Where G� is the initial population of phonon mode k. The intensity of the anti-Stokes line involves 

the matrix element for the phonon annihilation, as 
 

E&" + ) ∝ G� 

 

The intensity ratio of the two lines is 
 

E& + )
E& − )

=
G�

G� + 1
= H9ħ�  

 

32. Rayleigh scattering 

Stokes Anti StokesRayleigh

2
11 1

Scattering Intensity
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Fig. Rayleigh scattering. 21  ℏℏ  . The elastic scattering. 

 

Why the sky is blue in daytime? That is because of the Rayleigh scattering. The 

wavelength of blue light is much shorter than that of red light. The Rayleigh scattering is an 

elastic scattering. The cross section of the Rayleigh scattering due to the small particles with 

diameter d is given by 

 
2

2

2

4

65

2

1

3

2













n

nd
s 


 , 

 

where n is the refractive index n of particles from a beam of unpolarized light of wavelength 

λ. Such a strong wavelength dependence of the scattering (~λ−4) means that shorter (blue) 

wavelengths are scattered more strongly than longer (red) wavelengths. This results in the 

indirect blue light coming from all regions of the sky. Rayleigh scattering is a good 

approximation of the manner in which light scattering occurs within various media for which 

scattering particles have a small size parameter. 

Why is the sky red in sunset? The reddening of sunlight is intensified when the sun is 

near the horizon, because the density of air and particles near the earth's surface through 

b

a c

1 2
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which sunlight must pass is significantly greater than when the sun is high in the sky. The 

Rayleigh scattering effect is thus increased, removing virtually all blue light from the direct 

path to the observer. The remaining un-scattered light is mostly of a longer wavelength, and 

therefore appears to be orange. 

 

APPENDIX 

A.1 Nature of neutron 

 

 (meV): neutron energy in meV 

 (THz): neutron energy in THz 

k (Å-1): wavenumber in Å-1 

 (Å): wavelength in Å 

v (km/s): neutron velocity in km/s 

 

The energy of neutron is given by 

 

2

2

1
vM n  ℏ , 

nM
v

2
 . 

 

The momentum p is 

 

vMk
h

p n ℏ


.  (de Broglie relation). 

 

The wavelength  is 

 

)(

04457.9

meVvM

h

n 
   (Å), 

 

)(4374.0
227.5

)(
)/( meV

meV
skmv 


 [km/s], 

 

)(6947.0
072.2

)(
meV

meV
k 


  [Å-1].  

 

((Example)) 
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When  = 1 Å,  

 

7.81)( meV  meV. 

 

v (km/s) = 0.4374 )(meV  = 0.4374 7.81  = 3.95 km/s. 

 

It takes t = 1000/3.95 s = 253 s for neutron to travel in the distance of 1 m. 

 

((Note)) 

The energy of the x-ray is much larger than that of the lattice vibrations ( ℏ  = 105 eV 

for x-ray, ℏ  = 0.1 eV). The energy of the lattice vibration is on the same order as that of 

neutrons. Ony the elastic scattering can be observed in the x-ray scattering, while the inelastic 

scattering as well as the elastic scattering can be observed in the neutron scattering. 

 

A wavelength at the Brillouin zone edge of  

 

 = 2/k = 2a ≈ 10 Å = 10-7 cm = 1 nm. 

 

for a = 5 Å. The velocity of phonon would be 105 cm/s. Then the frequency is on the order 

of 

 

12

7

5

10
10

10



v

f Hz = 1 THz. 

 

The corresponding energy is 

 

13567.4)2(  ' ℏℏE  meV for f = 1 THz. 
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Fig. The neutron scattering by phonons in the system. ki (= k) is the wavevector of 

the incident neutron and kf (= k') is the wavevector of the outgoing neutron. 

Q is the scattering vector. Q = kf – ki. |ki| = 2/,  is the wavelength of the 

incoming neutron. 

 

_________________________________________________________________________

A.2 Unit [Kayser] in spectroscopy 

 

The energy of light E is given by 

 

'c . 

 

Then we have 

 

3565.33][
101 12

 THz
cc
'

'


 ][THz'   [cm-1] 

 

06556.8
2

1


c

E

ℏ
 ][meVE    [cm-1] 

 

151003413.5
2

1


c

E

ℏ
 ][ergE    [cm-1] 

 

2 4 6 8 10
nHTHzL
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695037.0
2

1


c

TkB

ℏ
 ][KT     [cm-1] 

 

The unit [cm-1] is called as Kayser. 

 

A3. Units of Kayser (cm-1) 

The energy of photon is 

 

* = ħ = ħJ� = ħJ
2


 

 

or 

 
1


=
*

2ħJ
=

ħ
2ħJ

=


2J
=

K
J

 

 

When 1 L = 1JM9", 

 

* = 0.123984 meV 

 

K = 29.9792 GHz 

 

 

A4. Bulk modulus: Hint of Kittel Problem 5-2 

Charles Kittel Introduction to Solid State Physics 8-th edition 

Rms, thermal dilation of crystal cell 

 

(a) Estimate for 300 K the root mean square thermal dilation O/O for a primitive cell of 

sodium. Take the bulk modulus as 7 x 1010 erg/cm3. Note that the Debye temperature 158 

K is less than 300 K, so that the thermal energy is of the order of �QR. 

(b) Use this result to estimate the root mean square thermal fluctuation A/A of the lattice 

parameter. 

 

((Solution)) 

We start from the equation 
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2

2

dV

dU
VB  . 

 

where B is the bulk modulus and U is the total internal energy.  

 

V

B

dV

dU


2

2

. 

 

We introduce a new variable x for the volume V; 

 

)1(0 xVV   

 

where x is very small compared to unity. Thus we get 

 

)1(

1

0
2

2

2
0 xV

B

dx

Ud

V 
  

 

or 

 

)1(
0

2

2

x

BV

dx

Ud


 . 

 

This leads to 

 

)1ln(0 xBV
dx

dU
  

 

In the limit of 0x , 

 

x
x

xx  ...
2

)1ln(
2

. 

 

Using this approximation,  we have 

 

xBV
dx

dU
0 ,   
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or 

 

2
02

1
xBVU   

 

Noting that x can be expressed as 

 

00

0

V

V

V

VV
x





 , 

 

we get the final form of U as 

 
2

0

0
2

1







 


V

V
BVU . 

 

The total volume is given by 

 
3

0 aNV cell , 

 

where Ncell is the number of unit cell and a is the conventional lattice constant. So we 

get the thermal energy per unit cell as 

 

3

2

0

0

2

0 2

1

2

1
a

V

V
B

N

V

V

V
B

N

U

cellcell







 








 
  

 

Suppose that the distortion of the lattice occurs along the x direction. 

 

a

a

a

aa

V

V 





 33
3

2

0

. 

 

For bcc and fcc crystals, that there are p atoms per conventional unit cell; p = 2 for 

bcc and p = 4 for fcc. Each atom has a thermal energy kBT/2 for the thermal motion 

along the x-axis direction. Then 
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Tk
p

a
a

a
B

N

U
B

cell 2

3

2

1 3

2








 
  

 

33

1

Ba

Tpk

a

a B


 

 

Use the values of p = 2, a = 4.2906 Å for Na. 


