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1. Heat capacity

Cv = heat capacity at constant volume
C, = heat capacity at constant pressure.
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Where U is the energy and T is the temperature. The contribution of the phonons to the heat
capacity of a crystal is called the lattice heat capacity.

((Note))
Gitter: lattice (in German)

The total energy of the phonons at 7 in a crystal may be written as
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where <nk, A> is the thermal equilibrium occupancy of phonons of wavevector k£ and

polarization A. <nk, A> is the Planck distribution function given by

with f = kLT , and kg is the Boltzmann constant.
B

2. Planck's distribution
We consider a set of identical harmonic oscillators
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Fig.  States of an oscillator that represents a mode of angular frequency w. When the

oscillator is in the state of energy n/iq, the state is equivalent to n photons in the

mode. The zero point energy (fh@/2) is omitted for simplicity.

The ratio of the number of states |n + l> (n+1 photons in the mode) to the number of states

in |n) (n photons in the mode) is

Nn+1
—= =exp(—phw),
N p(-pho)

n

by the use of the Boltzmann factorm. Note that

N =<n>,
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We see that
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where p =0, 1, 2, .... (integer). For p = 1, we have

where



We also have

(An)2 = <n2> - <n>2 al

NS

Using the Mathematica, we get the table of <n” > Vs p

Table <n”> vsp, (p=1,2,3,4,and 5), where x=e "
P <nP>)
0 1
1 X
1-x
2 X (1+x)
(~1+x) 2
3 ~ X (1+4 X+X2
(-1+x)°
x(1+11x+11x2+x3)
4
(-1+x)4
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3. Normal mode enumeration

The total energy U is given by
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Suppose that the crystal has D, (@w)d@ modes of a given polarization A in the frequency
range - o+ dw
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The lattice heat capacity is
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Then we have

2 pho
Clan = kBZJ-da)Dﬂ (a))%-

4. Density of states in one dimension
We consider the boundary value problem for vibrations of a 1D line of length L carrying
(N+1) particles at separation a.

[ ° ° ° ° ° ° ° ° ° °
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Suppose that the particles s = 0 and s = N at the end of lines are held fixed. Each normal
mode of the polarization | has the form of a standing wave,

u, =u(0)e " sin(ska),

where us 1s the displacement of the particle s; @ = @, , (dispersion relation).

Sinceus=0ats=0and s = N.
sin(Nka) =0,
or

Nka =m,2n, ,(N-Drx



S. The method of periodic boundary conditions

ux — u(O)ei(skafwkt) )
From the periodic boundary condition, we have

s~ Ys+N»

eiNka — 1 .

where L = Na. The allowed values of & are



k= 2—ﬁn = 2z n ,  (first Brillouin zone)

L a N

where n is integers, n = -N/2, ..-1,0, 1,2, , N/2, ......

—7/a Ist BZ mT/a

Fig.  First Brillouin zone. There are N state for |k|<7/a.

6. Density of states for 1D system

—7/a (0] k  k+dk 7/a
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Fig.  Density of states for the 1D k-space. The factor 2 arises from the even function of
the dispersion relation (@ vs k) in the expression of the density of states (1D case).

There is one allowed state per (277/L) in k-space. Or

L = L states per unit length of k-space,

Hk

for each polarization and for each branch. The density of states (v- @+ dw),

D(w)dw = L2dk = ££da)
27 T dw



where the factor 2 comes from the even function of the dispersion relation (@ vs k). Then
we have

L
D(w)==——.
@)
dk
When w = vk , we get

D(a))zé.

Note that this is independent of @.

7. Density of states for 2D system
There is one allowed states per (277L)* in 2D k-space. In other words, there are

1
Qr) /1’

states per unit area of 2D k space, for each polarization and for each branch

The density of states is defined by

dkdk,  2gkdk  kdk

D(w)do = _ _
(@M= e - ny Il 2n

b

using the linear dispersion relation, @ = vk,

Do

Dle)= 2

which is proportional to @.
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Fig. Density of states for the 2D k-space. There is one state per area (TJ of the

reciprocal lattice plane.

8. Density of states for the 3D system
The total number of modes with wave number less than £,

_ L AT s
2r) 3

for each polarization type (L or 7).
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Fig.  Density of states in the 3D k-space.

For k - k + dk (corresponding to w- w+ dw)

3 3
D(@)dw =L antak =L 12 %
27) 27 do
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do,

Then the density of states for each polarization (L or 7) is

e dk
27t do’

D(w) =

When o = vk , we have

Ve?

PO e
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for the density of states for the 3D system.

D(w)/(V/27%V?)
1.0+
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Fig.  Density of states in the Debye model.

9. Heat capacity of 1D system

@ =vk
D(w)dw = Aﬁdco = Lda)
rdw p/aY
N = .[D(a))da) _L jda) _Laoy for each polarization.
0 v 0 v

Then we have

wN
©=T
The total energy

@p L he
U=3 !da)D(a))haK n(w)>= 3! da);[eﬁm _J

where the factor 3 denotes the number of polarization. We introduce a new variable x as
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x:ﬂhw, xD: = =

Then we get

LF hao Lo hao L
U=3=[do ———|=3= [ d =3
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or
Lk @ T X
U= T
) I (ex —lj
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2
Lk, © _k, Lk,® K, Lhw, _k, Lh nvN _ Nk,
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we have

e —

T e/T X
U =3Nky()T | dx :
o’ I ( ' J
At low temperatures where 7<<6),

Q/T X e X
_([ dx(ex—lj:-([dxex— =—

using the Mathematica. Then we have

2 2 2
U~ 3Nk, (" = % e, L
@ 6 2 ®

The heat capacity is
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C= v _ sz—
or e

which is proportional to T.
10. Heat capacity of 2D system
((Problem 5-4 , Kittel)) Hint.

