
1 

 

Neutron scattering I 

Masatsugu Sei Suzuki 

Department of Physics, SUNY at Binghamton 

(Date: February 27, 2018) 

 

The neutron interacts with the atomic nucleus, and not with the electrons as photon does. 

This has important consequences. The response of neutrons from light atoms such as 

hydrogen is much higher than for x-rays. Neutrons can easily distinguish atoms of 

comparable atomic number. For the same wavelength as x-ray, the neutron energy is much 

lower and comparable to the energy of elementary excitations in matter. Thus neutrons do 

not only allow the determination of the static average structure of matters, but also the 

investigation of the dynamic properties of atomic arrangements which are directly related to 

the physical properties of materials. The neutron has a large penetration depth and the bulk 

properties of matter can be studied. The neutron carries a magnetic moment which makes it 

an excellent probe for the determination of the static and dynamical magnetic properties of 

matters. The charge of neutron is zero. The neutron is a fermion with spin 1/2. 

 

1. de Broglie relation: duality of wave and particle 

The kinetic energy of slow neutrons with velocity v is given by 

 

� = 12 ��� 

 

where m is the mass of neutron 

 � =1.674927471(21)×10−24 g 

 

The de Broglie wavelength of the neutron is defined by 

 

 = �	 = �
�,  (de Broglie relation) 

 

where h is the Planck constant. The wavevector k of the neutron has the magnitude 

 � = ��


. 

 

The energy can be expressed by 
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� = ħ���
�
 . 

 

Here we note that the kinetic energy is related to the temperature T as 

 � = �� ���, 

 

using the equipartition theorem since there are 3 degrees of freedom and 
�� ��� for each 

freedom. The velocity is evaluated as 

 �� ���
�� = �� ���, 

 

or 

 

��
� = �����
 .  (this velocity is called the root-mean square velocity) 

 

However, we do not use this notation based on the equipartition relation. In the neutron 

scattering, it is convenient to say that neutron with energy E corresponds to a temperature T; 

 � = �� ��
	� = ���. 

 

The most probable velocity is evaluated as 

 

�
	 = �����
 . 

 

((Note-1)) Using the above relations with � = ���, we have the following wave-particle 

relationships. 

 

(a) Energy: 

 ������ = 2.07212 [�"Å$�%]� 

 

from the relation: � = ħ���
�
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(b) Wavelength: 

 

"Å% = ℎ√2�� = 9.04457,������ 

 

������ =  [9.04457
"Å% ]� 

 

or 

 

"Å% = 30.8107,��/�  

 

(c) Wavevector: 

 �"Å$�% = ��

�Å�. 
 

(d) Frequency: 

 

���01� = 0.241799 ������, 

 

from the relation; � = 2�. 

 

(e) Wavenumber: 

 

��3�$�� = 33.3565���01� 

 

from the relation 
�


= �5 

 

(f) Velocity: 

 �6�� 78 9 = 0.629622 ��Å$�� 

= 3.95603
�Å�  
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from the relation � = ħ
 � = �

. 

 

 

(g) Temperature: 

 ��/� = 11.6045 ������ 

 

from the relation � = ��� 

 

((Note-2)) 

Table from G. Shirane, S.M. Shapiro, and J.M. Tranquada, Neutron Scattering with a Triple 

Axis Spectrometer (Cambridge, 2004). 

 

 
 

((Note-3)) Example 

 

For T = 300 K; 

 

E = 25.852 meV.  = 1.779 Å. v = 2.224 km/s 

 

Some useful rules of thumb worth memorizing are  

 

1Å = 81.80 meV, 1 meV = 8.07 cm-1 ≈ 0.2418 THz ≈ 11.61 K = 17.3 tesla. 

 

2. Life time of neutron 

A free neutron is unstable and undergoes radioactive decay. It is a beta-emitter, decaying 

spontaneously into a proton, an electron, and an electron anti-neutrino. The life time of the 

neutron is 886  1 s. The half-life ��/�, or the time taken for half of the neutrons to decay is 
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��/� = � ;<2 = 614 s. 

 

At T = 300 K, the velocity of neutron is v = 2.224 km/s. It takes 45 ms to travel 100 m. So it 

is safe to assume that a finite life time of the neutron is of no practical significance in a 

scattering experiment. 

