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Abstract 

As an example we consider a Na atom, which has an electron configuration of 

(1s)2(2s)2(2p)6(3s)1. The 3s electrons in the outermost shell becomes conduction electrons 

and moves freely through the whole system. The simplest model for the conduction 

electrons is a free electron Fermi gas model. In real metals, there are interactions between 

electrons. The motion of electrons is also influenced by a periodic potential caused by ions 

located on the lattice. Nevertheless, this model is appropriate for simple metals such as 

alkali metals and noble metals. When the Schrödinger equation is solved for one electron 

in a box, a set of energy levels are obtained which are quantized. When we have a large 

number of electrons, we fill in the energy levels starting at the bottom. Electrons are 

fermions, obeying the Fermi-Dirac statistics. So we have to take into account the Pauli’s 

exclusion principle. This law prohibits the occupation of the same state by more than two 

electrons. 

Sommerfeld’s involvement with the quantum electron theory of metals began in the 

spring of 1927. Pauli showed Sommerfeld the proofs of his paper on paramagnetism. 

Sommerfeld was very impressed by it. He realized that the specific heat dilemma of the 

Drude-Lorentz theory could be overcome by using the Fermi-Dirac statistics (Hoddeeson 

et al.).1 

Here we discuss the specific heat and Pauli paramagnetism of free electron Fermi gas 

model. The Sommerfeld’s formula are derived using Mathematica. The temperature 

dependence of the chemical potential will be discussed for the 3D and 1D cases. We also 

show how to calculate numerically the physical quantities related to the specific heat and 

Pauli paramagnetism by using Mathematica, based on the physic constants given by NIST 

Web site (Planck’s constant ħ, Bohr magneton B, Boltzmann constant kB, and so on).2 This 

lecture note is based on many textbooks of the solid state physics including Refs. 3 – 10.  
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1. Schrödinger equation3-10 

A. Energy level in 1D system 

We consider a free electron gas in 1D system. The Schrödinger equation is given by 
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and k  is the energy of the electron in the orbital.  

The orbital is defined as a solution of the wave equation for a system of only one 

electron:one-electron problem. 
Using a periodic boundary condition: )()( xLx kk   , we have 
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where n = 0, ±1, ±2,…, and L is the size of the system. 
 

B. Energy level in 3D system 

We consider the Schrödinger equation of an electron confined to a cube of edge L. 
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It is convenient to introduce wavefunctions that satisfy periodic boundary conditions. 

Boundary condition (Born-von Karman boundary conditions). 
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),,(),,( zyxLzyx kk   . 

 
The wavefunctions are of the form of a traveling plane wave. 
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with 

 

kx = (2/L) nx, (nx = 0, ±1, ±2, ±3,…..), 
 

ky = (2/L) ny, (ny = 0, ±1, ±2, ±3,…..), 
 

kz = (2/L) nz, (nz = 0, ±1, ±2, ±3,…..). 
 
The components of the wavevector k are the quantum numbers, along with the quantum 

number ms of the spin direction. The energy eigenvalue is 
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Here 
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So that the plane wave function )(r
k

  is an eigenfunction of p with the eigenvalue kℏ . 

The ground state of a system of N electrons, the occupied orbitals are represented as a point 

inside a sphere in k-space. 
Because we assume that the electrons are noninteracting, we can build up the N-

electron ground state by placing electrons into the allowed one-electron levels we have just 
found. 


((The Pauli’s exclusion principle)) 

The one-electron levels are specified by the wavevectors k and by the projection of the 
electron’s spin along an arbitrary axis, which can take either of the two values ±ħ/2. 

Therefore associated with each allowed wave vector k are two levels: 
 

,k , ,k . 

 

In building up the N-electron ground state, we begin by placing two electrons in the one-

electron level k = 0, which has the lowest possible one-electron energy  = 0. We have 
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where the sphere of radius kF containing the occupied one-electron levels is called the 

Fermi sphere, and the factor 2 is from spin degeneracy. The electron density n is defined 

by 
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The Fermi wavenumber kF is given by 

 

  3/123 nkF  . (9) 

 

The Fermi energy is given by 
 

  3/22
2

3
2

n
m

F 
ℏ

 . (10) 

 

The Fermi velocity is 
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The Fermi temperature TF is defined by 
 

B

F
F

k
T


 . 