We calculate the heat capacity of 2D systems in the Debye approximation. The ther mal
energy is given by

j doD(o)ho < n(w) > = j da{ ;;J - ha{ﬁ}

for each polarization type (2 TA, 1 LA). For simplicity, we assume that the phonon velocity
is independent of the polarization (v = v; = v). Then we get

{2l

The heat capacity is

=8_U=3 hi’ d,BT w’
or dT dpl e —1

or

_OU [l ) n f @
oT 2w’

Here we note that

2

LI o_ Lo,
— T 5

v2 2

N = j doD(w) = j do 7
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or

Then we have

20/T 3 x
czg—gzwk{zj [ ax =<

For 7<<@,

TY\'% xe* TY 7Y
C=6Nk3[6j ! dx =6g(3)NkB[6j =43_274Nk3[6j ,

(e =1)

where

Jax < =65(3)=7.21234,
1
0

where

5(3) =1.2020569032 .

11. Heat capacity of 3D system
In the Debye model approximation, the velocity of sound is taken constant

w=vk,
where v is the constant velocity of sound. The density of states becomes

Vw?*

2.3
V/ARY

D(w) =
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3 2
cem’ /s

where V= L*. The dimension of D(w) is [ = s]. If there is N primitive cell, the total

3 3
cm’ /s
number of modes is N. A cut-off frequency ap is defined by

wp 3

T 4 2, Vo,
N—!D(a))da)—m—z‘}}}[a)da)—m—z‘}},

or

Since o, = vk, (kp: cut-off wave vector),

N 1/3
kD=(67Z'27j .

In the Debye model, we do not allowed modes of wavenumber larger than kp.
((Note))

V = Na® for sc crystal.

k= (672'26173)‘/3 _ (67[2)”3614 _ 3.89778 '
a

O is the Debye temperature, and is defined by

1/3
®=@kl) =@[6;z2 EJ :
ky ky 4

We introduce a new variable x defined by

fiw
k,T

x = pho =

b
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where

X, = = =

_ho, _kB®_9
k,T  k,T T

We now consider the contribution of one longitudinal acoustic (LA) mode and the two
transverse acoustic (TA) mode. Here for simplicity, we assume that

where v and vt are the velocities for the LA and TA modes. Note that we use

Vo' Vo Vo' 1 2 Vo'
12 2 T+2 2 3 z(_3+_3):3 2.3 "
v, 2r7v, 2 vy, 277y

Then we have

ho 31V [kBTj4

orr x°
U=3fdad@) =5 )

0 e -1

dx, (1)

or

114 kB4 T4J‘®/T x3

U=3 — d
27245 Bt 0 ' -1 *
4 3 3
T
=3%ki4®37—v < J‘@/T );x_ dx
27V h ®)% -1

3 3
=9NkBT(Zj [

® e —1

The heat capacity is evaluated from the direct derivative of U given by Eq.(1),
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c:a—U—sjde(w)i ha
dT e

_ _ho _ (ho) (=™ 1
oT S|

(eﬁhw —1)2 (_ kBTz) >

3 j dwD(w)

or

pho 2 3 4 x
C-= 3kBJ.da)D(a))M _onk | L [
e 0 (e

Ol

It is clear that C is derived by a scaling function of a reduced temperature 7/@. In other words,

C depends only on the variable 7/ ®.

(a) For %<< 1 (the high temperature limit)

3 5 3 3
U=9NkBT(Zj [ dxz9NkBT(Zj 1(9j =3NK,T,
@)h -1 e)3\r

TY corr x*e* TY corr 5
C =Nk, [ dr~9NK, 5 [ xdx=3Nk,.

R

The heat capacity is independent of 7 as

C =3Nk,. (Dulong-Petit law).

(b) For % >>1 (the low temperature limit)

The upper limit of the integral may be taken to be infinite for all practical purposes. The
integral then tends to be a constant. The total energy is evaluated as

T o x° ™ 7
Uz9NkBT(—j [ dx=9NkBT(—j =, Debye T° law
®) % e -1 ®) 15

where
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J-w s dx:ﬁ—.
0" -1 15

Then the heat C is obtained as

4 3 3
CV:(a_Uj _12z NkB(Zj ~233.782Nk,[ = | |
or ), 5 ® ©

which is well-known T° law of specific heat, valid at low temperatures. The heat capacity
can be evaluated directly as

6) 15 5 0
where
» x'e" At
.[o ( x_1)2 dx = 15

12. Physical meaning of C, ~ 7" at low temperatures.
ho, =hvk, =k,0, vk, =k,T .
Only those lattice modes having ne < k,T will be excited to any appreciable extent at 7,

The fraction occupied by the excited modes is
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3
L A 3
S 2y ; \
2r) 3 | &y _[Tj
L 3472- 3 kD @
_— 7kD
27 ) 3

The total number of states is 3N for 1 TA and 2 LA modes (N for each branch). Then there
are of the order of

T
3N(=),
( ®)
excited modes, each having kg7. The energy is
T
3Nk,T (6)3 ,
and the heat capacity is

3
CleNkB(Zj )
®
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Fig.

13.

k.

Definition of 4t and 4p (the Debye model) for the 3D spherical k-space.

Numerical calculation of the heat capacity

3
S _y1) .
3R o0

J~®/T x4ex

where Na is the Avogadro number, and R is the gas constant and R = Naks.

R = 8.3144621 J/(mol K),

or
R =1.9858775 cal/(mol K).
Note that
© 4 x 4 4
J- x'e = T
0 (ex _1) 15
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At low temperature (7<<0),

C_M_47r“[zf
3R 5 1\8)°

At low temperature (7>>06),

0.8
0.6}
0.4}

0.2+

Debye Model

0.0-

\\\\\\\\\\\\\\\\T®
.0/

0.0 0.5 1.0 1.5 2

Fig. Scaling relation of Cv/3R vs 7/ @, which is predicted from the Debye model.
Cw is the molar specific heat. R is the gas constant. The blue line denotes the

approximation valid for low temperatures (7/@<<l). The green line denotes
the Dulong Petit law at high temperatures (77 @>>1)
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Fig. Specific heat Cm/3R as s function of 7, where @ is changed as a parameter.

Cu/3R
1.0r
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Fig. Specific heat Cm/3R as s function of 7" (a logarithmic scale of the T axis).

14. Einstein model of the heat capacity

In the Einstein model, only the optical mode contributes to the specific heat. In this case,
there exists only the optical phone: 3N states at @. In the case of diatomic model, there are 2
branches (acoustic and optical branches). For the optical branch, there are 3N states (N for
longitudinal modes and 2N for transverse modes).
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D(w) ,

Y

0)
@0

Fig. Density of states in the Einstein model.

