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Chapter 20 

 

Entropy and second law of thermodynamics 

 

1 Content 

In this chapter we will introduce the second law of the thermodynamics. The following 

topics will be covered. 

 

Second law of thermodynamics 

Reversible processes 

Entropy 

The Carnot engine 

Refrigerator 

Real engines 

 

2 Second law of thermodynamics 

If a closed system is in a configuration that is not the equilibrium configuration, the 

most probable consequence will be that the entropy of the system will increase 

monotonically. 

If an irreversible process occurs in a closed system, the entropy of the system always 

increases; it never decreases. 

In a process that occurs in a closed system the entropy of the system increases for 

irreducible processes and remains constant for reversible process. The entropy never 

decreases. The second law of thermodynamics can be written as  

 
0S  

 

3 Third law of thermodynamics 

Nernst proposed what he calls the heat theorem (third law of thermodynamics). The 

entropy of any object at 0 K is zero.  
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4 Non perfect, but realizable heat engine 

An engine is a device for converting heat energy into work. The way a typical engine 

operates is to absorb heat from some substance or reservoir at high temperature, to permit 

the working substance to do work and thereby be cooled, and then reject some heat to a 

reservoir at a lower temperature.  
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It not only absorbs heat QH from a reservoir at temperature TH, but also rejects heat 

QL to some second reservoir at some lower temperature TL. The engine does some work 

 

W = QH – QL. 

 

where W is the work done by the system (gas). 

 

5 Non perfect, but realizable refrigerator 

A refrigerator is an engine runs backward. Work is done on the refrigerator, and the 

net effect is to cool reservoir and heat a hotter reservoir. 

 

    
 

 

It removes heat QL from a reservoir at lower temperature TL and rejects heat QH to a 

reservoir at higher temperature TH. The work W (= QH – QL) is done on the refrigerator to 

make it function. 

 

6 Traditional thermodynamic statements of the second law of thermodynamics 
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6.1 Lord Kelvin (William Thomson, 1st Baron Kelvin ) 

 
(26 June 1824 – 17 December 1907) was an Irish mathematical physicist and engineer. 

At Glasgow University he did important work in the mathematical analysis of electricity 

and thermodynamics, and did much to unify the emerging discipline of physics in its 

modern form. He is widely known for developing the Kelvin scale of absolute 

temperature measurement. He was given the title Baron Kelvin in honor of his 

achievements and is therefore often described as Lord Kelvin. The title refers to the River 

Kelvin, which flows past his university in Glasgow, Scotland. 

He also had a later career as an electric telegraph engineer and inventor, a career that 

propelled him into the public eye and ensured his wealth, fame and honor. 

 

6.2 Rudolf Clausius 

 
 

Rudolf Julius Emanuel Clausius (January 2, 1822 – August 24, 1888), was a German 

physicist and mathematician and is considered one of the central founders of the science 

of thermodynamics By his restatement of Sadi Carnot's principle known as the Carnot 

cycle, he put the theory of heat on a truer and sounder basis. His most important paper, 
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On the mechanical theory of heat, published in 1850, first stated the basic ideas of the 

second law of thermodynamics. In 1865 he introduced the concept of entropy. 

 

6.3 Kelvin’s formulation of the second law of thermodynamics ((Kelvin’s 

impossible engine)) 

Any device that converts heat into work by mean of a cyclic process is called a heat 

engine. Perfect heat engine: It extracts heat from a reservoir and performs an equivalent 

amount of work without producing any other effect on the environment. 

 

(a) It is impossible for any cyclic process to occur whose sole effect is the extraction 

of heat from a reservoir and the performance of an equivalent amount of work. 

(b) It is impossible by means of any inanimate agency to derive mechanical work 

from any portion of matter by cooling it below the lowest temperature of its 

surroundings. 

 

 
 

6.4 Perfect refrigerator ((Clausius impossible engine)) 

It removes heat Q from the reservoir at low temperature and transfer it to the reservoir 

at high temperature without affecting the environment in any other way. 
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Perfect refrigerator 

 

(a) It is impossible to construct a perfect refrigerator. Heat cannot be taken in a 

certain temperature and converted into work with no other change in the system 

or the surrounding. In other words, heat cannot flow by itself from a cold to a hot 

place. 

(b) It is impossible for a self-acting machine to convoy heat continuously from one 

body to another which is at a high temperature. 

 

6.5 Derivation of from Kelvin’s impossible engine to the Clausius impossible 

engine 

 

 
 

or equivalently 
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One can show that the Kelvin and the Clausius statements are equivalent to one 

another by proving that if the Kelvin statement is not true, neither is the Clausius 

statement. Then we show that if the Clausius statement is not true, neither is the Kelvin 

statement. 

