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This lecture note is prepared for the lecture of Phys.411/511 (Statistical Thermodynamics). 

Here I show that the phonon statistics is similar to the photon statistics. We show that using a 

simple calculation, the chemical potential of phonon as well as photon is zero as is expected.  

 

1. Fundamentals: one-simple harmonics  

We consider the partition function of a simple harmonics with the angular frequency  . In 

quantum mechanics, the system has discrete energy levels, 
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 is the zero-point energy. For simplicity, hereafter we neglect the zero-

point energy. The partition function (in the canonical ensemble) is 
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The average energy is 
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Note that the chemical potential of phonon is zero like that of photon.  

 

The heat capacity is given by 
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In the high temperature limit 1x , where ℏx ,  
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which is the same as that predicted from the energy partition law; Bk
2

1
 from the kinetic energy 

and Bk
2

1
 from the potential energy. Note that the Hamiltonian of the simple harmonics is 
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We make a plot of BkC /  as a function of ℏx . 

 

 
 

Fig. BkC /  vs ℏx . 
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We also make a plot of BkC /  as a function of 
ℏ

1
x  

 
 

Fig. BkC /  vs )/(1 ℏx . 

 

2. General case; many-mode system 

We now consider the system with many modes (denoted by k  with angular frequency 
k

 ). 

The partition function of this system is 
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and 
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where 
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We neglect the zero-point energy term in ln CZ . Thus we have 
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The Helmholtz free energy is 
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The internal energy is 
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Here we introduce the density of states )(D . The number of states is  dD )(  for   -  d . 

Then U can be expressed by 
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The heat capacity is obtained as 
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2. The lattice vibrations and normal modes 

We consider the system consisting of N unit cells. Suppose that there is one atom per unit cell. 

There are 3N modes, since there are three polarizations (one longitudinal and two transverse 

modes). The density of states is defined by )(D .  dD )(  is the number of normal modes with 

the angular frequency between   and  d . The total number of modes is N for each 

polarization 
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So we get the expression of the partition function as 
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The mean energy is 
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The heat capacity at constant volume 
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The Helmholtz free energy F is 
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The entropy S is 
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3. Debye model 

The density of state is expressed by 
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for each polarization (one longitudinal mode and two transverse modes). We assume that 
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Then we have 
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Fig. Quantized energy level for the phonon. The phonon dispersion relation. 

 

The total number of states are N, where N is the number of unit cell. We introduce a Debye angular 

frequency (cut-off) D .  
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The Debye temperature is defined by 
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Then we have the final result for the heat capacity with 3 polarization (1 longitudinal and 2 

transverse modes), 
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Here we introduce the Debye function as 
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The integrand 
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in the vicinity of 0x  (in the limit of high temperature). We note that 
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leading to the heat capacity at high temperature limit ( 0y ) 
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This means that the heat capacity for ANN   is 3R, which is so-called Dulong-Petit law. 

 

At low temperatures ( y ) 
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This is known as the Debye 3
T  law. 

 

 
 

Fig.  Plot of )3/( RC  vs /T . The low temperature behavior [ 3)/()3/(  TRC )] is denoted 

by the blue line. 

 

Table of the Debye temperature 
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We calculate the internal energy using the formula as 
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We note that 
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For the low temperature limit )( T  
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and the corresponding heat capacity is 
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For the low temperature limit )( T  
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and the corresponding heat capacity is 
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Fig. Scaling plot of C/3R as a function of /T  for Al, Cu, Ag, and Pb. 
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5. Chemical potential 

We calculate the chemical potential for phonon as follows. I want to show that the 

chemical ;potential is equal to zero just like photon. 
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The Helmholtz free energy is 
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with the density of states (Debye model) 
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We define the Debye function as 
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We note that 
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The pressure P is 
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So we get the relation 
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which is the same form as that for photon. The Gibbs free energy is 
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Note that the chemical potential is equal to zero when 1ye  . Since / 1y T   , the 

chemical potential ( 0)   holds valid at low temperature region (T   ). 

In summary, it is concluded that the chemical potential is zero and / 3PV U , just like photon. 
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6. Einstein model 

We start with 
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Suppose that  r , which is independent of r. This mode is called an optical mode. 
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Then we have 
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Now we neglect the contribution of the zero point energy. Then we have 
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The Helmholtz free energy: 
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The average energy: 
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The heat capacity: 
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We define the Einstein temperature as 

 

T

E
ℏ  

 

In the limit of low temperatures, we have 
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In the limit of high temperature limit 

 

BNkC 3  for ET    

 

______________________________________________________________________________ 

APPENDIX-I  Acoustic and optical branches 

We assume that N is the number of unit cells in the system. Each mode has 3 degrees of 

freedom (1 longitudinal mode and 2 transverse modes). Then the total number of modes is 3  N 

= 3N. 

(a) 

In the case of one atom per unit cell, we have 3N degree of freedom, with N longitudinal 

acoustic mode and transverse acoustic mode 2N 

(b) 

We consider the number of degrees of freedom of the atoms. With p atoms in the primitive cell 

and N primitive cells, there are pN atoms. Each atom has three degrees of freedom, one for each 

of the x, y, z directions, making a total of 3pN degrees of freedom for the crystal. The number of 

allowed k values in a single branch is just N for one Brillouin zone. Thus, the one LA and two TA 

branches have a total of 3N modes. The remaining (3p - 3) x N degrees of freedom are 

accommodated by the optical branches.  

 

3 acoustical branches 

1 longitudinal acoustical (LA) mode 

2 transverse acoustical (TA) mode 

 

3p - 3 optical branches 



(p - 1) longitudinal optical (LO) mode 

2(p - 1) transverse optical (TO) mode 

 

For p = 2, for example, we have 1 LA, 1 LO modes, and 2 TA and 2 TO modes. 

 

APPENDIX-II Dulong-Petit law 

https://en.wikipedia.org/wiki/Dulong%E2%80%93Petit_law 
 

The Dulong–Petit law, a thermodynamic proposed in 1819 by French physicists Pierre Louis 

Dulong and Alexis Thérèse Petit, states the classical expression for the molar specific [heat 

capacity] of certain chemical elements. Experimentally the two scientists had found that the heat 

capacity per weight (the mass-specific heat capacity) for a number of elements was close to a 

constant value, after it had been multiplied by a number representing the presumed relative atomic 

weight of the element. These atomic weights had shortly before been suggested by Dalton. 

The molar heat capacity of most elements at 25°C is in the range between 2.8 R and 3.4 R. In 

modern terms, Dulong and Petit found that the heat capacity of a mole of many solid elements is 

about 3R, where R is the modern constant called the universal gas constant. Dulong and Petit were 

unaware of the relationship with R, since this constant had not yet been defined from the later 

kinetic theory of gases. The value of 3R is about 25 joules per kelvin, and Dulong and Petit 

essentially found that this was the heat capacity of certain solid elements per mole of atoms they 

contained. 

The modern theory of the heat capacity of solids states that it is due to lattice vibrations in the 

solid and was first derived in crude form from this assumption by Albert Einstein in 1907. The 

Einstein solid model thus gave for the first time a reason why the Dulong–Petit law should be 

stated in terms of the classical heat capacities for gases. 

 

APPENDIX-III Evaluation of Debye temperature for Cu 
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Copper has a fcc structure with the lattice constant a = 3.61Å (conventional cell). The number 

density is 
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When v = 2.6117 km/s, we have 341.9   K, which in good agreement  ISSP)with the one 

reported; 

  343 K (Kittel). 



 

 