D(w")=3No(0'-w) .

3Nhow
M1’

U= j D(0"io'< n(@') > = 3Nho < n(w) >=

The heat capacity of the oscillators is

oU , e
C,=|— | =3Nk,(ph —V -
14 (OT jV 5 (Pho) (eﬁhm _1)2

The characteristic temperature Gk is defined by

Then
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C/3Nkp
1.0+
08
0.6
0.4}
0.2
L TIeE
0.5 1.0 1.5 2.0
Type equation here.
Fig. Heat capacity for the Einstein model.
((Note)) Specific heat in the Debye model

Table: Calculation of Cm/3R vs T/ 6.
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T/O Cm/ 3R

0. 0.

0.05 0.00974076
0.1 0.075821
0.15 0.212992
0.2 0.368635
0.25 0.503059
0.3 0.607703
0.35 0.686573
0.4 0.745853
0.45 0.790823
0.5 0.825408
0.55 0.852407
0.6 0.873796
0.65 0.890976
0.7 0.904954
0.75 0.91646
0.8 0.926033
0.85 0.934076
0.9 0.940893
0.95 0.946718
1. 0.951732

15. General result for D(w)
In general, the density of states can be expressed as

[k L [as, dk, .

D(w)dw = = 2y

3
(272-) shell shell
where

dk, = dk,

26



‘ dkn

dSy,
corfstant

e
1l

Fig. The volume element in the k space. dkn = dk.. d’k = dS, dk, =dS dk,
The group velocity is defined by
v, =V, 0,
which is normal to the surface of @ = constant. We note that from the definition, we have

do=V,0-dk=v,-dk.

When dow= 0 (o= constant surface), V,® is perpendicular to any vector on the surface (@

= constant). In other words, the group velocity v, =V, ® is normal to the surface with @ =

constant.
Since the magnitude of the group velocity is given by

ow
Ve = |Vk| 25’
1
or
da)=|vk|dkL,

we have the k-space volume element as
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o _ s 4o

ds, dk, =dS, =dS,
|Vk| Ve
Then we get
L3
D(w)dw = . _[ d5,de ,
(27[) shell vg
or
Vv ds
D(w) = [ ==

3 .
(2”) shell Vg
The integral is taken over the area of the surface with constant @, in the k space.

D(®)

@

F
Y

Debye model

Fig.  Actual lattice spectrum.

The spectrum for the crystal starts as ¢ for small @, but discontinuities develop at singular
points.
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16. Melting criterion for the 3D case
((Lindeman criterion))

Solid melts because the vibrations of the atoms about their equilibrium positions becomes
too large.

®
1 @

The mean squares amplitude of vibration is defined as

1
, ho,(<n,>+-) ’
<u"2>:<|u(q)| >:Z NMo,’ - NL Zq:<22>

q q

The solid melts where <6Ri2> becomes comparable to a?, where a is the lattice constant. Here

we use the Debye model;

[ D@0 2 n(@)+ 1
>: 0 0] 2

E
M<MX2> = %Zq: <a):2

TD3 (w)dw
0

where D;(w) is the density of states for the 3D system,

Va*
D.(w)=—F—,
(@) 2747
and
IO hop _©
k, T~ k,T T

Note that @ is defined by.
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671°N

@®=m%=m%=m+77y@

Since V = Na’ , we get

6 ) 1/3

T

qD :( ’ J '
a

Then we have

IR RN

- Mk,®\©) e -1 2
For T << ®,
2 30
o) s
AMk,®
For T>>0,

< 2> 3n’ (Tj

u )= —|.
Mk,0\ ©

which is proportional to 7.

((Melting criterion)) Lindemann criterion
We define the parameter /'

f=J<u3>+<uj>+<u;> o
a Ma’k,©’

When f = f, the melting occurs at 7'= Ty;

30
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2
T, = ;r?MkBG)zaz,

where fc = 0.2 - 0.3 (typically).

((Example))

Al (aluminium)
O=428 K. a =4.05 A (fcc). Density p=2.375 g/cm’.
T, =933.47 K. Molar mass =26.9815386 g.

Then we have
T =185696f

leading to
fe=0.07.
Rb (rubidium)

O=56K.a=5.585 A, (bce). Density p=1.532 g/cm?’.
T =312.46 K. Molar mass = 85.4678 g.

T, =19149.717,

leading to
fe=0.128.
17. Stability of the 2D system: Lindemann criterion

Let us calculate

) j D@0 " n(@)+ ]

o)=L B

2
‘la)q

TDz(a))da)
0
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for the 2D system,where

LZ
Dz(a))zz_m(:)z, X:h—w’ th:%

Note that @ is defined as follows.

“p “© o Lo’
N = .([Dz(a))da):.([ rdo="""b-,
or
am’N )"
ho, :k3®:h( . j
L
Then we get

2 (T 1 1
<uxz>= ! [—j .[ [ +—jdx.
Mk,O\® )7 \e'=1 2
The integral does not converge

lim !
x=0 ¥ — 1]

=00,

The calculation of the mean quadratic displacement in the plane (or in the chain) leads to a
divergent value at any temperature. Thus 2D crystals are unstable in the harmonic
approximation. Some 3D interaction (whatever small with respect to intralayer or interchain
interaction is necessary to stabilize the low dimensional system.

18.  Summary
((Density of states))
1

In d-dimensional harmonic crystal, the low frequency density of states varies as o’ ™.

For the 1D system
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D(a)):%.

For the 2D system

Aw

D(w) = =g

For the 3D system

V*

bloy=7 55

where A is the area for the 2D system and V is the volume of the 3D system.
((Heat capacity))

For the 1D system
T
C =Nk, (6) .
For the 2D system
T
C= 43.3Nl’c3(6)2 .