 

In this model, these quantities is dependent only on the number density n.  
 

((Note)) 

The Fermi energy F can be estimated using the number of electrons per unit volume as 
 

F = 3.64645x10-15 n2/3 [eV] = 1.69253 n0
2/3 [eV], 

 

where n and n0 is in the units of (cm-3) and n = n0×1022. The Fermi wave number kF is 
calculated as 

 
kF = 6.66511×107 n0

1/3 [cm-1]. 

 
The Fermi velocity vF is calculated as 

 
vF = 7.71603×107 n0

1/3 [cm/s]. 
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((Example)) 

The Fermi energy of Au 
 

Atomic molar mass M0 = 196.9666 g/mol 

Density  = 19.30 g/cm3 

 

0M

N

M

N

V

M

V

N
n A = 5.901 x 1022 /cm3. 

 
Since n0 = 5.901, we have  

 

F = 1.69253 n0
2/3 = 5.526 [eV]. 

 
kF = 6.66511×107 n0

1/3 = 1.20442 x 108 [cm-1]. 

 
vF = 7.71603×107 n0

1/3 = 1.39433 x 108 [cm/s]. 

 

TF = F/kB = 6.4136 x 104 K 
 

((Mathematica)) 
 

Fermi energy F (eV) vs the number of electrons (n = n0×1022 [cm-3]). 
 

 
 

Fig.1 Fermi energy vs number density n (= n0×1022 [cm-3]). 
 

2. Fermi-Dirac distribution function3-10 
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The Fermi-Dirac distribution gives the probability that a state at energy  will be 
occupied in an ideal gas in thermal equilibrium 
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where  is the chemical potential and  = 1/(kBT). 
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(ii) f() = 1/2 at  = . 
 

(iii) For  - >>kBT, f() is approximated by )()(   ef . This limit is called the 

Boltzmann or Maxwell distribution. 
 

(iv) For kBT<<F, the derivative -df()/d corresponds to a Dirac delta function having 

a sharp positive peak at  = . 
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Fig.2 Fermi-Dirac distribution function f() at various T (= 0.002 – 0.02). kB = 1. 

(T = 0) = F = 1. 
 

 
 

Fig.3 Derivative of Fermi-Dirac distribution function -df()/d at various T (= 

0.002 – 0.02). kB = 1. (T = 0) = F = 1. 
 

3. Density of states3-10 

 

A. 3D system 
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Fig. Density of states in the 3D k-space. There is one state per (2/L)3. 

 

There is one state per volume of k-space (2/L)3. We consider the number of one-

electron levels in the energy range from  to +d; D()d  
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where D() is called a density of states. Since 2/12)/2( ℏmk  , we have 

 

)2/()/2( 2/12 dmdk ℏ . 

 

Then we get the density of states 
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Here we define )( F

AD   [1/(eV atom)] which is the density of states per unit energy per 

unit atom. 
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Then we have 
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This is the case when each atom has one conduction electron. When there are nv electrons 

per atom, DA(F) is described as9 
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For Al, we have F = 11.6 eV and nv = 3. Then DA(F) = 0.39/(eV atom).  

 

Here we make a plot of f()D () as a function of  using Mathematica. 
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Fig.4 D()f() at various T (= 0.001 – 0.05). kB = 1. (T = 0) = F = 1. The constant 

a of D() (= a ) is assumed to be equal to 1. The dashed line denotes the 

curve of D(). 
 

B. 2D system 
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Fig. Density of states for the 2D k-space. There is one state per area 
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For the 2D system, we have 
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The factor 2 comes from the spin weight. Since kdkmd 2)2/( 2
ℏ , we have the density 

of states for the 2D system as 
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which is independent of . 
 

C. 1D system 
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
Fig. Energy k vs k for the one dimensional case. The discrete states are 

described |k,> and |k,> with k = (2/L)n. (nx = 0, ±1, ±2,...). All the states 

below the Fermi energy F are occupied at T = 0 K. 