Suppose that the Kelvin’s statement is false and that we have an engine which 

removes heat from a reservoir and does work. We now permit the impossible Kelvin 

engine to run a conventional engine backboard as a refrigerator, removing heat Q1 from 

the cold reservoir and delivering Q2 to the hot reservoir. Since the internal energy of these 

engine remains the same, W = Q and W = Q2 – Q1. Therefore Q2 = Q1 + Q. The 

combination of the two devices is a self-acting device which removes a quantity of heat 

Q2 from a cold reservoir and delivers it to the hot one in violation of the Clausius 

statement. 

 

6.6 Derivation of Clausius impossible engine to the Kelvin’s impossible engine 
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Assuming that the Clausius statement is false, we construct an engine which takes Q2 

from a cold reservoir and delivers it to a hot one, and we operate it simultaneously with a 

conventional engine which removes Q2 from a hot reservoir, does work W, and delivers 

Q1 to the cold reservoir. The combination of these devices removes heat Q2 – Q1 from a 

cold reservoir and does work W. The two devices working together therefore violate the 

Kelvin’s statement. 

 

7 Carnot engines for an ideal gas 

A theoretical engine developed by Sadi Carnot. A heat engine operating in an ideal 

reversible cycle (now called a Carnot Cycle) between two reservoirs is the most efficient 

engine possible. This sets an upper limit on the efficiencies of all other engines. It is of 

interest to exhibit explicitly how such an engine operating quasi-statically between heat 

reservoirs can be constructed. 

Such an engine is the simplest conceivable engine and is called a “Carnot engine.” 

The Carnot engine goes through a cycle consisting of four steps, all performed in a quasi-

static fashion. After four steps, the engine is back in its initial state and the cycle is 

completed. 

 

All real engines are less efficient than the Carnot engine because they all operate 

irreversibly so as to complete a cycle in a brief time interval. 

 

((Nicolas Léonard Sadi Carnot (1796–1832))) 

 

 
His famous work on the motive power of heat (Réflexions sur la puissance motrice du 

feu, 1824) is concerned with the relation between heat and mechanical energy. Carnot 

devised an ideal engine in which a gas is allowed to expand to do work, absorbing heat in 

the process, and is expanded again without transfer of heat but with a temperature drop. 

The gas is then compressed, heat being given off, and finally it is returned to its original 

condition by another compression, accompanied by a rise in temperature. This series of 

operations, known as Carnot's cycle, shows that even under ideal conditions a heat engine 

cannot convert into mechanical energy all the heat energy supplied to it; some of the heat 

energy must be rejected. This is an illustration of the second law of thermodynamics. 

Carnot's work anticipated that of Joule, Kelvin, and others. 

 

((Note)) How Kelvin and Clausius discovered Carnot’s ideas? 
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Carnotcycle the classical blog on thermodynamics 

 

http://carnotcycle.wordpress.com/2012/08/04/how-kelvin-and-clausius-discovered-

carnots-ideas/ 

 

((Note)) A.Rex, Finn’s Thermal Physics, third edition (CRC Press, 2017). 

 

Carnot’s theorem 

No engine operating between two reservoirs can be more efficient than a Carnot 

engine operating those same two reservoirs. 

 

Corollary to Carnot’s theorem 

All Carnot engines operating between the same two reservoirs have the same 

efficiency. 

 

7.1 Overview of the processes in a Carnot Cycle. 

 

 
 

7.2 Isothermal process 

A(a, 1) to B (b, 2) is an isothermal expansion. The gas is placed in contact with the high 

temperature reservoir TH. The gas absorbs heat QH. The gas does work WAB in raising the 

piston. 
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where W12 is the work done on the system (gas). 

 

7.3 Adiabatic process 

 

B (b, 2) to C (c, 3) is an adiabatic expansion. The base of the cylinder is replaced by a 

thermally nonconducting wall. No heat enters or leaves the system. The temperature falls 

from TH to TL. The gas does work WBC. 
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where 

 

1 
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W23 is the work done on the system during this process. 

 

7.4 Isothermal process 

The gas is placed in contact with the cold temperature reservoir. C (c, 3) to D (d, 4) is 

an isothermal compression. The gas expels energy QL. W34 is work done on the system 

(gas). 
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((Note-2)) 

 

In the following way, we show that  

 

1

2

4

3

V

V

V

V
 . 

