
Chapter 18 

 

Temperature, heat, and the first law of thermodynamics 

 

1 Temperature 

Typically there are three kinds of temperature units. 

 

C (Celsius), F (Fahrenheit), and K (Kelvin). 
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TC: 

The steam point of water is defined to be 100ºC. The ice point of water is 

defined to be 0ºC. The length of the column between these two points is 

divided into 100 equal segments, called degrees. TC is the temperature in 

Celsius 

 

TK: 

Absolute zero is used as the basis of the absolute temperature scale. The size 

of the degree on the absolute scale is the same as the size of the degree on the 

Celsius scale. T is the Kelvin (absolute) temperature 

 

TF: 

Ice point temperatures: 0ºC = 273.15 K = 32ºF. Steam point temperatures: 

100ºC = 373.15 K = 212ºF. 

Note that 212 F – 32 F = 180 F. 

 



 
 

 

2 Thermal expansion 

Thermal expansion is the increase in the size of an object with an increase in its 

temperature. Thermal expansion is a consequence of the change in the average 

separation between the atoms in an object. If the expansion is small relative to the 

original dimensions of the object, the change in any dimension is, to a good 

approximation, proportional to the first power of the change in temperature. 

 

(a) Linear expansion 
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where  is the coefficient of linear expansion. 

 

(b) Volume expansion 
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with 

 

 3  

 

where  is the coefficient of volume expansion. 



 

3 Unit of Heat 

Heat is the energy transferred between a system and its surroundings because of 

their temperature difference. Heat flow Q is positive when energy flows into a system 

and negative when heat flows out. The heat is measured in the units of J (Joules), 

calories, and British thermal units (Btu). 

1 cal = 4.186 J (see the Appendix). 

1 Btu = 252 cal = 1054 J. 

 

((Definition)) 

1 cal is defined as the heat necessary to raise the temperature of 1 g of water from 

14.5 °C to 15.5 °C. 

 

((Definition)) 

1 Btu is defined as the heat required to raise the temperature of 1 lb of water from 

63 F to 64 F. 

 

Tc = (5/9) TF 

1 lb = 453 g 

1 Btu=(453 g) x (5/9) x 1 cal/g = 251.67 cal 

 

4  Calorie  

A calorie is a unit of measurement for energy. In most fields, it has been replaced 

by the joule, the SI unit of energy. However, the kilocalorie or calorie remains in 

common use for the amount of food energy. The calorie was first defined by 

Professor Nicolas Clément in 1824 as a kilogram-calorie and this definition entered 

French and English dictionaries between 1842 and 1867. 

The calorie was never an SI unit. Modern definitions for calorie fall into two 

classes. The small calorie or gram calorie approximates the energy needed to increase 

the temperature of 1 gram of water by 1°C. This is about 4.186 joules. The large 

calorie or kilogram calorie approximates the energy needed to increase the 

temperature of 1 kg of water by 1°C. This is about 4.186 kJ, and exactly 1000 small 

calories. The conversion factor among calories and joules is numerically equivalent to 

the specific heat capacity of liquid water (in SI units). 

 

1 calIT = 4.1868 J (1 J = 0.23885 calIT) (International Steam Table calorie, 1956)  

1 calth = 4.184 J (1 J = 0.23901 calth) (Thermochemical calorie)  

1 cal15 = 4.18580 J (1 J = 0.23890 cal15) (15°C calorie)  

 

5 Heat and thermal energy 



When heat is transferred to a system, the temperature of the system increases. 

When the heat is removed from the system, the temperature of the system decreases. 

The relationship between the heat absorbed (Q) that is transferred and the change in 

temperature (ΔT) is 

 
 

TCQ  . 

 

The proportionality constant C is called the heat capacity (C). The heat capacity is the 

amount of heat required to raise the temperature of an object or substance one degree. 

The temperature change T = Tf – Ti) is the difference between the final temperature 

(Tf) and the initial temperature (Ti). The unit of C is J/K.  

The heat capacity Cp at a constant pressure P is defined by 
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where Q is the heat absorbed as the temperature rises by T. The heat capacity CV at 

a constant volume V is defined by 
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((Note)) 

Typical dimensions of the quantities are as follows. 

 

Q heat absorbed  cal 

C heat capacity  cal/K 

T temperature  K 

 

6 Specific heat 

The heat required for the temperature change T of mass m is given by 



 

TmcQ   

 

where c is a quantity, different for different materials, called the specific heat of the 

material. 

 

[c] = 1 cal/g K = 4.186 J/g K = 4.186 x 103 J/kg K. 

 

((Note)) 

Typical dimensions of the quantities are as follows. 

 

 cgs units SI units 

 

c specific heat  cal/(g K) J/(kg K) 

Q heat absorbed  cal  J 

m mass   g  kg 

 

7 Molar specific heat 

The heat required for temperature change of n mole is given by 

 

TncQ   

 

where c is the molar heat capacity. For water, we have  

 

c = 18 cal/(mol K) = 18 x 4.186 J/(mol K) = 75.3 J/(mol.K). 

 

((Note)) 

The molar mass of water is 18.0 g/mol. [cal/mol K] = [cal/g K] [g/mol] 

 

8 Latent heat of water 

To change 1 kg of ice at 0 ºC to 1 kg of liquid water at 0 ºC and normal 

atmospheric pressure requires 3.33 x 105 J/kg of heat. The heat required per unit mass 

is called the latent heat of fusion. The corresponding latent heat is given by 

 

Q = mLF 

 

where LF is the specific latent heat (LF = 3.33 x105 J/kg = 79.6 cal/g = 143 Btu/lb) and 

m is the mass.  

To change 1 kg of liquid water at 100 ºC to 1 kg of water vapor at 100 ºC and 

normal atmospheric pressure requires 2.256 x 106 J/kg of heat. The heat required per 



unit mass is called the latent heat of vaporization. The equation of the corresponding 

latent heat is given by 

 

Q = mLV 

 

where LV = 2.256 x106 J/kg = 539 cal/g = 970 Btu/lb. 

 

 
((Note)) 

 

We use 

 

Cwater = 4180 J/kg.K = 4.180 J/g.K 

Cice= 2220 J/kg.K = 2.22 J/g.K 

 

in solving the problems. 

 

9. van der Waals gas 

(a) Definition 

An equation of state called the van der Waals equation describes the behavior of 

many real gases over a wide range of pressures more accurately than does the ideal-

gas equation of state ( RTTkNPV BA  . The van der Waals equation for 1 mole of 

gas is  
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where a and b are constants Figure shows the PV isothermal curves for a substance at 

various temperature. Except for the region where the liquid and vapor coexist, these 

curves are described by the van der Waals equation, and can be used to determine the 

constants a and b. 
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Fig. P-V phase diagram for the van der Waals gas with constant 

temperature (isotherm) exhibiting an unstable portion where 

0/  VP . cr TTt / . tr = 0.85 (red) and 1.0 (blue). 