 

For the 1D system we have 
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The factor 2 before dk arises from the two states of k and -k. Thus the density of states for 

the 1D system is 
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which decreases with increasing . 
 

4. Sommerfeld’s formula 

 

When we use a formula 
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the total particle number N and total energy E can be described by 
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and  
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First we prove that 
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(26) 

 

using Mathematica. 

 

((Mathematica)) 

 

 
 

________________________________________________________________ 

Here we note that 

Sommerfeld's formula

Clear@"Global`∗"D; f@x_D :=
1

ExpB x−µ

kB T
F + 1

; h@xD = −D@f@xD, xD êê Simplify;

g1 = Series@g@xD, 8x, µ, 14<D êê Normal; G1 = kB T Hg1 h@xDL ê. 8x → µ + kB T y< êê Expand;

K@n_D := ‡
−∞

∞
G1@@nDD �y;

G2 = Sum@K@nD, 8n, 1, 13<D
g@µD +

1

6
kB

2 π2 T2 g′′@µD +
7

360
kB

4 π4 T4 gH4L@µD +
31 kB6 π6 T6 gH6L@µD

15120
+

127 kB8 π8 T8 gH8L@µD
604800

+
73 kB10 π10 T10 gH10L@µD

3421440
+
1414477 kB12 π12 T12 gH12L@µD

653837184000

So we get a final result

‡
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T
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T
4 π4 gH4L@µD +

31 kB6 T6 π6 gH6L@µD
15120

+

127 kB8 T8 π8 gH8L@µD
604800

+
73 kB10 π10 T10 gH10L@µD

3421440
+
1414 477 kB12 π12 T12 gH12L@µD

653837 184000
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We define 
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Then we have a final form (Sommerfeld’s formula). 
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5. T dependence of the chemical potential 

We start with 
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But we also have )0(  TF  . Then we have 
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Thus the chemical potential is given by 
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which is valid for the order of 
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of /F and kBT/F can be obtained by using the Mathematica . 
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Fig. ContourPlot of /F and kBT/F for small values of kBT/F 

 

____________________________________________________________________ 

The chemical potential  is approximated by the forms, 
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For the 1D case, similarly we have 
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Clear@"Global`∗"D; eq1 = y1ê2 	 y2 +
π2

8
x2 ;

f1 = ContourPlot@Evaluate@eq1D, 8x, 0, 0.1<,
8y, 0.99, 1.00<, ContourStyle → 8Red, Thick<D;

f2 =

Graphics@
8Text@Style@"kBTêEF", Black, 12D, 80.09, 0.99< D,
Text@Style@"µêEF", Black, 12D, 80.004, 0.999<D,
Text@Style@"3D system", Black, 15D,
80.07, 0.9995<D<D;

Show@f1, f2, PlotRange → AllD
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_______________________________________________________________________ 

((Mathematica)) 

We now discuss the T dependence of  by using the Mathematica. The higher order 

terms (proportional to T4, T6,..) are also taken into account. The results are as follows. 

 

 

 

 

Fig.5 T dependence of chemical potential  for the 3D system. kB = 1. F = (T = 0) = 1. 
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Fig.6 T dependence of chemical potential  for the 1D system. kB = 1. F = (T = 0) = 1. 

 

6. Total energy and specific heat 

Using the Sommerfeld’s formula, the total energy U of the electrons is approximated 

by 

 

)]}([')()]([{)(
6

1
)()()(

22

)(

00

TDTTDTkdDdDfU B

T




 


. 

 

The total number of electrons is also approximated by 

 

)]([')(
6

1
)()()(

22

)(

00

TDTkdDdDfN B

T




 


. 

 

Since 0/  TN  (N is independent of T), we have 

 

0.05 0.10 0.15 0.20 0.25 0.30
T
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0)](['
3

1
)]([)('

22  TTDkTDT B  , 

 

or 

 

)]([

)](['

3

1
)('

22

TD

TD
TkT B 


  . 