 

3. Magnetic moment 

The best available measurement for the value of the magnetic moment of the neutron is 

 

�= = −1.91304272(45) �>,  

 

where μN is the nuclear magneton,  

 

�> = ?ħ�
@5= 5.050783699(31)×10−24 emu (=erg/Oe) 

 

4. Maxwell-Boltzmann distribution 

We now consider the Boltzmann factor for the kinetic energy of free particles with a 

mass m. We derive the form of Maxwell-Boltzmann distribution function. The probability 

of finding the particles between v  and dvv   is 

 









0

2
2

2
2

)
2

exp(4

)
2
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�


�
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Here we have 
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The Maxwell-Boltzmann distribution function is 
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where 

 

1)(
0




dvvf  

 

The average velocity: 

 

m

Tk
mdvvvfv B

�


�
8

)(
2

2)( 2/1

0

 


  

 

The variance: 

 

m

Tk

m
dvvfvv B33

)(
0

22  



 

 

This can be rewritten as 

 

Tkvm B2

3

2

1 2    (from the equi-partition theorem) 

 

The root-mean square velocity is 

 

m

Tk
vv B

rns

32  . 

 

What is the most probable velocity in which )(vf  takes a maximum. 

 

0
dv

df
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or 

 

�
	 = A2����  

 

 (most probable velocity) 

or 

 12 ��
	� = ��� 

 

Which can be used conventionally for the neutron scattering. 

 

 
 

Fig. Plot of the normalized max/)( fvf  as a function of a normalized v/vmp. 

Green:  most probable speed   (vmp) 

Blue:  averaged speed    (vavg) 

Brown: root-mean squared speed  (vrms) 
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where 

 

�
	 = �����
 ,  �B�C = �D���
�
 ,  ��
� = �����
 . 

 

((Example)) Neutron (obeying the Maxwell Boltzmann distribution) 

 

(a) T = 300 K (thermal neutron) 

 � = �� ��
	�=25.852 meV  

 

 = �
�E@ = 1.77885 Å, �
	 =2.2239 km/s. 

 

(b) T = 20 K (liquid hydrogen or deuterium) 

 � = �� ��
	�=1.72347 meV 

 

 = �
�E@ = 6.8895 Å,  �
	 =574.211 m/s. 

 

(c) T = 2 K (cold neutron) 

 � = �� ��
	�=172.347 �eV 

 

 = �
�E@ = 15.405 Å.  �
	 =256.8 m/s. 

 

(d) T = 2200 K (hot neutron) 

 � = �� ��
	�=189.582 meV 

 

 = �
�E@ = 0.6569 Å.  �
	 =6.022 km/s. 
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For most reactors designed to produce high thermal neutron flux, the temperature of the 

moderator is about 300 to 350 K, and the resulting velocity spectrum of the neutrons is 

suitable for many experiments. However, in some experiments the velocities required for the 

incident neutrons lie on the low-energy tail of the thermal spectrum, while in other 

experiments neutrons on the high-energy side are required. It is therefore desirable to be able 

to change the temperature of the velocity distribution. This is done by placing in the reactor 

a small amount of moderating material at a different temperature. 

 

________________________________________________________________________ 

Source Energy E(meV) Temperature T (K) Wavelength �Å) 

 

Cold 0.1 – 10 1 – 120 4 – 30 

Thermal 5 – 100 60 – 1000 1 - 4 

Hot 100 – 500 1000 – 6000 0.4 – 1 

________________________________________________________________________ 

 

Table: Approximate values for the range of energy, temperature, and wavelength for the 

three types of source in a reactor. 
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5. Fundamental 

Thermal neutron flux 
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The number of thermal neutrons which pass through a unit area (cm2) per second. 

 

((Cross section)) 
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We assume that the target is sufficiently small that the probability of scattering of a neutron 

incident on the target is not large. 

 

If the target does scatter some of the incident neutrons, then at a large distance from the target 

we can detect neutrons that are scattered into a small element of solid angle d with energy 

'. 

 

'
'

2

0 



dd

dd

d
I s 


 

 

The number of neutrons per second scattered into solid angle d between ' and ' + d'. 

 

((Definition)) 

 

'

2



dd

d s


 Partial differential cross section. 