 

(b) Critical points for the van der Waals gas 
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From Eqs.(1) - (3), we have 
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Here we define the dimensionless variables by  
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In terms of pr, vr, tr, all gases look like - if they obey the van der Waals equation. 
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Fig. pr vs vr at tr = 1. 

 

(c) Critical behavior 

To examine the critical behavior, we write 
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where , , and can be regarded as small. We obtain the universal equation 
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or expanding 
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10 The change of phase for water 

The water consists of the solid phase, the liquid phase, and the gas phase. 

(1) The first-order phase transition between the solid phase (ice) and the liquid 

phase (water), with latent heat LF. 



(2) The first-order phase transition between the liquid phase (water) and the vapor 

phase, with the latent heat LV. 

 

 
 

 
 

11 Unusual behavior of water around 4 °C 
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At room temperature, liquid water becomes denser with lowering temperature, 

just like other substances. But at 4 °C, just above freezing, water reaches its 

maximum density, and as water cools further toward its freezing point, the liquid 

water, under standard conditions, expands to become less dense. The physical reason 

for this is related to the crystal structure of ordinary ice, known as hexagonal ice Ih. 

The reason that the common form of ice is less dense than water is a bit non-intuitive 

and relies heavily on the unusual properties inherent to the hydrogen bond. 

Generally, water expands when it freezes because of its molecular structure, in 

tandem with the unusual elasticity of the hydrogen bond and the particular lowest 

energy hexagonal crystal conformation that it adopts under standard conditions. That 

is, when water cools, it tries to stack in a crystalline lattice configuration that stretches 

the rotational and vibrational components of the bond, so that the effect is that each 

molecule of water is pushed further from each of its neighboring molecules. This 

effectively reduces the density ρ of water when ice is formed under standard 

conditions. 

The unusual expansion of freezing water (in ordinary natural settings in relevant 

biological systems), due to the hydrogen bond, from 4 °C above freezing to the 

freezing point offers an important advantage for freshwater life in winter. Water 

chilled at the surface increases in density and sinks, forming convection currents that 

cool the whole water body, but when the temperature of the lake water reaches 4 °C, 

water on the surface decreases in density as it chills further and remains as a surface 

layer which eventually freezes and forms ice. Since downward convection of colder 

water is blocked by the density change, any large body of fresh water frozen in winter 

will have the coldest water near the surface, away from the riverbed or lakebed. 

 



 
 

 

12 Thermal diffusion, heat transfer 

There are various mechanisms responsible for the transfer. The mechanisms 

include 

(a) Conduction 

It is an energy transfer via the conducting material.  

(b) Convection 

It occurs when temperature differences cause an energy transfer by motion within 

a fluid. 

(c) Radiation 

It is an energy transfer via the emission of electromagnetic energy. 

 

12 Thermal conductivity 

12.1 Formulation 

Consider a slab of face area A and thickness L, whose faces are maintained at 

temperatures TH and TC by a hot reservoir and a cold reservoir. Let Q be the energy 

that is transferred as heat through the slab, from its hot face to its cold face, in time t. 

The conduction rate  (the amount of energy transferred per unit time) is 
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where  is a thermal conductivity. The unit of  is W/m K. The unit of  is W (= J/s). 

 

12.2 Series connection 

Two slabs of thickness L1 and L2 and thermal conductivities 1 and 2 are in 

thermal contact with each other. The temperatures of their outer surfaces are TH and 

TC respectively, and TH>TC. Determine the temperature at the interface and the rate of 

energy transfer by conduction through the slabs in the steady-state condition. 
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We can extend this equation to any number n of materials making up a slab, 
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12.3 Parallel connection 
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13 Typical Example of thermal conductivity 

13.1 Cylinders 

The inside of a hollow cylinder is maintained at a temperature Ta, while the out 

side is at a lower temperature Tb. The wall of the cylinder has a thermal conductivity 

. Ignoring end effects, the rate of energy conduction from the inner to the outer 

surface in the radial direction is 
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((Proof)) 
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13.2 Example-2: spherical shells 

A spherical shell has inner radius r, inner radius a, outer radius b It is made of 

material with thermal conductivity . The interior is maintained at Ta and the exterior 

at Tb. After an interval of time, the shell reaches a steady state with the temperature at 

each point within it remaining constant in time. The rate of energy conduction from 

the inner to the outer spherical shell in the radial direction is 
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From this, we have 
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14 Radiation 

Radiation does not require physical contact. All objects radiate energy 

continuously in the form of electromagnetic waves due to thermal vibrations of the 

molecules.  

 

((Example of the radiation)) 

(H.E. White, Classic and Modern Physics, 1940). 

When the sun comes over the horizon in the early morning the heat can be felt as 

soon as the sun becomes visible. This heat, called radiation, travels with the speed of 

light. In fact, heat waves are light waves of a little longer wave-length, having all the 

general properties known to visible light. The essential difference between the two is 

that heat rays, sometimes called infrared rays, are not visible to the human eyes.  

A demonstration of the reflection of infrared rays is diagramed in Fig. A candle 

flame acting as a source at F emits light and heat rays in all directions. Of these rays 

only the one travelling in the direction of the concave mirror M1 are reflected into a 

parallel beam. Arriving at the second concave mirror M2, these rays are again 

reflected, being brought together to a focus on the exposed junctions of a thermo-pile 

T. As the junctions of the thermopile warm up and a electric current is produced, 

causing the ammeter pointer P to move to the right. When the candle is removed the 

pointer returns to zero  

 



 
 

Fig. Reflection of heat rays by concave mirrors. 

 

14.1 Black body 

 

 
 

Fig. A photon entering a cavity through a small hole is effectively absorbed, so 

that the cavity represents a blackbody. 

 

((Atkins Quanta)) 

A black body is one that absorbs all the radiation incident upon it. A practical 

example is a container completely sealed except for a tiny pinhole: this hole behaves 



as a black body because all light incident on it from outside passes through and, once 

in, cannot escape through the vanishingly small hole. Inside it experiences an 

indefinitely large number of reflections before it absorbed, and these reflections have 

the result that the radiation comes into thermal equilibrium with the wall. Within the 

cavity we can imagine the electromagnetic field as having a distribution of 

frequencies characteristic of the temperature of the walls.  