 

The specific heat Cel is defined by 

 

)())}(()(')]}(['
3

1
{)]([

3

1 2222 TTDTTTDkTTDk
dT

dU
C BBel   . 

 

The second term is equal to zero. So we have the final form of the specific heat 

 

)]([
3

1 22 TTDkC Bel  . 

 

When FT  )( ,  

 

TDkC FBel )(
3

1 22  . (32) 

 

In the above expression of Cel, we assume that there are N electrons inside volume V (= L3). 

The specific heat per mol is given by 

 

TkNDTkN
N

D
N

N

C
BAF

A

BA
F

A
el 2222 )(

3

1)(

3

1



  . 

 

where NA is the Avogadro number and )( F

AD   [1/(eV at)] is the density of states per unit 

energy per unit atom. Note that 

 

22

3

1
BAkN =2.35715 mJ eV/K2. 

 

Then   is related to )( F

AD  as 

 

)(
3

1 22

F

A

BA DkN   , 

or 

 (mJ/mol K2) = 2.35715 )( F

AD  . (33) 
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We now give the physical interpretation for Eq.(32). When we heat the system from 0 

K, not every electron gains an energy kBT, but only those electrons in orbitals within a 

energy range kBT of the Fermi level are excited thermally. These electrons gain an energy 

of kBT. Only a fraction of the order of kBT D(F) can be excited thermally. The total 

electronic thermal kinetic energy E is of the order of (kBT)2 D(F). The specific heat Cel is 

on the order of kB
2TD(F).  

 

((Note)) 

For Pb,   = 2.98, )( F

AD  =1.26/(eV at) 

For Al   = 1.35, )( F

AD  =0.57/(eV at) 

For Cu   = 0.695, )( F

AD  =0.29/(eV at) 

 

__________________________________________________________________ 

((Mathematica)) 

 
 

7. Pauli paramagnetism 

The magnetic moment of spin is given by  

 

Heat capacity for the 3D case. We use the Sommerfeld's formula for the calculation of the total energy and the total number

Clear@"Global`∗"D;
U = ‡

0

µ@TD
ζ@xD �x +

1

6
HkB TL2 π2 D@ζ@µ@TDD, 8 µ@TD, 1<D +

7

360
HkB TL4 π4 D@ζ@µ@TDD, 8 µ@TD, 3<D;

replace = 8ζ → H� De@� D &L<; U1 = U ê. replace;

Ce = D@U1, TD êê Expand

1

3
kB

2 π2 T De@µ@TDD +
1

3
kB

2 π2 T µ@TD De
′@µ@TDD + De@µ@TDD µ@TD µ′@TD +

1

3
kB

2 π2 T2 De′@µ@TDD µ′@TD +
7

30
kB

4 π4 T3 De′′@µ@TDD +
1

6
kB

2 π2 T2 µ@TD µ′@TD De
′′@µ@TDD +

7

90
kB

4 π4 T3 µ@TD De
H3L@µ@TDD +

7

90
kB

4 π4 T4 µ′@TD De
H3L@µ@TDD +

7

360
kB

4 π4 T4 µ@TD µ′@TD DeH4L@µ@TDD

 The chemical potential m[T] can be estimated from the expression of N

N1 = U ê. 8ζ → H De@� D &L<; N2 = D@N1, TD êê Expand

1

3
kB

2 π2 T De′@µ@TDD + De@µ@TDD µ′@TD +
1

6
kB

2 π2 T2 µ′@TD De′′@µ@TDD +

7

90
kB

4 π4 T3 DeH3L@µ@TDD +
7

360
kB

4 π4 T4 µ′@TD DeH4L@µ@TDD

For simplicity we use the approximation to the order of 0 (T2) for the total energy and number.

 Note that D[N1,T]=0 since N is independent of T.

 eq1=N2@@1DD+N2@@2DD	0;eq2=Solve@eq1, µ′@TDD

99µ′@TD → −
kB2 π2 T De′@µ@TDD

3 De@µ@TDD ==

 Ce1=Ce@@1DD+Ce@@2DD+Ce@@3DD;Ce2=Ce1ê.eq2@@1DDêêSimplify
1

3
kB

2 π2 T De@µ@TDD
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ˆ z  
2B

ˆ S z

ℏ
 B

ˆ z   (quantum mechanical operator).  