 

Integrating this over d', we put the number of neutrons per second scattered into solid angle 

d (regardless of ') to be 

 








 



d

d
dId

dd

d
dId

dd

d
dI sss 










00

2

00

2

0 '
'

'
'

 

 

d

d s
:  differential cross section 

 

If we now integrate over solid angle, we find that the number of neutrons scattered per second 

is 

 

s
s I

d

d
dI 


00 


 . [number/sec] 

 

since the unit of I0 is number/(cm2 sec) and the unit of s is cm2.  
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Finally we can write down the number of neutrons per second that have momentum changed 

in the target as 

 

tI 0  

 

t is the total cross section, 

 

sat    

 

((Note)) 

 

[] = barn. 

 

1 barn = 10-28 m2 = 10-24 cm2. 

 

1 fermi = 10-15 m = 10-13 cm. 

 

This is about the projected area of an atomic nucleus. If the target consists of many atoms, 

we can either deal with the cross section for the whole target, or take it per atom or per 

chemical formula unit. 

 

((Note)) 

 

s :  transmission 

 

d

d s
;  neutron diffraction, time of flight method 

 




d

d s :  energy spectrum measurement 

 



dd

d s



2

: inelastic scattering experiment 

 

___________________________________________________________________ 

6. Differential cross section 
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Fig. Scattering of neutron by a target. ki = k'. kf = k'. The scattering vector Q = ki - kf. 

 

,k : initial state of neutron 

',' k : final state of neutron 

 

where 

 

k: neutron wave vector 

: spin state 

 

The target is initially in quantum state   and after the scattering event is in quantum state 

' . 

 

m:  mass of the neutron 

V:  interaction potential between the neutron and the target. 
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E: energy of the target in state  . 

 

The first order Born approximation is given by 

 

)'(''')
2

(
'

'
'

2

2

2


�


 


EEV

m

k

k

dd

d s kk
ℏ

 

 

from the quantum mechanics (see the Appendix) 

 

7. Nuclear elastic scattering 

For nuclear scattering, we describe the interaction potential by a quantity known as the 

Fermi pseudopotential  

 

 
 

 

Fig. The distance over which the nuclear force extends (10-12 cm). The wavelength 

of the neutron is  = 10-8 cm. The target is located at the origin. 
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)(
2 2

Rr  
�

b
m

V
ℏ

, 

 

where b is the scattering length. It is typically found to be of the order of 10 fm. 

 

((Note))  

The Fermi pseudopotential cannot be the correct interaction potential, since the 

interaction is not actually infinite anywhere. However, the nuclear size and range of the 

nuclear force are so small compared with the wavelength of a thermal neutron that the delta 

function pseudopotential gives an excellent representation of the actual scattering.  

 

 
 

Fig. Schematic diagram for the neutron scattering, fi kkQ  . ki = k. kf = k'. 

 

Q is the scattering wave vector. 

 
'kkQ   

 

The matrix element is given by 

 

RQrkrk
Rrrkk

   iii
be

m
eedb

m
V

2
'

2 2
)(

2
'

ℏℏ �


�
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where ħF is the momentum transfer in the scattering event. We assume that the scattering is 

from an assembly of fixed nuclei at the position Rj that have scattering length bj. We will 

further assume that this scattering length is independent of the neutron state  . 

 

  

j

jj

j

i

j

i

j

j Fbebeb jj  RQRQ
''

 

 

The differential cross-section for the elastic scattering from an assembly of fixed nuclei in 

the system 
GG

  can be given by 

 HH
=

 

 

lj

ljlj

i

j

j FFbbeb j

,

*

2

'  RQ

 

 

where we assume b to be real and 

 

 ji

j eF
RQ '

 
 

It will normally be the case that the isotopic distribution is random, so that, if the nuclear 

spins have random orientation, then the value of the scattering length bj at the j-th site will 

not be correlated with l. 