For the 3D system

127
5

C

T
Nk, (6)3 :

19.  Debye-Waller factor in the x-ray scattered intensity

As the temperature of the crystal is increases, the intensity of Bragg reflection decreases.
This result can be explained as follows. Suppose that the position of atom depends on time ¢
as

33



R,(t)=R, +u(?).
Then the structure factor is given by

S, = Zf_/<exp[—iG ‘R, (t)]> = Zf/ exp[—iG-R; ]<exp[—iG -u(t)]>,

where <> denotes thermal average, R; is the position vector of j-th atom in the unit cell in

thermal equilibrium, and f; is the atomic form factor. Using the series expansion, we get

—2l!<[G : u(t)]2>+3i!<[G : u(t)]3> +.o

=1- li!G<u><cos9> - zi!G2<u2 ><cos2 9> + ?)L.!G3<u3><cos3 9> +.

<exp[—iG . u(t)]> =1- li'<[G : u(t)]>

where @ is the angle between G and u. Note that u is a random thermal displacement
uncorrelated with the direction of G. Then we have

([G-u(0))) = G* (u” ){cos’ 0) = %[M]G”<u”> ,

I+p
for the isotropic system;
<cos" 9> = chosp adQ
4r

L j cos’” O(27sin )d6.
47 0

11+ (=1)”
2 1+p

Then

S =Y. f, exp[—iG -Rj]{l—%G2<u2>+ )= exp[—%G2<u2>]ij exp[—iG R ].
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The scattered intensity is
. 1
I,=8.8. =1, exp[—§G2<u2>] = I, exp[—2W],

where /o is the scattered intensity from the rigid lattice. The exponential factor W is the

Debye-Waller factor. Here <u2> is the mean square displacement of an atom. The thermal

average potential energy of a simple harmonics in the 3D system is

M) =(U)=(K) =2 T

where <U > and <K > are the average of the potential energy and the average of the kinetic

energy. Then we have

()= e

Then the intensity is evaluated as
k,T
I; =1,exp[-—2=G?].
¢ =1, exp[ Mo ]

The intensity exponentially decreases with increasing temperature.
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Fig. The dependence of intensity on temperature for the (h0O) x-ray reflections of Al.
Reflections (h00) with h odd are forbidden for a fcc structure (R.M. Nicklow and R.A.
Young, Phys. Rev. 152, 591 (1966). ). [This figure is obtained from the book of
“Introduction to Solid State Physics, by C. Kittel 8-th edition].

20. Debye-Waller factor (quantum mechanical treatment)
Here we calculate the Debye-Waller factor calculation based on the quantum
mechanical treatment. First we define the Debye temperature @.

3 4o 3 3 3 3
N=Zl= L 3I4ﬂq2dq= L 347qu :ng ,
p (2r) (27) 3 67

0

or
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67[2N 1/3
QD =( L3 J ’

or

wo w(erN)"
O=—qg,=— 3 .
o, kL

The Debye-Waller factor is given by

!
ey o1 e B0+ 226 )
W_6Gz<u">_6GZq: NMa, = o ha,

q q

b

or

1 1
_ G2 3 qo4ﬁq2dq (n, +E) _ 2G4 quZ q(nq +E)
6NM (27) 4 ha, 2NM (27) 4 ho

q

We assume that @ =vg . Then we get

WGP % 1 WG (k1Y 11
=— 2 [odo(n, +2)=— B[ xde(—+),
47Z'VNM0 2 4axv’NM\ h 0 e—-1 2

or

__WGL h (k© 3ZZGJ/‘Txdx( ! +l)
47V’ NM k,®\ h 0) e'—1 2

273 2 20/T
OL 18 (T Ly

TArVNM O n o (@) 1T e ol
3G (TN O 11

= - d +—
2ng®(®j {x R,
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When ®/T <<1 (high temperatures), we get

2.2 20/T 2,2
W_3hG(TJ J-d_3hGT

T Mk,0\0e

0

where we use the approximation

11 x ;
X +=)=1+—+0(x
(e)‘ -1 2) 12 )
21.  Neutron inelastic scattering

Thermal neutrons interact with matter through the interaction with nucleus via the so-
called strong force. The interaction is strong, but extends only over a distance of the order of
10 fm (femtometers), the size of the atomic nucleus.

1 fm=10"m=10" cm.

It can have the effect of the neutron being scattered by the nucleus. In this sense, the form
factor bj is independent of the related wavevectors, unlike the case of x-ray scattering.

Now we consider the case when the incoming neutron (wavevector k; = k, energy Ex) is
scattered by a system. In this process, a phonon (wavevector ¢, energy Ao, ) are absorbed or

emitted. After that, the outgoing neutron has a wavevector k¢ = k', energy E. where k is the

wavevector of the incoming neutron,

ho, = , (the energy of incoming neutron with mass M)

ho, = . (the energy of outgoing neutron)

X =—.
Mk, @
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q (absorption)

q (emission)

Fig. Schematic diagram of the inelastic neutron scattering. k; = k. k= k'

We consider the scattering amplitude defined by
S(t) =€ [ dre @V (r,1),
where

V(r,t)= ij5[r—Rj —u,(1)],

is the interaction potential [for simplicity we neglect the term) (27#°/m) and b; is the

scattering length for atoms for neutron scattering. We note that the potential

V()= Ve = b.5(r-R,)

satisfies the periodic condition such that
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Vir+T)=V(r).
The Fourier component Vg is calculated as

Ve = dre v (r)
= [dre™®" " b.5(r=R,)
J

_ ~iGR;
= Z b,e
J

which is similar to the structure factor when b; is equal to the atomic form factor f; for the x-
ray diffraction. Thus we get

S(t) = ™' j dre "V (r,1)
=>'b,[e7 @5 [r— R, —u,(t))dr
J

— Zb eia)ote*i[Q'{R_/Jr”_/(’)}]
J
J

where Q is the scattering vector and is defined by
0=k'-k,
and

W, =W, — O, .

((Note)) In typical textbooks of neutron scattering, Q and ay are defined as
O=k-k',

and

40



W, = O, — W,

Using the Taylor expansion, we get

S ="y be M [1-iQ-u, (1) +..].