The presence of the hole enables a small proportion of this equilibrium radiation 

to seep out and be detected, and the distribution of wavelength in the black-body 

radiation is the same as the distribution within the equilibrium enclosure because the 

pinhole is a negligible perturbation 

The radiant energy flux density from a black surface at a temperature T is equal to 

the radiant energy density emitted from a small hole in a cavity at the same 

temperature T.  

 

14.2 Emission and absorption: Kirchhoff law 

If a non-black object at T absorbs a fraction a of the radiation incident upon it, the 

radiation flux emitted by the object will be a times the radiation flux emitted by a 

black-body at the same temperature. The object must emit at the same rate as it 

absorbs if equilibrium is to be maintained: a = e. 

 

 
 

((Example)) 

There exists a very close connection between the emissivity e and the absorptivity 

a of a body. A good emitter of radiation is also a good absorber of radiation, and vice 

versa. This is a qualitative statement of Kirchhoff’s law.  

 



 
Fig. A classical experiment illustrating Kirchhoff’s law. The container is filled 

with hot water. Its left side is silvered on the outside so that it is a poor 

absorber. Its right side is blackened so that it is a good absorber. Since the left 

side is then a poorer emitter of radiation than the right side, the thermometer 

on the left is found to indicate a lower temperature than the one on the right. 

 

14.3 Stefan-Boltzman law 

The Stefan–Boltzmann law, also known as Stefan's law, states that the total 

energy radiated per unit surface area of a black body in unit time (known variously 

as the black-body irradiance, energy flux density, radiant flux, or the emissive power), 

J, is directly proportional to the fourth power of the black body's thermodynamic 

temperature T (also called absolute temperature): 

 
4TJ   (W/m2) 

 

where J has dimensions of energy per time per unit area and ε is the emissivity of the 

blackbody. If it is a perfect blackbody, ε = 1. The constant of proportionality σ, 

called the Stefan–Boltzmann constant or Stefan's constant. The value of the constant 

is 
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where kB is the Boltzmann constant, h is Planck's constant (h = 2 ℏ ) and c is the 

speed of light in a vacuum. The rate of energy transfer is given by Stefan’s law 

 
4AeTAJP   (W) 

 

where A is the surface area of the object. 

 



((Mathematica)) 

Physconst = 9kB → 1.3806504 10
−23

, c → 2.99792458 10
8
, h → 6.62606896 10

−34
,

— → 1.05457162853 10
−34=

9kB → 1.38065×10
−23

, c → 2.99792 × 10
8
, h → 6.62607 ×10

−34
, — → 1.05457 ×10

−34=

σ =
2 π5 kB4

15 c2 h3
ê. h → 2 π — êê Simplify

kB4 π2

60 c2 —3
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14.4 Energy absorption and emission by radiation 

With its surroundings, the rate at which the object at temperature T with 

surroundings at T0 radiates is 
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When an object is in equilibrium with its surroundings, it radiates and absorbs at the 

same rate. Its temperature will not change. 

 

14.5 The temperature at the surface of sun 

One can measure the average flux of solar energy arriving at the Earth. This value 

is called the solar constant and is equal to 1370 W/m2. Imagine a huge sphere with a 

radius of a = 1 AU (=1.49597870 x 1011 m) with the sun at its center. Each square 

meter of that sphere receives  

 

p0 = 1370 W/m2 

 

of power from the sun. 

 

((Note)) The order of the energy (per second) transferred from the sun to the Earth is 

roughly estimated as 
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Fig. Luminosity of the sun. a = 1 AU. Sun is located at the center of sphere with 

radius a (=1 AU). 

 

So we can calculate the total energy output of the sun by multiplying the solar 

constant by the sphere’s area with a radius a (= 1 AU). The result, called the 

luminosity of the sun, is 
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where a = 1 AU. 

 

Using the Stefan-Boltzmann law, we can estimate the surface temperature of the sun. 
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14.6 Temperature of the Earth 

We can use the Stefan-Boltzmann law to estimate the temperature of the Earth 

from first principles. The Sun is a ball of glowing gas of radius 5109599.6 SunR km 

and surface temperature 5780SunT K. Its luminosity is 
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according to the Stefan-Boltzmann law. The Earth is a globe of radius 6372ER  km 

located an average distance 81049597870.1 a km (= 1 AU) from the Sun. The 

Earth intercepts an amount of energy 
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per second from the Sun's radiative output: i.e., the power output of the Sun reduced 

by the ratio of the solid angle subtended by the Earth at the Sun to the total solid 

angle 4.  
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The Earth absorbs this energy, and then re-radiates it at longer wavelengths (the 

Kirchhoff’s law). The luminosity of the Earth is 

 
42

0

2
4 EEEE TRpRL   ,  (W) 

 

according to the Stefan-Boltzmann law, where TE is the average temperature of the 

Earth's surface. Here, we are ignoring any surface temperature variations between 

polar and equatorial regions, or between day and night. In steady-state, the luminosity 

of the Earth must balance the radiative power input from the Sun, we arrive at  
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Remarkably, the ratio of the Earth's surface temperature to that of the Sun depends 

only on the Earth-Sun distance and the radius of the Sun. The above expression yields 

TE = 278.78 K. This is slightly on the cold side, by a few degrees, because of the 

greenhouse action of the Earth's atmosphere, which was neglected in our calculation. 

Nevertheless, it is quite encouraging that such a crude calculation comes so close to 

the correct answer. 

 

14.7 Evaluation of the average surface temperature of our solar system 

 

The average surface temperature of the planet may be expressed by 
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where d is the mean distance from the Sun and d(AU) is the same distance in units of 

AU. The values of d, the calculated surface temperature Tav, and the reported surface 

temperature Tobs for each planet are listed in Table. 

 

___________________________________________________________________ 

Planet d (AU) Tav [K] Tobs [K] 

 

Mercury 0.24 569.0 700 

 

Venus 0.61 356.9 740 

 

Earth 1 278.8 287.2 

 

Mars 1.52 226.1 227 

 

Jupitor 5.20 122.3 165 (1 bar level) 

   112 (0.1 bar level) 



 

Saturn 9.53 90.3 134 (1 bar level) 

   84 (0.1 bar level) 

 

Uranus 19.19 63.6 76 (1 bar level) 

   53 (0.1 bar level) 

 

Neptune 30.06 50.8 72 (1 bar level) 

   55 (0.1 bar level) 

 

Pluto 39.53 44.3 K 44 

__________________________________________________________________ 

 

((Mathematica)) 