 

Then the spin Hamiltonian (Zeeman energy) is described by 

 

  

ˆ H   ˆ z B  (
2B

ˆ S z

ℏ
)B  B

ˆ z B, (34) 

 

in the presence of a magnetic field, where the Bohr magneton µB is given by  

 

  

B 
eℏ

2mc
.  (e>0) 

 

with 

 

B 9.27400915(23) x 10-24 J/T  (S.I. unit) 

 

B 9.27400915(23) x 10-21 erg/Oe  (cgs unit) 

 

erg/Oe = emu 

 

 
 

Fig. The magnetic field is applied along the z axis. (a) Spin–up state z . The spin 

magnetic moment is antiparallel to the magnetic field. The Zeeman energy is +BH. (b) 
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Spin-down state z . The spin magnetic moment is parallel to the magnetic field. 

The Zeeman energy is -BH. 

 

(i) The magnetic moment antiparallel to H. Note that the spin state is given by a up-state, 

 

z . 

 

The energy of electron is given by 

 

HBk   , 

 

with 22 )2/( kmk ℏ . The density of state for the spin-up state (the down-state of the 

magnetic moment) is 

 







 dH
mV

dkk
L

dD B
2/3

22

2

3

3

)
2

(
4

4
)2(

)(
ℏ

, 

 

or 

 

)(
2

1
)( HDD B  . (35) 

 

The factor ½ comes from the fact that )(D  is the density of states per spin. Then we 

have 

 




 
H

B

B

dfHDN


 )()(
2

1
. (36) 

 

(ii) The magnetic moment parallel to H. Note that the spin state is given by 

 

z . 

 

The energy of electron is given by 

 

HBk   , 

 

The density of state for the spin down-state (the up-sate of the magnetic moment) is 

 







 dH
mV

dkk
L

dD B
2/3

22

2

3

3

)
2

(
4

4
)2(

)(
ℏ

, 

 

or 
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)(
2

1
)( HDD B  . (37) 

 

Then we have 

 





 

H

B

B

dfHDN


 )()(
2

1
. (38) 

 

 
 

 

Fig. Density of states for the Pauli paramagnetism of free electron. Left: (D+() 
for the z , the direction of the spin magnetic moment is parallel to 



 24 

that of magnetic field). Right: (D-() for z ; the direction of the spin 

magnetic moment is antiparallel to that of magnetic field). 

 

The magnetic moment M is expressed by 

 





 

H

B

H

B
B

B

BB

dfHDdfHDNNM





 )()()()([
2

)( ], (39) 

 

or 

 

)()
)(

)((

)]()()[(
2

2

0

2

0

FBB

BB
B

HDd
f

DH

dHfHfDM

























 (40) 

 

Here we use the relation;  

 

)()
)(

( F

f









  

 

(see Fig.3). 

 

The susceptibility (M/H) thus obtained is called the Pauli paramagnetism. 

 

)(
2

FBp D   . (41) 

 

Experimentally we measure the susceptibility per mol, p (emu/mol) 

 

)(
)( 22

F

A

ABA
F

BP DNN
N

D



  , (42) 

 

whereB
2NA = 3.23278×10-5 (emu eV/mol) and DA(F) [1/(eV atom)] is the density of 

states per unit energy per atom. Since 

 

)(
3

1 22

F

A

BA DkN   , (43) 

 

we have the following relation between P (emu/mol) and  (mJ/mol K2), 

 

 51037148.1 P . (44) 

 

((Exampl-1)) Rb atom has one conduction electron. 
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 = 2.41 mJ/mol K2, P = (1.37x10-5)×2.41 (emu/mol) 

1 mol = 85.468 g 

P =0.386×10-6 emu/g (calculation) 

 

((Exampl-2)) K atom has one conduction electron. 

 

 = 2.08 mJ/mol K2, P = (1.37x10-5)×2.08 (emu/mol) 

1 mol = 39.098 g 

P =0.72x10-6 emu/g (calculation) 

 

((Exampl-3)) Na atom has one conduction electron. 