Here we note that

_ i(q'R;—w,t)
u,()=uee "’ 7,

where e is the polarization vector of phonon (LA, TA, LO, TO branches of phonon), and u
is the amplitude of oscillation in the displacement. So we have

S(I) = o' ijefiQ.R_/ {1 + (Q e, )ue,‘(q.Rj,wq[)}

J
— eiwot ije*iQ-Rj + zb/ (Q . eq )uefi(qu)-Rj ei(wofa)q)t
J J

The first term is the elastic scattering (time-independent term except for ¢*'). We use

— 2 -iQR;
Selastic - b Jj e s
J

where the Bragg condition

k' = kBragg, O =kpng-k=G.
is satisfied and

kBrage =k + G
which lies on the Ewald sphere;

—k[=k=22.

\k
2

Bragg
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The second term is the inelastic scattering (time-dependent term),

—i(Q-q)R;, i(w,~w,)
Sinelatic(t) = zb/(Q -eq)ue HE~9; e’ Wy =W, )1 ,
J

where

with
0=k'-k

Note that &' is no longer equal to kgrge On the Ewald sphere,
k'=kg,.+q.

Using these relations, we get the momentum conservation,

Q:k'_k:(kBmgg+q)_k:(k3mgg_k)+q:G+q’

We note that the wavevector ¢ of the phonon is in the first Brillouin zone centered around G
in the reciprocal lattice space.
From the integral over time ¢, we get

jdte“wf% " = 2718w, - @,),
leading to the energy conservation law
Oy =W, — W, =Q,.
where @, is the angular frequency of the phonon with the wavevector ¢.

22. The absorption and emission of phonon
We assume that the displacement vector u; is given by
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i(q-R;—w,1) * —i(qR;—o,1)
7 . q ]

+u, e

u,=e, [uqe q

b

where ¢ is the wavevector of phonon, e, is the polarization vector, and uq is the displacement

amplitude (in general, a complex number). Then the inelastic scattering term is rewritten as

/ i(wy—w,)t —~i(Q-q)R; i(wy+0, )t —i(Q+q)R;
Sinelastic(t) = _Z(Q ' eq)zb./ {uqel o e ' S 4 qu[ “0 e ! J } .
J

Taking the integral over time ¢, we have

Sinelastic (Q, 0)0) _ —i27Z'(Q 'eq)zb_/ {Uq5(wo _ wq)efi(qu)-R_,v n Uq*5(w0 + wq)e—i(Q+q)-R,f } .
J

The first term corresponds to the absorption of phonon and the second term corresponds to
the emission of phonon. For simplicity, b; is independent of j. Then we get

Sinelastic (Q’ 0)0) = _lzﬂbN(Q ' eq) {uqé‘(wo - wq)é‘(Q - q - G)
+u, (o, +®,)5(0+q—-G)}

Here we use the notation

h(<nq>+3

lu, ['= =—=2,
NMw

from the previous chapter and the consideration from the quantum mechanics of the simple
harmonics,

nq> =", t+ l‘nq + 1> , for the creation of phonon,

A+
aq

dq

nq> = \/Z ‘ n,— 1> . for the destruction of phonon.

Finally we get the scattering intensity which is proportional to
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2 Qe (Q )’

+ <nq>5(a)0 +®,)5(Q+q-G)}]

1(Q, @) = —~({n,) +D3(@, - ©,)5Q-q-G)

Using the factor (Q-e q)z , we can select the branch. if Q L e_, the branch does not contribute

to the inelastic neutron scattering.

Fig. Selection rule. The transverse phone mode (eq//q). The longitudinal mode (eqLq). In
this configuration, the scattering vector Q is nearly perpendicular to the vector ¢. Thus
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the transverse phonon mode can be observed mainly. The first Brillouin zone is the
smallest square region surrounding around the point (g = 0).

23. Ewald sphere for the inelastic neutron scattering
We rewrite the energy and momentum conservation laws for neutrons

AE=E, - E, =hao, =ha,,
Ak =k'-k=Q=G +q,

where 7w, and g are the energy and momentum, lost (or gained) by a lattice vibration

(phonon). ¢ is the wavevector of phonon and is in the first Brillouin zone centered at the
reciprocal lattice vector G in the reciprocal lattice. If we know Ex and k and measure Ex and
k', we can obtain 7w, and ¢, which give us a point on the dispersion curve of the phonon.

The modified Ewald sphere is given below. We note that kprg; and k& lie on the Ewald
sphere and

45



Fig.

Modified Ewald construction for inelastic neutron scattering measurement. k

and k =k + G lie on the Ewald sphere. The angle between kgage and &,

Bragg
is the angle 2 6rage. The Bragg reflection occurs at kgrage 0n the Ewald sphere.
Kpe =k+G=k'-q . AE=ho'-ho=E,.-E,=hw,. Q = k' - k (the
scattering vector). The phonon dispersion curve can be obtained from the

relation between %@, and ¢ in the first Brillouin zone around the reciprocal

lattice vector G (the g = 0 point). O is the origin of the reciprocal lattice space.

((Scattering diagrams))
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Energy gain Energy gain

Fig. k k+G.k,—k=0.0=G+q.k>ks (energy loss). ki<k (energy gain). In the

Bragg =
configuration (the right side), ¢ is perpendicular to Q. No longitudinal mode can be
measured.

Energy gain Energy gain
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Energy gain Energy gain

Energy gain Energy gain

Fig. q//Q. No transverse mode can be observed.
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Energy is conserved Energy loss

Energy loss Energy loss
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Energy loss Energy loss

Energy loss Energy loss

50



24. Triple axis spectrometer for the inelastic neutron scattering.
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Fig. Schematic diagram for the triple-axis spectrometer for the measurement of
inelastic neutron scattering.
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ORNL 2003-020 340y

HB-3

HE-34 beam

Premenochromator
collimator

hain shutter
Sapphire filter
Instrument shutter —__a

Saddle shigld —
Shielding wedges —

Monochromator
drum shield ———

Presample collimator —_5

Presample beam mask

Sample rotation angle —— ¢

* Preanalyzer
collimator

Sample table and goniometers—

Analyzer
Sample shielding
- wedges
Analyzer— ) /_'(
Predetector collimator — . ‘ )
4
Beam stop /
/
i S ____,-o-""-ff BHE
detector
Fig. Triple-Axis Spectrometer (HB-3). Oak Ridge National Laboratory. The triple-

axis spectrometer is one of the most versatile instruments for measuring
excitations in solids via neutron scattering. HB-3 is a colossal flux thermal
neutron three-axis spectrometer designed for inelastic measurements on single
crystals over a wide range of energy and momentum transfers. While the
energy and momentum range for measurements is quite large at HB-3, the
instrument is the ideal location to perform experiments at high energy
transfers. This is due to a combination of its location directly at the end of the
beam tube and the availability of a beryllium monochromator.
http://neutrons.ornl.gov/instruments/HFIR/HB3/