 



cal=4.19 J, ,

sSB=Stefan-Boltzmann constant (W/m2 K 4),

Mea = 5.9736 x 1024 kg; Mass of the earth,

Rea=6372.797 km, radius of the earth,

Msun=mass of sun (kg) =Solar mass

Rsun=radius of Sun (m)=Solar radius

light year=a distance light travels in a vacuum in one year=9.4605 x 1015 m,

Parsec HpcL = a unit of distance = 3.26 light yeras = 30.857 x 1015 m,

AU = astronomical unit = average distance between the Earth and the Sun = 1.49597870 x1011 m

p0 = solar constant (W/m2)

Physconst = 9cal → 4.19, Mea → 5.9736 10
24
,

σSB → 5.670400 10−8, Rea → 6.372 106 , Msun → 1.988435 1030,

Rsun → 6.9599 10
8
, ly → 9.4605 10

15
, pc → 30.857 10

15
,

AU → 1.49597870 10
11
, p0 → 1370=

9cal → 4.19, Mea → 5.9736×10
24
, σSB → 5.6704×10

−8
,

Rea → 6.372×10
6
, Msun → 1.98844×10

30
, Rsun → 6.9599× 10

8
,

Mmoon → 7.3483×10
22
, ly → 9.4605× 10

15
,

pc → 3.0857×10
16
, AU → 1.49598×10

11
, p0 → 1370=

Total heat (cal) per sec to the Earth from the Sun

π Rea2 p0

cal
ê. Physconst

4.17069×10
16

Luminosity of Sun

Lsun = 4 π HAUL2 p0 ê. Physconst

3.85284×10
26

Temperature of Sun

eq1 = SolveAII4 π Rsun2 σSB Tsun4M ê. PhysconstM � Lsun, TsunE;
Tsun ê. eq1@@4DD
5780.13

Luminosity of Earth

Lea = p0 Iπ Rea2M ê. Physconst

1.74752×10
17

Temperature of Earth

eq2 = SolveAII4 π Rea2 σSB Tea4M ê. PhysconstM � Lea, TeaE;
Tea ê. eq2@@4DD
278.78  

 



 

14.7 Radiation spectrum of the sun 

We have a useful relation for the blackbody radiation, which is called a Wien’s 

displacement law 

 

6

max 10
897768551.2
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T
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where T is the absolute temperature [K] and max is the wavelength (nm) at which the 

radiation intensity maximum. This law is directly derived from the Planck’s law of 

black-body radiation. The peak of the sun’s spectrum is 484 nm.  

 

 
 

Using the Wien’s displacement law, the temperature of the sun can be estimated as 
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14.7 Cosmic background radiation; direct evidence of Big Bang 

Arno Penzias and Robert Wilson (Bell Lab, 1965) 

No matter where in the sky they pointed their antenna, they detected faint 

background noise. They had discovered the cooled-down cosmic background 

radiation left over from the hot Big Bang. The spectrum of the cosmic microwave 

background shows a peak at max = 1.063 mm. Using the Wien’s displacement law, 

the temperature of the cosmic background radiation is estimated as 
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  (Wien’s displacement law) 

 

 
 

Fig. Experimental measurements of the spectrum of the cosmic 

blackbody radiation. The x axis is the wavenumber k defined 

by k = 2/. 

 

Dicke and Peebles (1960) 

Early universe had been at least as hot as the Sun center. The hot early universe 

must therefore have been filled with many high-energy, short-wavelength photons, 

which formed a radiation field with that can be given by Planck’s blackbody law. The 

universe has expanded so much since those ancient times that all those short-

wavelenghth photons have their wavelengths stretched by a tremendous factor. As a 

result, they have becomes low-energy, long-wavelength photons. 

 

The detail of the Hubble law is discussed in the Appendix and Chapter 17. (Chapter 

17 will be taught in Phys.132). 

 

15 Zeroth law of thermodynamics 

If objects A and B are separately in thermal equilibrium with a third object C, 

then A and B are in thermal equilibrium with each other. 

Two objects in thermal equilibrium with each other are at the same temperature. 

 

16 First law of thermodynamics 



If one has a system and puts heat into it, and does work on it, then its energy is 

increased by the heat put in and the work done. 

 

First law of thermodynamics is about the relationship of heat, work, and energy. 

1. Internal energy is a function of state. 

2. Heat is a form of energy. 

 

U W Q      (1) 

 

where 

 

U: change in the internal energy 

W: work done on the system 

Q: heat which flows into the system. 

 

 
 

For terms on the right hand side of Eq.(1) the sign is taken as positive when energy is 

added to the system. In other words, if heat flows from system to surroundings, Q is 

negative. Similarly, if the syste does work on the surroundings, W is negative. 

 

Work W 

We call the transfer of energy “work”, if it involves an ordered process like a 

force pushing a piston. 

 

Heat Q 



We call it “heat”, if it involves energy in a disordered form like the thermal motions 

of atoms in a solid or of molecules in a gas. 

 

Internal energy of the system  U 

 

17 The first law of thermodynamics (II) 

If the surroundings exert a constant pressure P, the work done on the system is 

 

VPW   

 

where V is the change of volume of the system. Then we have 

 

Q U P V      

 

In the case of CV (heat capacity at constant volume), V = 0, 
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In the case of CP (heat capacity at constant pressure), P = 0, 
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The term P
T

V
P )(




 is the extra energy required to push back surroundings. 

 

18. Ideal gas 

The ideal gas is one which obeys Boyle’s and Joule’s laws at all temperatures and 

pressures. Real gases do not obey these laws at all temperatures and pressures (van 

der Waals). 

 

(1) 

In particular, an ideal gas does not condense to a liquid, because there is no 

attractive force between its molecules to make them come together, where all 

real gases condense at sufficiently low temperatures.  

(2) 

On the other hand, if T is not too low and the pressure not to high, real gases 

do obey the Boyle’s and Joule’s laws quite well. 

 



(a) Boyle’s law 

If T of a given mass of gas is kept constant, then the product PV is constant. 
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where NA is the Avogadro number; 

 

NA = 6.02214179 x 1023/mol. 

 

kB is the Boltzmann constant,  

 

kB = 1.3806488 x 10-23 J/K 

 

and n is the number of moles, n = N/NA. R is the gas constant. 

 

R = NA kB = 8.3144621 J/mol K 

 

((Example)) 

 

P = 1 atm = 1.01325 x 105 Pa. T = 273 K. n = 1 mole. 
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nRT
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which is independent of the kinds of gases 

 

(b) Joule’s law 

The internal energy of an ideal gas depends only on its temperature. 

 

( )U U T  

 

This is derived from the 2nd law of thermodynamics. In general, the change of E when 

the temperature changes from T to T + dT and the volume changes from V to V + dV, 

is expressed by 
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Suppose that U depends only on T. Then we have 
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U
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If we warm the gas an infinitesimally small amount dT at a constant volume V,  

 

dU dQ dW dQ    

 

since 0 PdVdW . So that changes in E will always be given by 
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V

Q
dU dT C dT
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  (Joule’s law) 

 

This is a very important law. We use this equation hereafter. 