 













lj

lj

j

jj

lj

ljlj

j

jjj

lj

ljlj

FFbFFb

FFbbFFbFFbb

*2*2

**2

,

*

 (1) 

 

where < > indicates the mean value. If j and j’ refer to different sites (I ≠ I′� and there is no 

correlation between the values of LM and LMNwe can write  

 〈LMLMP〉 = 〈LM〉 〈LMN〉 = 〈L〉� 

 

Note that 
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〈L〉 = ∑ SMLMM ,  〈L�〉 = ∑ SMLM�M  

 

with 

 ∑ SMM = 1, 

 

where SM denotes the probability that a nucleus has the scattering length LM. Thus Eq.(1) can 

be rewritten as 

 HH
= T LMLUVMVU∗

M,U
= 〈L〉� T VMVU∗

M,U
+ �〈L�〉 − 〈L〉�� T VMVM∗

M
 

 

The first term is a coherent term, while the second term is an incoherent term. The scattering 

can be divided into two parts; coherent scattering and incoherent scattering. If the cross 

sections for these parts are c and i, then for a single fixed atom, 

 
2

4 bc �  , 

 

)(4
22

bbi  �
 

 

and 

 

ics    

 

The coherent scattering is the scattering the same system (same nuclei with the same 

positions and motions) would give if all the scattering lengths were equal to <b>. The 

incoherence scattering is the term we must add to this to obtain the scattering due to the actual 

system. Physically the incoherent scattering arises from the random distribution of the 

deviations of the scattering lengths from their mean value. 

 

((From G.L. Squires, Thermal Neutron Scattering, Cambridge University Press, 19768) 

 

Table Values of [\] and ^_[ 

Element or nuclide Z 5`�  a=5  0�  1 1.8 80.2 
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0�  1 5.6 2.0 

C 6 5.6 0.0 

O 8 4.2 0.0 

Mg 12 3.6 0.1 

Al 13 1.5 0.0 

V 23 0.02 5.0 

Fe 26 11.5 0.4 

Co 27 1.0 5.2 

Ni 28 13.4 5.0 

Cu 29 7.5 0.5 

Zn 30 4.1 0.1 

 

To simplify matters, we drop the operator formalism, since the atomic positions Rj are fixed. 

Note that 

 VM = �abcd , VM∗ = �$abce  

 

Thus we have 

 HH
= fHH

g5`� + fHH
ga=5 

 

with 

 

fHH
g5`� = 〈L〉� T VMVU∗

M,U
= 〈L〉� T �ab�cd$ch�

M,U
 

 

fHH
ga=5 = �〈L�〉 − 〈L〉�� T VMVM∗

M
= i�〈L�〉 − 〈L〉�� 

 

The incoherent elastic scattering is isotropic and yields a constant background. On the other 

hand, the coherent elastic scattering provides the information about the mutual arrangement 

of the atoms due to the phase factor. The coherent elastic scattering is rewritten as 

 

fHH
g5`� = ij〈L〉� T �abcd

M
= ij〈L〉� �2���

�j T �b − k�
l
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leading to the Bragg reflection. Note that N0 is the number of unit cells and �j is the volume 

of unit cell. 

 

9. Structure factor for simple liquid 

We discuss the formulation of m�b� for liquid, using the number density �>�n� 

 

m�b� = 1i 〈T �ab�cd$ch�
M,U

〉?=�?
oU? = 1i 〈pq Hn�abn�>�n�p�〉 
 

We use the relation 

 

T �abcd
M

= q Hn�abn T �n − cr�M
= q Hn�abn�>�n� 

 

where �>�n� is the nuclear number density 

 

�>�n� = T �n − cr�M
 

 

The structure factor for thye simple liquid is given by 

 

m�b� = 1i q Hn q HnP�ab"n$nN%〈��n���n′�〉 
 

This can be rewritten as 

 

m�b� = 1i q Hn q Hc�abc〈��n���n − c�〉 
 

 

10. Structure factor for solid 

For systems with more than one atom per unit cell, we define the position vector of the 

atoms as 

 cs = cst + n� 
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with csj and n� being the position vectors of the j-th unit cell and of the s-th atom in the unit 

cell, respectively.  

 

fHH
g5`� = ij〈L〉� T �ab�cd$cd,�

M,MP
T L�L�P�ab�nu$nu,�
�,�P

 

 

Using the relation 

 

T L�L�P�ab�nu$nu,�
�,�P

= |m�b�|� 

 

where m�b� is the structure factor, 

 

m�b� = T L��abnu
�

 

 

The expression for the coherent elastic neutron cross section is 

 

fHH
g5`� = ij �2���

�j |m�b�|�exp [−2z�b�] T �b − k�
l

 

 

Where exp [−2z�b�] is the Debye-Waller factor that accounts for thermal motion of atoms, 

 

2z�b� = 13 {�〈|�〉 
 

and 〈|�〉 is the measured squared displacements of atoms. 