((Example-1)) Inelastic neutron scattering of Nal
Phonon dispersion determined from the inelastic neutron scattering experiment.
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Fig.
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F16. 2. The dispersion relations
for sodium jodide in the [001],
[110], and [111] directions. The
points were determined by experi-
ment at 110°K. Some points in the
[001] direction are not inde-
pendent " of corresponding points
in the [110] direction. Such points
have been joined by a thin hori-
zontal line. The solid curves have
been calculated from the shell
model and the dashed curves from
the point ion model. These curves
coincide for the transverse branches
in the [1117] direction, The slopes
of the heavy solid lines indicate the
appropriate velocities of sound as
calculated from the elastic con-
stants. The thick vertical bars
represent the uncertainties in
(’1‘0)1-0. and (vLo)e-o deduced
from existing knowledge of wy, ¢,
and e.

Phonon dispersion curve of Nal. Wood, Cochran and Brookhause, Phys. Rev. 119,
980 (1960).

((Example-2)) Inelastic neutron scattering of Si
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Wavevector

F?gurt? 5.5 I"._Ieasured frequencies in silicon for the wavevector q in each of three symmetry
directions, as in Fig. 4,2, The lines give the results of calculations based on a shell model.

{Aftel: Dolling, article in Inelastic Scattering of Neutrons in Solids and Liquids, International
Atomic Energy Agency, Vienna, 1963.)

((Example-3)) Inelastic neutron scattering of phonon in Cu

G. Shirane, S.M. Shapiro, and J.M. Tranquanda, Neutron Scattering with a Triple-Axis
Spectrometer (Cambridge, 2004).
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118 Inelastic scattering and the resolution function

I | I | | I | I | | |
(a)
250 - T {2.00, -0.08, -0.08) —

Intensity (counts per 2.5 min)

150~ ®
(2.08, 0.0, 0.0)

125

100

Intensity (counts per min)

(1.96, 0.0, 0.0)

Intensity (counts per 2.5 min)
==
|

2

0 | |
60 50 -40 30 20 10 0 10 20 30 40 50

Energy Transfer {meV)

Fig. 4.13. Three typical phonon scans in copper. (a) Measurement of [110]T mode
where only one phonon branch is observed for both phonon annihilation and
creation. (b) Nominal measurement of [100]L mode. The peaks marked T are due
to the large vertical resolution. (c) Nominal measurement of [100]L mode where the
desired longitudinal response is obscured (from Skalyo and Lurie, 1973).
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Fig. Phonon dispersion curves for fcc Cu at 296 K as measured by Svensson, Brookhouse,
and Rowe (1967).

1 THz=4.13567 meV.
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Fig.  Brillouin zone of fcc Cu

((Example-4)) Inelastic neutron scattering of alkali-metal graphite intercalation
compounds

Measured phonon energies of [00¢g] L modes in alkali-metal graphite intercalation
compounds at room temperature. KCg, RbCs, CsCsg (stage-1). KCas, RbCa4, CsCo4 (stage-2).
KCs6, CsCse (stage-3).

(i) Staging structure of alkali-metal graphite intercalation compounds
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(ii) Phonon dispersion of the (00q) L modes in alkali-metal graphite intercalation
compounds at room temperature.

KCs, RbCs, CsCs (stage-1). KCa4, RbCa4, CsCa4 (stage-2). KCss, CsCss (stage-3).
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26. Raman scattering and Brillouin scattering

We consider the acoustic phonon. The velocity of acoustic phonon v is on the order of
10° cm/s. The wavenumber £ is on the order of 10%/cm. Then the angular frequency @ is

_@ _vk_1010°
2 2x 2

f Hz=1THz.

When k = 0, @is equal to zero. Therefore @ changes from 0 to 10 THz as the wavenumber
changes. The wavelength of the laser is

A=633nm.

for typical He-Ne laser. If the excitation is an acoustic phonon, the inelastic light scattering process
is called Brillouin scattering, while light scattering by optical phonons is called Raman scattering.

27. Brillouin scattering (acoustic phonon)
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The light scattering experimental technique is an exceedingly valuable tool for the study
of fundamental excitations in solids, such as phonons. We now consider the Brillouin
scattering when the incident light interacts with phonon (acoustic phonon).

Scattering Intensity

A

S S Anti-Stokes

U2

W -Q w1 Ws +Q
Fig.  Brillouin scattering. Stokes line at @, = @, — ). Anti-Stokes line at @, = @, +Q

The Brillouin scatterings are schematically shown in the above figure, in which @ and w:
is the frequency of the incident and outgoing light.

®, =, £Q(q) . (energy conservation)
k, —k,=1q (momentum conservation)

Q(q) is the angular frequency of phonon at the wave vector ¢. The photon at @, =@, —Q is
called the Stokes line and that at @, = @, +Q is called the anti-Stokes line. The intensity of

the Stokes line involves the matrix element for phonon creation,
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1@, = &, - Q) < |(n, |iln, + 1}\2 o (n, +1)

where n, is the initial population of phonon mode ¢.

ﬁa/1

Fig.  Brillouin scattering. Stokes line. Creation of phonon. Red (photon). Blue (phonon).

The intensity of the anti-Stokes line involve the matrix element for phonon annihilation,

2
oC
n‘l

(@, = o, +Q) < |(n, ~1i[n,)

ﬁa/»’
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Fig. Brillouin scattering. Anti-Stokes line. Annihilation of phonon. Red (photon). Blue
(phonon).

If the phonon population is initially in thermal equilibrium at temperature 7, the intensity
ratio of the two lines is

1
I +Q) _ <nq> __ M1 _ me
I(w—Q)_<n>+1_ -
1 q 1+€ﬁhQ—l

where <n q> is the Planck’s distribution function

Note that the intensity of the Stokes line is stronger than that of the anti-Stokes line.