 

(c) Historical remark on the free expansion experiment (Joule’s law) 

 

The fact that the internal energy E of a gas does not depend on its volume (if the 

gas is sufficiently dilute that it can be considered ideal) was verified in a classical 

experiment by Joule. He made use of the free expansion of an ideal gas as illustrated 

in Fig. 

 

 
 

 

A container consisting of two compartments separated by a valve is immersed in 

water. Initially, the valve is closed and one compartment is filled with the gas under 

investigation, while the other compartment is evacuated. Suppose that the valve is 



now opened so that the gas is free to expand and fill both compartments. In this 

process no work gets done by the system consisting of the gas and container. (The 

container walls are rigid and nothing moves.). Hence one can say, by the first law, 

that the heat absorbed by this system equals its increase in internal energy. 

 

Q = U 

 

Assume that the internal energy change of the (thin-walled) container is negligibly 

small. Then E measures simply the energy change of the gas. Joule found that the 

temperature of the water did not change in this experiment. (Because of the large heat 

capacity of the water, any anticipated temperature change is, however, quite small; 

Joule’s actual sensitivity of temperature measurement was, in retrospect, rather 

inadequate.). Thus the water absorbed no heat from the gas; consequently, the heat 

absorbed by the gas also vanished. All that happens in the experiment is that the 

temperature of the gas remains unchanged with its volume changes from its initial 

value Vi to its final value Vf. Since Q = 0, Joule’s experiment leads by virtue of Q 

= E to the conclusion 
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19 Isothermal process 

An isothermal process occurs at a constant temperature. An example would be to 

have a system immersed in a large constant-temperature bath. Any work energy 

performed by the system will be lost to the bath, but its temperature will remain 

constant. In other words, the system is thermally connected, by a thermally 

conductive boundary to a constant-temperature reservoir. 

The expression for the work done by a force can be used to derive that for work 

done by hydrostatic pressure. We consider a substance in a cylinder with a frictionless 

piston of area A. The work done dW on the system is 

 

PdVPAdxFdxdW   

 

The negative sign is present because when the piston moves in (dx positive), the 

volume decreases (dV negative). So 

 

AdxdV   



  
 

For an ideal gas 
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where NA is the Avogadro number, kB is the Boltzmann constant, and n is the number 

of moles. The work done on the system (gas) is given by 
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where Vi and Vf are the initial and final volumes. The work done in the expansion is 

the area under the curve in a PV diagram. W>0 for compression and W<0 for 

expansion. 

 



((Note)) 

 


f

i

V

V

PdV  is the area enclosed by the P vs V curve and P = 0 between Vi and Vf 

 

PdV: Work done by the system (gas) 

 

-PdV: work done on the system (gas) 

 

In order to avoid the confusion, it is preferable to use Ws for the work done by the 

system, 

 

WWs   

 

where W is the work done on the system. 

 

20 Adiabatic process 

An adiabatic process is a process in which there is no energy added or subtracted 

from the system by heating or cooling. For a reversible process, this is identical to an 

isentropic process. We may say that the system is thermally insulated from its 

environment and that its boundary is a thermal insulator. For a adiabatic change,  

 

dQ = 0,  

 

we have 

 

VdU dW PdV C dT     

 

Differentiating RTPV  (n = 1), we get another formula for dT 

 

VdPPdVRdT   

 

Multiplying Cv on both sides 

 

VdPCPdVCdTRC VVV   

 

Eliminating dT, 
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Since RCC VP   (Mayer’s relation, see Sec. 21), we have 
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Here we define 
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Then we can get 
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PV

dV 1
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or 

 

constPV  )ln()ln(  

 

or 

 

constPV     (Poisson) 

 

Since PV = RT,  

 

constTV 1  

 

The work done in expanding from a state (Pi, Vi) to a state (Pf, Vf) is given by 
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where 

 


ffii VPVPPV  . 

 

21 Mayers’s relation 

We derive a formula for the difference of CP and CV. If we warm a gas (n = 1 

mol) slightly at constant P, we have 
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Then we have 

 

RCC VP    (Mayer’s relation) 
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22 Mayer’s cycle 

Using the Mayer’s cycle, we show the Mayer’s relation,  

 

 
 

1: (P1, V1, T1),  P1V1 = RT1 

2: (P2, V2, T2),  P2V2 = RT2 (T2 = T1). 

3: (P2, V1, T3)  P2V1 = RT3 

 

(1) The process 1→2 (adiabatic free expansion, irreversible process) 



 

012 Q , W12 = 0. 

 

So we have 

 

U12 = 0 (T1 = T2). 

 

(2) The process 2→3 (pressure constant) 
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(3) The process 3→1 (volume constant) 
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Then we have  
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From this we have the Mayer’s relation;  RCC VP  . 

 

((Note)) Adiabatic free expansion 

An adiabatic free expansion of an ideal gas, where a greater volume suddenly 

becomes available to the gas, is an irreversible process which proceeds through a 

chaotic non-equilibrium path. Nonetheless we can characterize the beginning and end 

points and the net values of relevant changes in energy. Since the gas expands against 

a vacuum it does no work and thus 

 

0W . 

 

Combining this with our requirement that the process is adiabatic we have 

 

0U Q W       



 

((Wikipedia) Adiabatic free expansion 

Free expansion is an irreversible process in which a gas expands into an insulated 

evacuated chamber. Real gases experience a temperature change during free 

expansion. For an ideal gas, the temperature doesn't change, and the conditions before 

and after adiabatic free expansion satisfy PiVi = PfVf, where P is the pressure, V is the 

volume, and i and f refer to the initial and final states. 

During free expansion, no work is done by the gas. The gas goes through states of 

no thermodynamic equilibrium before reaching its final state, which implies that one 

cannot define thermodynamic parameters as values of the gas as a whole. For 

example, the pressure changes locally from point to point, and the volume occupied 

by the gas (which is formed of particles) is not a well defined quantity. 

 

23 Constant  
Since CV = 3R/2 for a monatomic ideal gas (see Chapter 19), Mayer’s relation 

predicts  
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Then the ratio  is 
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When f is the degree of freedom (in general), the heat capacity CV is described by  

 

R
f

CV
2

 . 

 

Since 
2

)2( Rf
RCC VP


 , the ratio  is obtained as 

 

ff

f

C

C

V

P 2
1

2



  

 

Experimentally, one can determine the degree of freedom from the value of . 
 