 

11. Inelastic neutron scattering: van Hove expression for the nuclear scattering 

In inelastic neutron scattering experiments the energy transfer ħ� may be positive and 

negative, corresponding to neutron energy-loss and energy-gain processes, respectively. The 

partial differential cross section is given by 

 

),(
'

'
2

2

�



QSNb

k

k

dd

d s 


,
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where 

 

   

'
'

2

)('
1

),(





 �� ℏEEeP
N

S
j

i jRQ
Q  

 

and 

 

'� ℏ , 

 

Using the relation for the Dirac delta function, 

 









tEE
i

dteEE
)(

'

'

2

1
)(

�





�
�

ℏ
ℏ

ℏ
ℏ  

 

we get 

 

  

   

 



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


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
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�
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�
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�

�


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'
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'

2
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'

'

'
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1
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2

1

'
2

1
),(

lj

tE
i

itE
i

iti

j

i

l

i
tEE

i

j

itEE
i

eeeeedP
N

eePed
N

ePdte
N

S

jl

jl

j

ℏℏ

ℏ
ℏ

ℏ
ℏ

ℏ

ℏ

ℏ

RQRQ

RQRQ

RQ
Q

 

 

Here we note that 

 


 Ht

i
iHt

i
tE

i
itE

i

eeeeee jj ℏℏℏℏ
  RQRQ

''
'

 

 

We use the Heisenberg representation 

 

 )(
''

tiHt
i

iHt
i

jj eeee
RQRQ  ℏℏ  

 

Then we have 
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  







 

�
 �

�
�

' ,

)(
''

2

1
),(

lj

tiiti jl eeedP
N

S
RQRQ

Q
ℏ

 

 

Noting that 

 

1''
'




  

 

and 

 




 OPO   

 

(O is any operator). 

 

The final expression can be derived by 

 









lj

tiiti jl eedte
N

S
,

)(ˆˆ

2

1
),(

RQRQ
Q

�

�
�

ℏ
  (van Hove) 

 

This expresses the cross section as the temporal Fourier transform of a correlation function 

between the position vector of the l-th atoms at t = 0 and the j-th atom at time t. 

 

 
j

j trt ))(ˆ(),(ˆ Rr � . 

 

We introduce the Fourier tranform as 

 



 














j

ti

j

j

i

i

je

ted

tedt

)(ˆ

))(ˆ(
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which shows that S(Q, �) can be expressed in terms of a density-density correlation function. 
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èf

èq
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APPENDIX: Born approximation 

1. Green's function in scattering theory 

We start with the original Schrödinger equation. 
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Using the operator 
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we have the differential equation 
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Suppose that there exists a Green's function )(rG  such that 
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We will discuss about the derivation of this Green function later. Then )(r  is 

formally given by 
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where )(r  is a solution of the homogeneous equation satisfying 
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2. Born approximation 

We start with 
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Fig. Vectors r and r’ in calculation of scattering amplitude in the first Born 

approximation 
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The first term denotes the original plane wave in the propagation direction k. The 
second term denotes the outgoing spherical wave with amplitude, ),'( kkf , 
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The first Born approximation: 
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Note that ),'( kkf  is the Fourier transform of the potential energy with the wave 

vector Q; the scattering vector; 
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where 
 








)(
)2(

1

)('ˆ'

)'(3

3

3

rr

krrrkrkk

rkk
Ved

VdV

i

�

 

 
with 
 

)exp(
)2(

1
2/3

rkkr  i
�

 

 
((Forward scattering)) 

Suppose that k' = k (Q = 0). Then we have 
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Suppose that the attractive potential is a type of square-well 
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The total cross section (which is isotropic) is obtained as 
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The units of )0(f  is cm, and the units of   is cm2

.
 

 
3. Differential cross section 
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We define the differential cross section 
d

d
 as the number of particles per unit time 

scattered into an element of solid angle d  divided by the incident flux of particles. 
 
The probability flux associated with a wave function 
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volume = 1
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e  means that there is one particle per unit volume. Jz is the probability flow 

(probability per unit area per unit time) of the incident beam crossing a unit surface 
perpendicular to OZ 
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where Jr is the probability flow (probability per unit area per unit time) 
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First-order Born amplitude: 
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which is the Fourier transform of the potential with respect to Q, where 
 

kkQ  ' : scattering wave vector. 