28. Determination of the velocity of acoustic phonon: Brillouin scattering

Fig.  Brillouin scattering configuration. The wavevectors of incident light and scattered
light, kand K. k' — k = q.
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In the Brillouin scattering (due to the acoustic phonon), we have

_ ks 0 4r 0
q = Zksino = —-sin-

. . 4Ar . .
The maximum of the wavenumber ¢ for phonon is - Since @ = vq, @y 4y 18 On the order of

2% 100 (1/s). From the experimental results of the dispersion relation

_ _ 4r . 0
w—vq—v;smz,

the phonon velocity v can be determined. The measurement of Aw vs the angle € yields the
value of the velocity v. Note that

5
Af :Lofssingzlxlo10 sing
(27)6x10 2 3 2

:Lsing[THz] _33.3565 sing[cm’l]
300 2 300 2

=0.1 lsing[cml]

Therefore the measurement of Af* can be measured using the Brillouin Scattering.

29.  Classical model for the Brillouin scattering
The polarizability of atom is dependent on the displacement of atom, u. The dipole

moment p is

p = (a+ dUE
where

u = ug cos[w(q) t], E = E, cos(ay t),
Where E is the electric field. Thus the electric dipole moment can be calculated as

p = aEycos(my t), +duy Eycos[w(q) t] cos(my t)

= aE, cos(wy t), +%0/u0E0 {cos[(@, + o(q))t] + cos[(a, — a(g))t]}
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So the scattered light has the frequency of

o, = oy + o(q).

30. Experimental result (Brillouin scattering)
W. Cochran, The Structures and Properties of Solids 3, The Dynamics of

Atoms in Crystals (Edward Arnold, 1973).

466
207

Intensity

355

147

J/J | Lok

Frequency in cm -1

*}1081

Fig. Raman spectrum of quartz. The intensity vs frequency (in the units of cm™). A small
peak at 147 cm™ is considered to arise from a non-harmonic term. 1 cm’ =
29.9792458 GHz=0.0299792458 THz. [Shapiro, O’Shea, and Cummins, Phys. Rev.

Lett. 19, 361 (1967).]
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Fig. Brillouin spectrum of quartz. The scattering from all three acoustic modes is observed.
The horizontal axis is the change of frequency (in units of cm™). 1 em™ = 29.9792458
GHz=0.0299792458 THz [Shapiro, O’Shea, and Cummins, Phys. Rev. Lett. 19, 361

(1967)].
31. Raman scattering (optical phonon)
((Introduction))

Like inelastic neutron scattering, Raman scattering involves the scattering of photons
from phonons with change in energy and wave vector. However the fact that the wave vector
of light is small means that the changes in the wave vector through the scattering process
must also be small. In effect, this means that measurements are restricted to phonons with
wave vectors that are barely different from zero when compared with the range of wave
vectors within the Brillouin zone. To illustrate this, consider an incident light beam from an
Ar laser with wavelength and frequency

A; = 514.5 nm, v; = 582.686 THz

The wave vector of the incident laser beam is

27 o
k; = = = 1.22122 x 1073A71
i

With the precision available with optics, changes in the frequency as small as 0.01 THz can
be measured (although most phonon peaks are intrinsically much broader than this, and this
will limit the resolution of a measurement). We now calculate the scattering vector for a one-
phonon interaction that changes the frequency by 5 THz;
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v; = 587.686 THz, Jr =510.123 nm

27 o
kp =—=12317 x 1073A°1
A
f

This will lead to a change in the wave vector of around 1%. If this beam is scattered through
90, the scattering vector Q will be close to

Q =2k, = 1.727 x 107341

When we compare this value with the typical reciprocal lattice vector, which is of order,

SHIN

~1A71

we can see that the scattering vectors for Raman scattering are very close to Q ~ 0. In effect,
Raman scattering measures optic phonons with k£ = 0 (the corresponding processes that lead
to scattering from acoustic modes give rise to Brillouin scattering. This is strikingly different
from neutron scattering, which can measure phonons with wave vectors across a wide range
of reciprocal space. On the other hand, Raman scattering can achieve a resolution that is
virtually unattainable by single-crystal neutron inelastic scattering, whilst covering a wide
range of energies that is hard to cover by neutron scattering, and on a time scale that is much
faster (as well as being a much cheaper technique.

((Theory))
Optical phonon at ¢ = 0 can be measured using the Raman scattering, where

0w, =00,
and
k, -k, =q~0
From the measurement of A@ , we can determine the frequency of the optical phonon.

so=lo, -] -Jo]
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The stokes component and the anti-Stokes component are defined as
Wf = @ — Wg, W = @ + @y

respectively.

Stokes ”

|

O() — Oq () () + Oq

Antistokes

Fig. Schematic diagram of Raman scattering. Unshifted Rayleigh line (av). Stokes
line (emission, an - ay) and anti-Stokes line (absorption, an + @;). The ratio
of the Stokes to ant-Stokes can be used to estimate the temperature of the

phonon system
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Anti-Stokes TO TO Stokes

GaAs
LO LO
) L e
d InP
—_J L'_ J @—!—A —
AlSb
——] I J L
340 300 260 220 220 260 300 340
Anti-Stokes shift [cm™'] Stokes shift [cm™]
Fig. Raman spectra of three zinc-blende-type semiconductors showing the TO and LO

phonons in both Stokes and ant-Stokes scattering. (M.S. Dresselhaus, Solid State

Physics, Part II, Optical Properties of Solids). Note that v= 10 THz corresponds to
333.565 cm’.

((Stokes line))
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A |b>

hwy —— — hw;,

|c>

S

Fig. Raman scattering. Stokes’ line. E, +hw =E, +hw, (energy conservation).
hw,=ho,—(E, - E;)<he, since E, > E,. A Stokes’ line in atomic spectra is more

reddish than that of the incident radiation. The inelastic scattering.