 
 

24 Physical constants (NIST) 

 

NA: Avogadro number 

NA = 6.02214179 x 1023 mol-1. 

kB Boltzmann constant 

kB = 1.3806488 x 10-23 J K-1 

R gas constant 

R = NA kB = 8.3144621 J mol-1 K-1= 1.9862 cal mol-1 K-1 

 Stefan-Boltzmann constant 

 = 5.670400 x 10-8 W m-2 K-4 

ħ Planck’s constant 

ħ (= h/2) = 1.05457162853x 10-34 J s 

 

25. Summary of units and physics constants 

 

1 cal = 4.186 J 

1 Btu = 252 cal = 1054 J. 

LF = 3.33 x105 J/kg = 79.6 cal/g = 143 Btu/lb 

LV = 2.256 x106 J/kg = 539 cal/g = 970 Btu/lb. 

Cwater = 4180 J/kg.K = 4.180 J/g.K 

Cice= 2220 J/kg.K = 2.22 J/g.K 

p0 = 1370 W (solar constant) 

WpaLsun

26

0

2 10853.34   (luminosity of the Sun, a = 1 AU) 

 



_____________________________________________________________________ 

26. Problems related to the coefficient of thermal expansion, heat capacity, 

and thermal conductivity 

_____________________________________________________________________ 

26.1  

 

Problem 18-21***(SP-18)   (10-th edition) 

 

As a result of a temperature rise of 32°C, a bar with a crack at its center buckles 

upward (Fig.). If the fixed distance L0 is 3.77 m and the coefficient of linear 

expansion of the bar is 25 x 10-6/°C, find the rise x of the center. 

 

 
 

((Solution)) 

L0 = 3.77 m 

 = 25 x 10-6/°C 

T = 32°C 

 

 



 

In the above figure, 
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_____________________________________________________________________ 

26.2 

 

Problem 18-31** (HW-18)   (10-th edition) 

 

 

What mass of steam at 100°C must be mixed with 150 g of ice at its melting point, 

in a thermally insulated container, to produce liquid water at 50°C? 

 

Use  

Ls = 2256 x 103 J/kg (latent heat of evaporation) 

Cw = 4180 J/kg K (heat capacity of water) 

LF = 333 x 103 J/kg (latent heat of fusion) 

1 cal = 4.1868 J 

 

_____________________________________________________________________ 

26.3 

 

Problem 18-34** (SP-18)  (8-th edition) 

Problem 18-30** (SP-18)  (9-th edition) 

 



0.400 kg sample is placed in a cooling apparatus that removes energy as heat at a 

constant rate. Figure gives the temperature T of the sample versus time t; the 

horizontal scale is set by ts = 80.0 min. The sample freezes during the energy removal. 

The specific heat of the sample in its initial liquid phase is 3000 J/kg K. What are (a) 

the sample’s heat of fusion and (b) its specific heat in the frozen phase? 

 

 

 
 

 

((Solution)) 

 

m = 0.4 kg, Cliq=3000 J/kg K (heat capacity of the liquid) 

 

dt

dT
mC

dt

dQ
liq  

 

mLF = Latent heat 

 

dt

dT
mC

dt

dQ
sol  

 

_____________________________________________________________________ 

26.4 

 

Problem 18-41*** (SP-18)   (10-th edition) 

 

 



(a) Two 50 g ice cubes are dropped into 200 g of water in a thermally insulated 

container. If the water is initially at 25°C, and the ice comes directly from a freezer at 

-15°C, what is the final temperature at thermal equilibrium? (b) What is the final 

temperature if only one ice cube is used? 

used? 

 

((Solution)) 

mwater = 200 g at 25°C 

mice = 50 g at -15°C 

Lf = 333 x 103 J/kg = 333 J/g 

Cwater = 4180 J/kg.K = 4.180 J/g.K 

Cice= 2220 J/kg.K = 2.22 J/g.K 

 

(a)  

 

(i) The case-1 

We assume that two ices melt and that the equilibrium temperature is positive; Te>0. 

 

waterewater

ewaterFiceice
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The solution of 21 QQ   leads to Te = -12.54<0. So this is not the case. 

 

(ii) The case-2 

We assume that the ice is partially melted. 

In other words, x g become water at 0°C and (200 - x) g is still ice at 0°C.] 

waterwater

Ficeice

CmQ

xLCmQ

)25(

)15(2

4
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
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So we get x = 52.76 g 

 

(b) 

We assume that a ice (50 g) melt and that the equilibrium temperature is positive; 

Te>0. 
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The solution of 21 QQ   leads to Te = 2.47°C. So this is the case. 



_____________________________________________________________________ 

26.5 

 

Problem 18-42*** (HW-18)   (10-th edition) 

 

A 20.0 g copper ring at 0.000ºC has an inner diameter of D = 2.54000 cm. An 

aluminum sphere at 100.0ºC has a diameter of d = 2.54508 cm. The sphere is placed 

on top of the ring (Fig.), and the two are allowed to come to thermal equilibrium, with 

no heat lost to the surroundings. The sphere just passes through the ring at the 

equilibrium temperature. What is the mass of the sphere? 

 

 
 

((Solution)) 

d = 2.54508 cm at 100°C (Al) 

D0 = 2.54000 cm at 0°C (Cu) 

m(Cu) = 20 g 

T(Cu) = 0°C 

T(Al) = 100°C 

 

C(Cu) = 386 J/kg.K 

C(Al) = 900 J/kh.K 

 

(Cu) = 17 x 10-6 

(Al) = 23 x 10-6 
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26.6 

 

Problem 18-60** (SP-18)   (10-th edition) 

 

 

Figure shows the cross section of a wall made of three layers. The thickness of the 

layers are L1, L2 = 0.700 L1, and L3 = 0.350 L1. The thermal conductivities are 1, 2 = 

0.900 1, and 3 = 0.800 1. The temperatures at the left and right sides of the wall are 

TH = 30.0°C and TC = -15.0°C, respectively. Thermal conduction is steady. (a) What 

is the temperature difference T2 across layer 2 (between the left and right sides of 

the layer)? If 2 were, instead, equal to 1.1 1, (b) would the rate at which energy is 

conducted through the wall be greater than, less than, or the same as previously, and 

(c) what would be the value of T2? 

 

 
 

 

((Solution)) 

TH = 30°C,   TH = -15°C. 

L2 = 0.700 L1,  L3 = 0.350 L1 

k3 = 0.8 k1. 
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26.7 



 

Problem 18-61** (HW-18)   (10-th edition) 

 

A tank of water has been outdoors in cold weather, and a slab of ice 5.0 cm thick 

has formed on its surface (Fig.). The air above the ice is at -10ºC. Calculate the rate of 

ice formation (in cm/h) on the ice slab. Take the thermal conductivity of ice to be 

0.004 cal/s cm °C and its density to be 0.92 g/cm3. Assume no energy transfer 

through the tank. 