 

From the relations, 
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((Note-2)) Another proof 

 

From the relations 
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In multiplying on both sides, we have 
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7.5 Adiabatic process 

D (d, 4) to A (a, 1) is an adiabatic compression. The gas is again placed against a 

thermally nonconducting wall. So no heat is exchanged with the surroundings. The 

temperature of the gas increases from TL to TH. W41 is the work done on the system (gas). 
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((Mathematica)) 

Green lines: isothermal process 

Red lines: adiabatic process ( = 5/3 here) 
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8. Carnot cycle. PV diagram 
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W is the total work done on the system during the process. For convenience we redefine 

W by -W. The new definition of W is the work done by the system. 

 

LH QQW   

 

 



14 

 

 
 

H

H

L

L

T

Q

T

Q
  (Carnot cycle) 

 

The efficiency R is defined as 
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It is dependent only on the temperatures TH and TL. Although proved for a perfect gas 

engine, it must be true for reversible engines. We mean that for a reversible engine the 

following two processes are possible. 

 

((Reversible engine)) 

What is the definition of the reversible engine? 

 

 
 

In reversible engine, all the processes are reversible. 

 

9 Reversible cycle for an ideal gas 
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An arbitrary reversible cycle, plotted on a PV diagram consists of a family of 

isotherm lines and adiabatic lines. We can approximate an arbitrary cycle as closely as 

we wish by connecting the isotherms by short, suitably chosen, adiabatic lines. In this 

way, we form an assembly of long; thin Carnot cycles. 

The traversing the individual Carnot cycles in sequence is exactly equivalent to 

traversing the jagged series of isotherms and adiabatics that approximate the actual cycle.  

 

In Carnot cycle, 

 

we put 

 

Q1 = QH, Q2 = -QL 

 

 
 

We extend the Eq. given by 
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by writing the isotherm-adiabatic sequence of lines 
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In the limit of infinitesimal temperature differences between the isotherms, we have 

 

0 T

dQr  (reversible cycle). 
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Fig. Combination of the isothermals and adiabatics. 

 

10 Entropy in the reversible process 

Entropy is a measure of disorder of a state. Entropy can be defined using macroscopic 

concepts of heat and temperature 

 

T

dQ
dS r  (reversible process) 

 

Entropy can also be defined in terms of the number of microstates, W, in a macrostate 

whose entropy is S, 

 

S = kBlnW 

 

where W is the number of micro-states. This will be discussed in the next chapter 

(Chapter 20S). 

The entropy of the universe increases in all real processes. This is another statement 

of the second law of thermodynamics. The change in entropy in an arbitrary reversible 

process is  
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For any reversible cycle, in general,  
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0 T

dQr  

 

This is called Clausius’ theorem. The importance of Clausius’ theorem is that it permits 

us to define a new physical quantity called the entropy, or more precisely, the entropy 

difference. 

 

The integral symbol indicates the integral is over a closed path. 

 

 
 

We can move around on a PV diagram all over the plane, and go from one condition to 

another. In other words, we could say that the gas is in a certain condition a, and then it 

goes over to some other condition b. 

 

We will require that the transition, made from a to b reversible. Now we go around 

the path 1 (a→K1→b→K3 →a). Then we have 
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Next we go around the path 2 (a→K2→b→K3 →a), 
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Subtracting Eq.(1) from Eq.(2), 
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which does not depend on the path taken. 

We define the entropy to go from a to b by a reversible process 
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b
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The entropy of a system is a function of the thermodynamic co-ordinates whose change is 

equal to the integral of dQr/T between the terminal states, integrated along reversible path 

connecting two states. 

 

11 T-S diagram for the Carnot cycle 

 

For each infinitesimal amount of heat that enters a system during an infinitesimal portion 

of a reversible process, 

 

TdSdQr  . 

 

In the case of a reversible adiabatic process, we have 
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T
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If T is not zero, dS = 0 and S is constant. Therefore, during a reversible adiabatic process, 

the entropy of a system remains constant. In other words, the system undergoes an 

isentropic process. 

If two equilibrium states are infinitesimally near, then we have 
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At constant volume, 
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and at constant pressure, 
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The work done by the system is the area of the rectangle: 
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Then we have 

 

WPdVTdS    

 

where W is the work done on the system and –W is the work done by the system. 

 

((Note)) 

 

In a Carnot cycle, 
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Then the work done by the system (-W) is given by  
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12 Reversible Engine 

We show that no engine can do more work than a reversible one. Suppose that A is a 

reversible engine (a Carnot cycle), and that B is also a reversible engine. 

 

   

 

A: reversible engine (Carnot cycle) B: reversible engine 

 

We consider the combined engine of A and B. Since A (Carnot cycle) is the reversible 

engine, we have 

 

  

 

Note that A is a reversible engine. This system is equivalent to the engine of A+B. 