 

2
sin2


kQ Q  for the elastic scattering. 

 
The Ewald sphere is given by this figure. Note that the scattering angle is  here. In 
the case of x-ray and neutron diffraction, we use the scattering angle 2, instead of . 
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Fig. Ewald sphere for the present system (elastic scattering). ki = k. kf = k’. Q =q 

= k – k’ (scattering wave vector). 
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((Ewald sphere)) x-ray and neutron scattering 
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Fig. Ewald sphere used for the x-ray and neutron scattering experiments. ki = k. kf 

= k’. Q =q = k – k’ (scattering wave vector). Note that in the conventional x-
ray and neutron scattering experiments, we use the angle 2, instead of  for 
both the x-ray and neutron scattering,  

 
4. Spherical symmetric potential 

When the potential energy V(r) is dependent only on r, it has a spherical symmetry. 
For simplicity we assume that ’ is an angle between Q and r’.  
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 

 

















0 0

2'cos'

2

0 0

2'cos'

2

2

)1(

)'('sin'''

)'('sin'2''
2

4

1

)'('
2

4

1
)(

�


�



�

�
�

�

�
�



rVreddr

rVreddr

Vedf

iQr

iQr

i

ℏ

ℏ

ℏ
rr

rQ

 

 
Note that 
 

)'sin(
'

2
'sin'

0

'cos' Qr
Qr

ed iQr  
�

   

 



37 

 

 
 
Then 
 












0

2

0

2

2

)1(

)'sin()'(''
21

)'sin(
'

2
)'('2'

2

4

1
)(

QrrVrdr
Q

Qr
Qr

rVrdrf

ℏ

ℏ

�

�
�

�


 (spherical symmetry) 

 
Then the differential cross section is given by 
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We find that )()1( f is a function of Q. 
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kQ  , 

 
where  is an angle between k’ and k (Ewald’s sphere). 
 
5 Lippmann-Schwinger equation 

The Lippmann–Schwinger equation is equivalent to the Schrödinger equation 
plus the typical boundary conditions for scattering problems. In order to embed the 
boundary conditions, the Lippmann–Schwinger equation must be written as an 
integral equation. For scattering problems, the Lippmann–Schwinger equation is 
often more convenient than the original Schrödinger equation 
(http://en.wikipedia.org/wiki/Lippmann%E2%80%93Schwinger_equation) 
 
___________________________________________________________________
_____ 

The Hamiltonian H of the system is given by 
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where H0 is the Hamiltonian of free particle. Let  be the eigenket of H0 with the 

energy eigenvalue E, 
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The basic Schrödinger equation is  
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0  exhibit continuous energy spectra. We look for a solution to 

Eq.(1) such that as 0V ,   , where   is the solution to the free particle 

Schrödinger equation with the same energy eigenvalue E. 
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which leads to 
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or 
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The presence of   is reasonable because   must reduce to   as V̂  vanishes. 

 
Lippmann-Schwinger equation: 
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The Green's function is defined by 
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where >0 is infinitesimally small value (see the Appendix III for the derivation) 
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More conveniently the Lippmann-Schwinger equation can be rewritten as 
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When two operators Â  and B̂  are not commutable, we have very useful formula as 
follows, 
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We assume that 
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Here we newly define the two operators by 
 

1
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Note that 1
0 )ˆ(  iHEk  denotes an outgoing spherical wave and 1
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denotes an incoming spherical wave. Then we have 
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Then )( can be rewritten as 
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7 The higher order Born Approximation 

From the iteration, )(  can be expressed as 
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The Lippmann-Schwinger equation is given by 
 

kkk TiHEViHE kk
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0
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0
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,
 

 
where the transition operator T̂  is defined as 
 

kTV ˆˆ )(   

 
or 
 

kkk TiHEVVVT k
ˆ)ˆ(ˆˆˆˆ 1

0
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This is supposed to hold for any k taken to be any plane-wave state. 

 

TiHEVVT k
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0
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The scattering amplitude ),'( kkf  can now be written as 
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Using the iteration, we have 
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Correspondingly we can expand ),'( kkf  as follows: 
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Fig. Feynman diagram. First order, 2nd order, and 3rd order Born approximations. 

kk  is the initial state of the incoming particle and '' kk  is the final 

state of the incoming particle. V̂  is the interaction. 
 