 

 
((Solution)) 

 

ice=0.0040 cal/s cm C, Lf = 3.33 x 105 J/kg = 79.50 cal/g 

ice = 0.92 g/cm3 

TC = -10°C, TH = 0°C. 
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26.8 Serway 

A pound of water at 0°C is covered with a layer of ice 4.0 cm thick. If the air 

temperature stays constant at -10°C, how long does it take for the ice thickness to 

increase to 8.0 cm?  

 

((Solution)) 

x = x0 = 4.0 cm at t = 0 

x = xf = 8.0 cm at t = tf. 

 = 0.917 x 103 kg/m3 

LF = 3.33 x 105 J/kg 

 = 2 W/(m K). 

 

 
 

We use the equation in the form 

 

x

T
A

dt

dQ 
   (1) 

 

where T = 10 K,  is the thermal conductivity of ice,  = 2 W/(m K). We also note 

that the incremental energy dQ extracted from the water through the thickness x of ice 

is the amount required to freeze a thickness dx of ice. That is,  

 

AdxLdQ F  (2) 

 



where  is the density of the ice ( = 0.917 x 103 kg/m3), A is the area, and LF is the 

Latent heat of fusion, LF = 3.33 x 105 J/kg. From Eqs.(1) and (2), we have a first order 

differential equation for x(t), 
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 (3) 

 

where 

 





FL

T
 = 6.55 x 10-8 [m2/s] = 6.55 x 10-4 [cm2/s] 

 

The solution of the differential equation Eq.(3) is as follows. 
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tx

x

dtxdx
00
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or 

 

txx 2
2

0   

 

where x = x0 at t = 0 (initial condition). 

 

It takes t = 10.1787 h for xf = 8.0 cm. 
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27 Problems related to the P-V phase diagram 

 

27.1 

 

Problem 18-49 (HW-18)  (10-th edition) 

 

Figure displays a closed cycle for a gas (the figure is not drawn to scale). The 

change in the internal energy of the gas as it moves from a to c along the path abc is -

200 J. As it moves from c to d, 180 J must be transferred to it as heat. An additional 

transfer of 80 J to it as heat is needed as it moves from d to a. How much work is 

done on the gas as it moves from c to d? 

 

 
((Solution)) 

Eabc = -200 J 

Qcd = 180 J 

Qda = 80 J 

Wda = 0 

 



Eda = 80 J 

 

Ecda = -Eabc = 200 J = Ecd + Eda = Ecd + 80 J 

 

 

27.2  

 

Problem 18-81 (SP-18)  (10-th edition) 

 

A sample of gas undergoes a transition from an initial state a to a final state b by 

three different paths (processes), as shown in the P-V diagram in Fig., where Vb = 

5.00 Vi. The energy transferred to the gas as heat in process 1 is 10 PiVi. In terms of 

PiVi, what are (a) the energy transferred to the gas as heat in process 2 and (b) the 

change in internal energy that the gas undergoes in process3? 

 

 

 
 

((Solution)) 

 

Vb = 5 Vi 
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Path 3 
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27.3 

 

Problem 18-75 (SP-18)  (10-th edition) 

 

Figure displays a closed cycle for a gas. From c to b, 40 J is transferred from the 

gas as heat. From b to a, 130 J is transferred from the gas as heat, and the magnitude 

of the work done by the gas is 80 J. From a to c, 400 J is transferred to the gas as heat. 

What is the work done by the gas from a to c (Hint: you need to supply the plus and 

minus signs for the given data.) 

 



 
 

((Solution)) 

Wcb =0 

Qcb = -40J 

Ecb = -40 J 

 

Qba =-130 J 

Wba = 80 J 

Eba = -50 J 

 

Qac = 400 J 
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27.4  

 

Problem 18-80 (SP-18)  (10-th edition) 

 

Figure (a) shows a cylinder containing gas and closed by a movable piston. The 

cylinder is kept submerged in an ice-water mixture. The piston is quickly pushed 

down from position 1 to position 2 and then held at position 2 until the gas is again at 

the temperature of the ice-water mixture; it then is slowly raised back to position 1. 



Figure (b) is a P-V diagram of the process. If 100 g of ice is melted during the 

cycle, how much work has been done on the gas? 

 

 
 

((Solution)) 

 

LF = 333 x 103 J/kg,  m = 0.10 kg. 

 

JmLmeltingiceQ F

41033.3)(   

 

In the one cycle of the P-V diagram,  

 

0 WQE  
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27.5  

 

Problem 18-69 (SP-18)  (10-th edition) 

 

Figure displays a closed cycle for a gas. The change in internal energy along ca is 

-160 J. The energy transferred to the gas is 200 J along path ab, and 40 J along path 

bc. How much work is done by the gas along (a) path abc and (b) path ab? 

 



 
 

((Solution)) 

Eca = -160 J, Qab = 200 J, Qbc = 40 J,  Wbc = 0. 

 

Ebc = Qbc+Wbc = 40 J 

Eab = -Ebc – Eca = 120 J 

 

Wab = Eab – Qab = 120-200 = -80J 

Wabc = Wab + Wbc = -80J 

 

27.6 

 

Problem 18-98  (10-th edition) 

 

The P-V diagram shows two paths along which a sample of gas can be taken from 

state a to state b, where Vb = 3.0 V1. Path 1 requires that energy equal to 5.0 P1V1 be 

transferred to the gas as heat. Path 2 requires that energy equal to 5.5 P1V1 be 

transferred to the gas as heat. What is the ratio P2/P1? 

 



 
 

((Solution)) 

 

For the path-1 (a→b). 
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28. Link 

 

Lecture Note (University of Rochester) 

http://teacher.pas.rochester.edu/phy121/LectureNotes/Contents.html 

 

Kirchhoff’s law 

http://en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal_radiation 

 

Stefan-Boltzmann law 



http://en.wikipedia.org/wiki/Stefan-Boltzmann_law 

 

Black body problem 

http://instruct1.cit.cornell.edu/Courses/astro101/lectures/lec09.htm 

 

Planck’s law 

http://en.wikipedia.org/wiki/Planck%27s_law_of_black_body_radiation 

 

Hubble’s law 

http://en.wikipedia.org/wiki/Hubble%27s_constant 

http://hyperphysics.phy-astr.gsu.edu/hbase/astro/hubble.html 

 

Cosmic background radiation 

http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiation 

http://csep10.phys.utk.edu/astr162/lect/cosmology/cbr.html 

http://www.astro.ubc.ca/people/scott/cmb_intro.html 

http://www.amtp.cam.ac.uk/user/gr/public/cmbr_home.html 
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__ 

APPENDIX 

 

A. Expanding Universe 

 

A.1. Hubble’s law 

 

Edwin Hubble (1920) 

 
Redshift of a receding object, 

 



z
c

v




0


 (1) 

 

where z is a redshift of an object, and v is a recessional velocity. 

