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1. Density of states for the 3D system 
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The factor 2 comes from spin freedom. Using the dispersion relation 
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Note that the number of free electrons is 
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Then we have 
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2. The total number of free electrons below the Fermi energy: 

 

3

3 3

4

)2(
2 Fk

V
N




  

 

or 

 

3

23

1
Fk

V

N
n


   or   3/123 nk F   

 
Then the Fermi energy is given by 
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3. Electronic heat capacity coefficient 

Suppose that the heat capacity of atoms (1 mol) with the volume Vm can be measured 
as a function of temperature. The heat capacity consists of lattice contribution and 
electronic contribution. The electronic heat capacity can be expressed by 
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where Vm is the molar mass. Then we get 
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((Mathematica)) 
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4. Expression of )( F

AD   

What is the expression for )( F

AD  ? It is expressed by 
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where 

Clear@"Global`∗"D;
rule1 = 9kB → 1.3806504× 10−16, NA → 6.02214179 × 1023,

c → 2.99792× 1010, — → 1.054571628 10−27,

me → 9.10938215 10−28, mp → 1.672621637× 10−24,

mn → 1.674927211× 10−24, qe → 4.8032068× 10−10,

eV → 1.602176487× 10−12, meV → 1.602176487 × 10−15,

keV → 1.602176487× 10−9, MeV → 1.602176487 × 10−6,

fi → 10−8, J → 107=;
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is the volume per atom. M is the molar mass and  is the density. Suppose that there are p 

electrons per atom. Then the number density of electrons is given by 
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1 eV = 1.602176487 x 10-12 erg 

 

Then 
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In other words, )( F

AD   depends on the mass m, the atomic volume  , and the number 

of electrons per atom. 

 

5. Electronic heat capacity coefficient 

 











erg

eV
p

m
D F

A 2/33/2

2
73886.0)(35715.2

ℏ
  

 

When the mass is different from that of the free particle, we have 
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((Example-1)) 

Al: 



Density:  = 2.6989 g/cm3 

Atomic weight = 26.9815386 g/mol 

fcc; a = 4.05 A. p = 3 (trivalent) 
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The Fermi energy: 

 

  3/22
2

3
2

n
m

F 
ℏ

  = 11.6524 eV 

 

Since 

 

p = 3 

 

we get 

23

3
1080641.1

4
3 

a
n /cm3 

 

Then we have 

3/22/3
*

141069637.9 







 p

m

m
  

 

For p = 3 and 
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((Example-2)) Pb 

Density:  = 11.342 g/cm3 

Atomic weight = 207.2  g/mol 

fcc; a = 4.95 A. p = 4. 
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The Fermi energy: 
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4. Derivation of )( F

AD   from measured  
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AD  can be experimentally determined from the relation 
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(mJ/.mol K2) D(F) (1/eV at) 

Al    1.35   0.573 

Pb   2.98   1.264 

Sn (white)  1.78   0.755 

 



 
 

 

APPENDIX 

Myer Chapter 13 problems 

 

1. Estimate the strength of the electron-phonon interaction, V, for Al and Pb, 

where  
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and N(F) is the density of states for a given spin at the Fermi energy. 
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For Pb,  Tc = 7.2 ,  = 105 K. 

For Al,  Tc = 1.2 K,  = 428 K. 

 

We assume that 
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Then we have 

 

(mJ/.mol K2) D(F) (1/eV at) AV  (eV.at) 

Al    1.35   0.57   0.60 

Pb   2.98   1.26   0.59 

 

________________________________________________________________________ 

2. 

Calculate the London penetration depth in Al at 0 K under the assumptions (a) 

that all the valence electrons are responsible for the superconducting property, and 

(b) that only electrons in an energy interval kB/2 in the neighborhood of the Fermi 

energy contribute to the supercurrent. To what fraction of the valence electron 

concentration does the latter case correspond? 

 

((Solution)) 

Al fcc with the lattice constant a = 4.05 A. 

Then the number density: 

 

n0 =3 x 4/a3 = 18.06 x 1022/cm3. 

 

The Fermi energy is 

 

F = 11.6524 eV. 

 



The London penetration depth is 
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The revised penetration depth is 

 

 





2

2

4
'

en

mc
L 
 667.19 Å 

 



n

n
0.0352351 

 

((Mathematica)) 



 
 

((Note)) The brief solution is shown in the Myer's book. Our result is slightly different. 

L =127 Å. 'L =1250 Å. 

n

n
0.035%. 

 

________________________________________________________________________ 

3. The critical field is described as 
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rule1 = 9kB → 1.3806504× 10−16, NA → 6.02214179× 1023,

c → 2.99792× 1010, — → 1.054571628 10−27,

me → 9.10938215 10−28, qe → 4.8032068× 10−10,

eV → 1.602176487× 10−12, meV → 1.602176487× 10−15,

keV → 1.602176487× 10−9, MeV → 1.602176487× 10−6,

fi → 10−8, n0 → 18.06× 1022, Θ → 428, a1 → 4.05 fi,
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Obtain an expression for Hc0 in terms of Tc and (Cs - Cn) at Tc. Given that the 

latter quantities are 1.2 K and 1.6 mJ/K mol, estimate Hc0 for Al. 