Net effect is to extract a net heat W1-W from the reservoir at TL and convert it into work. 

This process is prohibited because of Kelvin’s impossible engine: it is impossible for any 

cyclic process to occur whose sole effect is the extraction of heat from a reservoir and the 

performance of an equivalent amount of work. 
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Thus one can get 

 

W1-W≤0. (1) 

 

Since B is the reversible engine, we have 

 

   

 

This process is prohibited because of the Kelvin’s impossible engine. Hence 

 

W-W1≤0. (2) 

 

From Eqs.(1) and (2), one can get W = W1. So if both engines are reversible, they must 

both do the same amount of work. 

 

Here is the Carnot’s brilliant conclusion. 

 

If one engine is reversible, it makes no difference how it is designed. 

 

13 Carnot inequality (irreversible engine) 

 

For a reversible engine, we have 

 



23 

 

 

0
2

2

1

1 
T

Q

T

Q
 

 

where T1>T2, Q1>0, and Q2<0. 

 

The efficiency R is defined as 
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For an irreversible engine 

 

 

The combination of A and B gives 
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Then we have 
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for a fixed Q1 from the high temperature reservoir. The efficiency 1  is given by 
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Since 211 QQWI   (Q21<0), we get 
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Finally we obtain the Clausius inequality. 
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For any irreversible cycle, in general,  

 



25 
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The integral symbol indicates the integral is over a closed path. 

 

14 Entropy in the irreversible process (I) 

We consider the cycle which include both reversible and irreversible process. One has 

the Clausius inequality. 

 

0 T

dQ
 

 

 
 

Fig. The closed path consists of irreversible process and reversible process. The 

direction of the reversible process can be reversed with the change of sign. 

 

We go around the path. Then we have 
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Second law of thermodynamics 

 

In any process in which a thermally isolated system (Q = 0) goes from one 

macrostate to another macrostate, the entropy tends to increase. 
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In a small irreversible change, we have 
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When the system is isolated or the system is adiabatic (no heat exchange between the 

system and surroundings), 

 
0dS  

 

This means that the entropy of an isolated system either remains constant or increases. 

 

((Note)) Clausius impossible engine 

We consider the Clausius impossible refrigerator. The change of entropy can be 

evaluated as 
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This is inconsistent with the second law of thermodynamics (S>0). 

 

 
 

Fig. Clausius impossible engine. 

 

15 Entropy in the irreversible process (II) 
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In order to define the entropy change S for an irreversible process that takes one 

from an initial state i to a final state f of a system, we find a reversible process that 

connects states i and f. We then calculate 
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In order to find the entropy change for an irreversible path between two equilibrium 

states, find a reversible process connecting the same states, and calculating the entropy 

change. 

 

((Example-1))  Contact of two systems with different temperatures 

 

 
 

Suppose that waters (mass m) are in two containers separately. The temperatures of these 

containers are T1 and T2. The heat capacity of water per unit mass is C. We consider that 

these two containers are in contact. The final temperature is Tf = (T1+T2)/2 in the thermal 

equilibrium. The change of entropy for the container 1 is 
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The change of entropy for the container 2 is 
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The resultant change of entropy is 
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We note that when 12 TT  , we have 
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((Example-2)) 

Pure heat transfer, not involving any work, is irreversible in energy transfer, if it takes 

between two systems having different temperatures. 
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2 2 2 2 2 2

dU dW dQ dQ T dS

dU dW dQ dQ T dS

   

   
 

 

Here the total internal energy is constant. 
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1 2 1 20dU dU dQ dQ     

 

The newly created entropy, 

 

1

21

12

2

1

1

1

2

2

1

1
21 )( dQ

TT

TT

T

dQ

T

dQ

T

dQ

T

dQ
dSdSdStotal


  

 

The heat fows from high temperature to low temperature. If dQ1>0, then T2>T1. So that 

 

0totaldS . 

 

16. Adiabatic free expansion (irreversible process) 

 

 
 

An adiabatic free expansion of an ideal gas i.e. where a greater volume suddenly 

becomes available to the gas is an irreversible process which proceeds through a chaotic 

non-equilibrium path. Nonetheless we can characterize the beginning and end points and 

the net values of relevant changes in energy. Since the gas expands against a vacuum it 

does no work and thus 

  

0 fiW . 

since there is no motion of the boundary (nothing to push against; there is no movable 

piston). Combining this with our requirement that the process is adiabatic, we have 
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0 0 0i f i f i fU Q W        

 

If we are dealing with an ideal gas, then the absence of a change in the internal energy 

implies that the temperature is the same before and after the expansion even though no 

temperature is defined during the irreversible process: Tf = Ti.  