 

 = 1.38 mJ/mol K2, P = (1.37x10-5)×1.38 (emu/mol) 

1 mol = 29.98977 g 

P =0.8224x10-6 emu/g (calculation) 

 

The susceptibility of the conduction electron is given by 

 

3/23/ PPPLP   , (45) 

 

where L is the Landau diamagnetic susceptibility due to the orbital motion of conduction 

electrons. 

Using the calculated Pauli susceptibility we can calculate the total susceptibility: 

 

Rb:  = 0.386×(2/3)×10-6 = 0.26×10-6 emu/g 

K:  = 0.72×(2/3)x10-6 = 0.48×10-6 emu/g 

Na:  = 0.822×(2/3)×10-6 = 0.55×10-6 emu/g 

 

These values of  are in good agreement with the experimental results.6 

 

8. Physical quantities related to specific heat and Pauli paramagnetism 

Here we show how to evaluate the numerical calculations by using Mathematica. To 

this end, we need reliable physics constant. These constants are obtained from the NIST 

Web site: http://physics.nist.gov/cuu/Constants/index.html 

 

Planck’s constant, ℏ =1.05457168×10-27 erg s 

Boltzmann constant kB = 1.3806505×10-16 erg/K 

Bohr magneton B = 9.27400949×10-21 emu 

Avogadro’s number NA = 6.0221415×1023 (1/mol) 

Velocity of light c = 2.99792458×1010 cm/s 

electron mass  m = 9.1093826×10-28 g 

electron charge e = 1.60217653×10-19 C 

   e = 4.803242×10-10 esu (this is from the other source) 

1 eV = 1.60217653×10-12 erg 
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1 emu = erg/Gauss 

1mJ = 104 erg 

 

Using the following program, one can easily calculate many kinds of physical 

quantities. Here we show only physical quantities which appears in the previous sections. 

 

((Mathematica)) Physics constants 

 
 

9. Conclusion 

Use the physical constants to calculate the physical quantities (in the units of cgs)

Clear@"Global`∗"D;
rule1 = 9µB → 9.27400949× 10−21, kB → 1.3806505× 10−16, NA → 6.0221415× 1023,

c → 2.99792458× 1010, — → 1.05457168× 10−27, m → 9.1093826× 10−28, e → 4.803242× 10−10,

eV → 1.60217653× 10−12, mJ → 104=;
Fermi energy

—2

2 m
I3 π2 1022 n0M2ê3 H1êeVL ê. rule1

1.69253 n0
2ê3

Fermi wavenumber

I3 π2 1022 n0M1ê3 ê. rule1 êê N

6.66511× 107 n01ê3

Fermi velocity

—

m
I3 π2 1022 n0M1ê3 ê. rule1

7.71603× 107 n01ê3

heat capacity

1

3
π2 NA kB2 ë HeV mJL ê. rule1

2.35715

Pauli paramagnetism

µB2 NA êeV ê. rule1 êê ScientificForm

3.23278× 10−5

Relation between Pauli paramagnetrism and heat capacity 

3 µB2

π2 kB2
mJ ê. rule1 êê ScientificForm

1.37148× 10−5
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The temperature dependence of the specific heat is discussed in terms of the free 

electron Fermi gas model. The specific heat of electrons is proportional to T. The 

Sommerfeld’s constant  for Na is 1.38 mJ/(mol K2) and is close to the value [1.094 

mJ/(mol K2)] predicted from the free electron Fermi gas model. The linearly T dependence 

of the electronic specific heat and the Pauli paramagnetism give a direct evidence that the 

conduction electrons form a free electron Fermi gas obeying the Fermi-Dirac statistics. 

It is known that the heavy fermion compounds have enormous values, two or three 

orders of magnitude higher than usual, of the electronic specific heat. Since  is 

proportional to the mass, heavy electrons with the mass of 1000 m (m is the mass of free 

electron) move over the system. This is due to the interaction between electrons. A moving 

electron causes an inertial reaction in the surrounding electron gas, thereby increasing the 

effective mass of the electron. 
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