 

1 pc = 3.09 x 1013 km = 3.26 ly 

 

1 Mpc = 3.26 x 106 ly. 

 

where pc is a parsec and ly is a light year. 

 

Hubble’s law 

 

dHv 0  (2) 

 

 
 

v is the recessional velocity of a galaxy, H0 is a Hubble constant, d is the distance to 

the galaxy. 

 

H0 = 75 km/(s Mpc). 

 

Clusters of galaxies are getting farther and farther apart as time goes. That means the 

universe is expanding. The redshift caused by the expansion of the universe is 

properly called a cosmological redshift. 

 

A2. Big Bang 

How long ago did the Big Bang take place? 
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0

1

Hv

d
T   

 

where T0 is the same for all galaxies. 

 

T0 = 1/(75 km/(s Mpc)) = 10

7

19

103.1
10156.3

1009.3

75

1sec.

75

1





 year
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Mpc
 years 

 

or 

 

T0 = 13 billion years 

 

Note that 1 year=365 x 24 x 60 x 60 = 3.156 x 107 sec. The age of the solar system is 

4.5 billion.years. 

 

_____________________________________________________________________ 

B. Blackbody problem 

 

B.1 Planck’s law 

We now consider the photons inside the blackbody with a cube (side L). The 

system is in thermal equilibrium at a temperature T. The photon with the wave 

number k (=2/) has an energy of k = ħ = ħck. There are 2 states per 

3









L


 for 

each wave number k, 
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The density of states (k to k +dk) 
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where V = L3. 

 

Since ck , 
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of modes having their frequencies between w and +d. 
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   (density of modes) 

 

We have the following formula; 
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or 
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For single mode k , the energy is given by 
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We use the Planck distribution. The total energy is given by 
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The Planck’s law for the radiation energy density is given by 
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where 

 

Tk
x

B

ℏ
 . 

 

The experimentally observed spectral distribution of the black body radiation is very 

well fitted by the formula discovered by Planck. 
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(ii) Region of Rayleigh-Jeans 
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Fig. Planck’s black body radiation spectrum (red) as a function of x = ħ/kBT. 

Region of Wien (green; particle-like) and region of Rayleigh-Jean (blue; 

wave-like). 

 

B2. Wien’s displacement law 

 

We start with  
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This has a maximum at 

 

96511.4
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. 

 

The wavelength of the maximum intensity of radiation is given by the Wien 

displacement law, 
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3. Stefan-Boltzmann radiation law for a black body (1879). 

 

The total energy per unit volume is given by 
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((Mathematica)) 
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A spherical enclosure is in equilibrium at the temperature T with a radiation field that 

it contains. The power emitted through a hole of unit area in the wall of enclosure is 
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 is the Stefan-Boltzmann constant and 1/4 is a geometrical factor. 
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((Mathematica)) 

 



Planck's law for the radiative energy density
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u3 = D@u2, xD êê Simplify
−
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PlotBu3, 8x, 0, 10<,
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FindMaximum@u2, 8x, 0.1<D
81.42144, 8x → 2.82144<<

FindRoot@u3, 8x, 2, 4<D
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x
2
−
x3

2
+
x4

12
+ O@xD6

Wien's displacement law

rule1 = 9— → 1.054571596 10−27, kB → 1.380650324 10−16,

c → 2.99792458 1010=
9— → 1.05457×10

−27
,

kB → 1.38065×10
−16

, c → 2.99792 ×10
10=  



u4 =
16 π2

— c

λ5

1

ExpB 2 π — c

kB T λ
F − 1

16 c π2 —

−1 + �
2 c π —
kB T λ λ5

u5 =
1

λ5
 

1

ExpB α

λ
F − 1

1

I−1 + �αêλM λ5

D@u5, λD êê Simplify
�αêλ Hα − 5 λL + 5 λ

I−1 + �αêλM2 λ7

u6 = K�
αêλ K α

λ
− 5 O + 5 O ê. 8α → λ y<

5 + �
y H−5 + yL

FindRoot@u6 � 0, 8y, 1, 5<D
8y → 4.96511<

u6 = u4 ê. rule1 ê. λ → λ0 10
−7

4.99248× 1020

−1 + �
1.43878×107

T λ0 λ05

PlotAEvaluate@Table@u6, 8T, 5000, 10 000, 1000<DD,
8λ0, 0, 3000<, PlotRange → 980, 3000<, 90, 2 10

6==,
PlotStyle → Table@8Hue@0.15 iD, Thick<, 8i, 0, 5<D,
Background → LightGray,

AxesLabel → 8"λ0 HnmL", "Intensity"<E

0 500 1000 1500 2000 2500 3000
l0 HnmL0

500000
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1.5µ106

2.0µ106
Intensity

 



PlotAEvaluate@Table@u6, 8T, 1000, 5000, 1000<DD,
8λ0, 0, 3000<, PlotRange → 980, 3000<, 90, 5.5 10

4==,
PlotStyle → Table@8Hue@0.15 iD, Thick<, 8i, 0, 5<D,
Background → LightGray,

AxesLabel → 8"λ0 HnmL", "Intensity"<E

0 500 1000 1500 2000 2500 3000
l0 HnmL0
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20000

30000

40000

50000

Intensity

 
 

_____________________________________________________________________ 

 

C. Adiabatic free expansion of an ideal gas (irreversible process):sudden 

expansion into vacuum 

 

Two containers connected by stopcock. They are thermally insulated so no heat 

can flow in or out. 

 

 
Initial: One container is evacuated. Gas is in volume Vi at temperature Ti. 

 



 
 

Final: Stockcock opened, gas rushes into second chamber. Gas does not work 

(nothing to push against) and there is no heat transfer. So internal energy does not 

change. Final volume Vf>Vi at temperatures Tf = Ti. 

 

APPENDIX-IV 

 

Joule’s law Relations between the derivatives of thermodynamic quantities 

 

First energy equation 

 
PdVTdSdU   
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Using the Maxwell’s relation  
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, we get 
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  (First energy equation) 

 

which is called the first energy equation. For the ideal gas ( TNkPV B ), we can 

make a proof of the Joule’s law.  
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U
 

 



In other words, U is independent of V: TCU V   (Joule’s law for ideal gas) 

 

 