((Anti Stokes-line)
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AWy —————

|b>

L fw,

|a>

|c>

Fig. Raman scattering. Anti-Stokes’ line. E; +hw = E, +ho, (energy conservation).

hw,=ho, +(E, - E,) > ha, since E, > E,. A Stokes’ line in atomic spectra is more

violet than that of the incident radiation. The inelastic scattering.
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Scattering Intensity

A

St@kes Rayleigh Anti-Stokes

1 g’V
W -Q W1 w1 +Q

Fig. Schematic diagram for the Stokes’ line, Rayleigh scattering, and anti-Stokes’ line.
The intensity of the Stokes line involves the matrix element for the phonon creation, as
[(oy — £2) o< (e + 1)

Where ny, is the initial population of phonon mode k. The intensity of the anti-Stokes line involves
the matrix element for the phonon annihilation, as

The intensity ratio of the two lines is

32.  Rayleigh scattering
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A |b>

[ p—— —————» w,

|a>=|c>

Fig. Rayleigh scattering. 1w, =ho,. The elastic scattering.

Why the sky is blue in daytime? That is because of the Rayleigh scattering. The
wavelength of blue light is much shorter than that of red light. The Rayleigh scattering is an
elastic scattering. The cross section of the Rayleigh scattering due to the small particles with
diameter d is given by

272° dS [ n* -1 ?
Us: 4 2 >
3 A\n+2

where 7 is the refractive index n of particles from a beam of unpolarized light of wavelength
. Such a strong wavelength dependence of the scattering (~4 *) means that shorter (blue)
wavelengths are scattered more strongly than longer (red) wavelengths. This results in the
indirect blue light coming from all regions of the sky. Rayleigh scattering is a good
approximation of the manner in which light scattering occurs within various media for which
scattering particles have a small size parameter.

Why is the sky red in sunset? The reddening of sunlight is intensified when the sun is
near the horizon, because the density of air and particles near the earth's surface through
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which sunlight must pass is significantly greater than when the sun is high in the sky. The
Rayleigh scattering effect is thus increased, removing virtually all blue light from the direct
path to the observer. The remaining un-scattered light is mostly of a longer wavelength, and
therefore appears to be orange.

APPENDIX
Al Nature of neutron

& (meV): neutron energy in meV
& (THz): neutron energy in THz

k (A™): wavenumber in A”!

A (A): wavelength in A

v (km/s): neutron velocity in km/s

The energy of neutron is given by

The momentum p is

p= % =hk=M,v. (de Broglie relation).
The wavelength A is
P h _ 9.04457 A),

\/ g(mel)

v(km/s) = gg”;’/ = 0.4374/e(meV) [knvs],

‘/gé”éiz =0.6947[e(meV) [A™].

((Example))
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When 1=1 A,

g(meV)=81.7 meV.
v (km/s) =0.4374 \Je(meV) =0.4374 ¥81.7 =3.95 km/s.

It takes # = 1000/3.95 us = 253 ps for neutron to travel in the distance of 1 m.

((Note))

The energy of the x-ray is much larger than that of the lattice vibrations (i@ = 10° eV
for x-ray, hw = 0.1 eV). The energy of the lattice vibration is on the same order as that of
neutrons. Ony the elastic scattering can be observed in the x-ray scattering, while the inelastic
scattering as well as the elastic scattering can be observed in the neutron scattering.

A wavelength at the Brillouin zone edge of
A=2mk=2a=10A=107 cm=1nm.

for a = 5 A. The velocity of phonon would be 10° cm/s. Then the frequency is on the order
of

10

=10"Hz=1 THz

07

'=2

The corresponding energy is

E =ha =h(27v)=4.13567 meV for f=1 THz.
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E(meV)

40}
30;
20
10
ST ™
Fig. The neutron scattering by phonons in the system. ki (= k) is the wavevector of

the incident neutron and k¢ (= k') is the wavevector of the outgoing neutron.

Q is the scattering vector. Q = ks — ki. |ki| = 27/4, A is the wavelength of the
incoming neutron.

A.2  Unit [Kayser] in spectroscopy
The energy of light E is given by
c=Av.

Then we have

1 10" 1
— o= V[THz] =33.3565 v[THz] [cm™]
C

L E 506556 E[meV] [em™]
A 2xhc

1 E

~ = ~5.03413x10° E cm’!
PRy X [erg] [ ]
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l: kT =0.695037 T[K] [cm™]
A 27ahc

The unit [cm™'] is called as Kayser.

A3.  Units of Kayser (cm™)
The energy of photon is

27
E=ha)=hck=hc7

or

When 1/1 =1lcm™3,
E =0.123984 meV
f =29.9792 GHz
Ad. Bulk modulus: Hint of Kittel Problem 5-2

Charles Kittel Introduction to Solid State Physics 8-th edition
Rms, thermal dilation of crystal cell

(a) Estimate for 300 K the root mean square thermal dilation AV /V for a primitive cell of

sodium. Take the bulk modulus as 7 x 10'* erg/cm’. Note that the Debye temperature 158
K is less than 300 K, so that the thermal energy is of the order of kT.
(b) Use this result to estimate the root mean square thermal fluctuation Aa/a of the lattice

parameter.

((Solution))
We start from the equation
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dU?

B=V"".
dv

where B is the bulk modulus and U is the total internal energy.

We introduce a new variable x for the volume V;
V=V,(1+x)
where x is very small compared to unity. Thus we get

1 d*U B

v d Vy(l+x)

or

d’U _ BV,
d*>  (1+x)

This leads to

d—U =BV, In(1+ x)
dx

In the limit of x > 0,

2
1n(1+x)=x—x?+...zx.

Using this approximation, we have

aq =BVyx,
dx
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or
1 >
U= BV

Noting that x can be expressed as

we get the final form of U as

2
v=tsr| 2]
2 "

The total volume is given by
V=N cella3 ’

where Ncen 1s the number of unit cell and a is the conventional lattice constant. So we
get the thermal energy per unit cell as

2 2
4 = l B M " = l B M a’
Ncell 2 VO Ncell 2 VO

Suppose that the distortion of the lattice occurs along the x direction.

AV 3d’Aa_3Aa
Vs a a

For bee and fec crystals, that there are p atoms per conventional unit cell; p = 2 for
bee and p = 4 for fcc. Each atom has a thermal energy k772 for the thermal motion
along the x-axis direction. Then
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Aa_1 | pkyT
a 3\ Bd’

Use the values of p = 2, a = 4.2906 A for Na.
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