 

((Solution)) 

 

At T = Tc = 1.2 K, 
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Parabolic law: 
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Then we have 
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For Tc = 1.2 K, 
cTTVNS CC  |)( = 1.6 mJ/mol K. 

 

We note that the units of 2
0cH  is mJ/mol. The unit of 2

0cH should be Oe2 = Gauss2 = 

erg/cm3. Therefore we need to calculate the volume of 1 mol of Al. Using the molar mass 

M (= 26.98 g/mol) and the density  (= 2.70 g/ cm3), we get the molar volume as 
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Then we get 
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or 

 

780 cH  Oe. 

 

_______________________________________________________________________ 

4. It is found, for a certain superconducting alloy, that Hc1 is 400 Oe and that 

the magnetization has fallen to half its (negative) value at Hc1 when the 

applied field is 500 Oe. Assuming the Abrikosov model for the mixed state, 

find the distance between the centers of the flux vortices. 

 

((Solution)) 

 

 
 

At Hc1 = 400 Oe.  -4M1=400 Gauss. 

 

At H = 500 Oe.  124 MHMHB   =500-200 = 300 Gauss. 

 



The most stable arrangement of vortices is triangular. 
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or 

 

a = 2820 Å. 

 

 
 

Fig. Quantum fluxoids forming triangular lattice.  

________________________________________________________________________ 

5. A thick specimen of type I superconductor is known to have a critical field of 

500 Oe. It is found that a film of 5 x 10-5 cm thickness has a critical field of 

550 Oe. What value would you expect for the critical field of a sample of only 

10-6 cm thickness? You may assume that the penetration of field into the 

superconductor is as given by the London theory and that the penetration 

depth is independent of magnetic field and you may neglect demagnetization 

effects. 



 

((Solution)) 

Type-I superconductor 

 

Hc = 500 Oe. 

 

From Problem ((10-2)) Kittel 8th edition, 
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where  is the thickness and l is the penetration depth. 

Suppose that 
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where  is constant. 

 

For  = 5 x 10-5 cm,   Hc' = 550 Oe. 

 

Then we get 
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________________________________________________________________________ 

6. In a tunneling experiment using a junction of Sn and Al at 2 K, the I vs V 

characteristic as shown in Fig.1 was obtained. What can be deduced from 

this value? 



 

 
 

((Solution)) 

 

Tc = 3.72 K for Sn 

Tc = 1.14 K for Al 

 

 
 

 

At T = 2 K, Sn is in the S-state, but Al is in the N-state. Then Sn-Al junction is a junction 

of S-I-N, where I is an insulator. In this case, V = 0.5 meV corresponds to e/ , where 

2 is the energy gap of Sn.  

 

25.02  = 1.0 meV. 

 

This value is close to the accepted value 1.15 meV. 

 

 cBTkK 5277.3)0(2 1.12478 meV (BCS theory). 

 

((Note)) 

 

1 meV = 1.602176487 x 10-15 erg 



 

________________________________________________________________________ 

7. An electric current is passing through a junction that consists of Pb and Al 

separated by a very thin insulating layer. The plot of tunnel current against 

applied voltage at T = 0.5 K is shown schematically in Fig.2(a), the maximum 

and minimum being at voltages V1 = 11.8 x 10-4 V and V2 = 15.2 x 10-4 V, 

respectively. Explain the shape of the curve and derive values for the energy 

gaps of superconducting Pb and Al. At what temperature the maximum and 

minimum to disappear to yield a curve as shown in Fig.2(b)? You may 

assume that the energy gap of a superconductor does not change appreciably 

in the temperature range from 0 K to (1/2)Tc. 

 

 
 

((Solution)) 

Pb: Tc = 7.20 K 

Al: Tc = 1.20 K 

 

 

 
 

At T = 0.5 K, Pb and Al are in the S-state. 21 and 22 are the energy gap of 

superconductor S1 (Pb) and the superconductor S2 (Al). 
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Then we get 

 

52.1221  eV  meV,  18.1121  eV  meV, 

 

or 

 

35.11   meV for Pb,  17.02   meV for Al, 

 

For 1.2K≤T<7.2 K, 

 

Pb is in the S-state, while Al is in the N-state. 

 

35.11
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
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e
V  mV. 

 

_____________________________________________________________________ 

8. Estimate the penetration depth and coherence length for pure Sn, where  

critical temperature Tc = 3.7 K, 

density  = 7.3 g/cm3, 

atomic molar mass M = 118.7 g/mol 

effective mass m* = 1.9 m (m; mass of electron) 

 

((Solution)) 

 

Suppose that each atom has one electron. The electron concentration n is 
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The London penetration depth is evaluates as 
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The Fermi velocity is given by 
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((Mathematica)) 
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