8 Optical Theorem 

The scattering amplitude and the total cross section are related by the identity 
 

tot

k
f 

�


4
)]0(Im[  , 

 
where 
 

),()0( kkff  : scattering in the forward direction. 

 

 


 d
d

d
tot


 . 

 
This formula is known as the optical theorem, and holds for collisions in general. 
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Fig. Optical theorem. The intensity of the incident wave is �/kℏ . The intensity 

of the forward wave is )]0(Im[)/4()/( fk ��� ℏℏ  . The waves with the total 

intensity totkf ��� )/()]0(Im[)/4( ℏℏ   is scattered for all the directions, as 

the scattering spherical waves. 
 
((Proof)) 
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or 
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Now we use the well-known relation ( i  representation, see the Appendix IV) 
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The first two terms of this equation vanish because of the Hermitian operators of V̂  
and 
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Then we obtain 
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)]0(Im[  .  (optical theorem) 

 
9. Summary 

Comparison between the partial wave approximation (low-energy scattering) and high-
energy scattering (Born approximation). 
 
(i) Although the partial wave expansion is “straightforward”, when the energy of 

incident particles is high (or the potential weak), many partial waves contribute. In 
this case, it is convenient to switch to a different formalism, the Born approximation. 

 
(ii) At low energies, the partial wave expansion is dominated by small orbital angular 

momentum. 
 
APPENDIX-II 

Inelastic neutron scattering data 

 

 

We use the conversion relation of the units for photon with the dispersion relation 

 

� = ℎ� = 3ℎ


 

 

1 meV = 0.241799 THz 

1 THz = 4.13567 meV 

100 THz = 0.413567 eV 

1 cm-1 = 0.123984 meV 

1 meV = 8.06556 cm-1 

3 THz = 100.069 cm-1. 

 

 

(a) Rh 
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Fig. Phonon dispersion curve of Rh. A. Eichler, K.P. Bohnen, W. Reichardt, and J. 

Hafner, Phonon dispersion relation in rhodium: Ab initio calculations and neutron-

scattering investigations, Phys. Rev. B57, 324 (1998). 

 

(b) Neon 
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Fig. Acoustic mode dispersion curves for neon (ccp structure) measured by inelastic 

neutron scattering. (Data taken from Endoh et al. Phys. Rev. B11, 1681, 1975). M.T. 

Dove, Structure and Dynamics: An Atomic View of Materials (Oxford, 2002). 

 

(c) Lead 

 

 
 

Fig. Acoustic mode dispersion curves for lead (fcc) measured by inelastic scattering (Data 

taken from Brockhouse et al. Phys. Rev. 128, 1099, 1962). M.T. Dove, Structure and 

Dynamics: An Atomic View of Materials (Oxford, 2002). 

 

(d) Potassium (fcc) 
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Fig. Acoustic mode dispersion curves for potassium (fcc) measured by inelastic neutron 

scattering. (Data taken from Cowley et al., Phys. Rev. 150, 487, 1966). M.T. Dove, 

Structure and Dynamics: An Atomic View of Materials (Oxford, 2002). 

 

(e) NaCl 
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Fig. Dispersion curves for NaCl (inelastic neutron scattering). (Data taken from Raunio et 

al. Phys. Rev. 178, 1496, 1969). M.T. Dove, Structure and Dynamics: An Atomic 

View of Materials (Oxford, 2002). 

 

(f) Qaurtz 
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Fig. Dispersion curves for quartz. (Data are taken from Strauch and Dorner, J. Phys. Cond. 

Matter 5, 6149, 1993). M.T. Dove, Structure and Dynamics: An Atomic View of 

Materials (Oxford, 2002). 
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Fig. Phonon dispersion curves of quartz obtained by inelastic x-ray scattering. (Data 

from Ch. Halcoussis, J. Phys,: Cond. Matter 13, 7627, 2001). 
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Fig. Dispersion curves for potassium bromide at 90 K. (Woods et al. Phys. Rev. 131, 

1025 (1963). C. Kittel, Introduction to Solid State Physics, 4-th edition (John Wiley, 

1971). 

 

 