In order to calculate the entropy of this process, we need to find an equivalent 

reversible path that shares the same initial and final state. A simple choice is an 

isothermal, reversible expansion in which the gas pushes slowly against a piston. Using 

the equation of state for an ideal gas this implies that  

 

ffii VPVP   

 

The initial and final states a (Pi, Vi) and b (Pf, Vf) are shown on the P-V diagram. Even 

though the initial and final states are well defined, we do not have intermediate 

equilibrium states that take us from the state a (Pi, Vi) and the state b (Pf, Vf).  

 

 
 

Fig. Note that the irreversible process (green line) cannot be described in such a line in 

the P-V phase diagram. The isothermal process is denoted by the blue line. 

 

We thus replace the free expansion with an isothermal expansion that connects states i 

and f. Then the entropy can be calculated as follows (the isothermal process) 

 

)ln(

0

i

f

V

V

V

V

r

r

V

V
R

V

dV
R

T

dQ
S

dV
V

RT
PdVdWdQ

E

f

i

f

i









  (reversible process) 

 



31 

 

Since Vf>Vi, S is positive. This indicates that both the entropy and the disorder of the 

gas increase as a result of the irreversible adiabatic expansion. 

 

((Note)) Clausius inequality 

We consider the entropy in the case of the adiabatic free expansion. In this figure, the 

point A is the initial state and the point B is the final state. The process I is an irreversible 

process, while R is the reversible process (such as isothermal process).  

 
 

Fig. Infinitesimal irreversible process such as adiabatic free expansion. E. Fermi, 

Thermodynamics (Dover, 1936). 

 

We have the inequality  

 

( ) ( )

B B

irrr

A A

dQdQ
S S B S A

T T
       

 

For a completely isolated system (adiabatic free expansion during the infinitesimal 

irreversible change at the same temperature) 

 

0

B

irr irr

A

dQ Q

T T


    

 

Thus we have 

 
0S   

 

For any transformation occurring in an isolated system, the entropy of the final state can 

never less than that of the initial state. 

 

17. The entropy for the adiabatic free expansion (microscopic staes) 

Entropy can be treated from a microscopic viewpoint through statistical analysis of 

molecular motions. We consider a microscopic model to examine the free expansion of 

an ideal gas. The gas molecules are represented as particles moving randomly. Suppose 

that the gas is initially confined to the volume Vi. When the membrane is removed, the 
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molecules eventually are distributed throughout the greater volume Vf of the entire 

container. For a given uniform distribution of gas in the volume, there are a large number 

of equivalent microstates, and the entropy of the gas can be related to the number of 

microstates corresponding to a given macrostate. 

 

 
 

Fig. The volume of the system in the initial state is Vi (the macrostate). The volume of 

cell (the microstate) is Vm. The number of cells (sites) is given by the ratio Vi/Vm. 

 

We count the number of microstates by considering the variety of molecular locations 

available to the molecules. We assume that each molecule occupies some microscopic 

volume mV . The total number of possible locations of a single molecule in a macroscopic 

initial volume iV  is the ratio  

 

m

i
i

V

V
w  , 

 

which is a very large number. The number iw  represents the number of the microstates, 

or the number of available sites. We assume that the probability of a molecule occupying 

any of these sites are equal. 

Neglecting the very small probability of having two molecules occupy the same site, 

each molecule may go into any of the wi sites, and so the number of ways of locating N 

molecules in the volume becomes 

 
N

m

iN

ii
V

V
wW 








 . 
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Similarly, when the volume is increased to Vf, the number of ways of locating N 

molecules increases to 

 
N

m

fN

ff
V

V
wW 








 . 

 

Then the change of entropy is obtained as 

 

)ln(

)]ln()[ln(

)]ln()[ln()]ln()[ln(

lnln

lnln

i

f

B

ifB

miBmfB

N

m

i
B

N

m

f

B

iBfB

if

V

V
Nk

VVNk

VVNkVVNk

V

V
k

V

V
k

WkWk

SSS






























 

 

When ANN  , we have 

 

)ln()ln(
i

f

i

f

BA
V

V
R

V

V
kNS   

 

We note that the entropy S is related to the number of microstates for a given macrostate 

as 

 

WkS B ln . 

 

The more microstates there are that correspond to a given macrostate, the greater the 

entropy of that macrostate. There are many more microstates associated with disordered 

macrostates than with ordered macrostates. Therefore, it is concluded that the entropy is a 

measure of disorder. Although our discussion used the specific example of the adiabatic 

free expansion of an ideal gas, a more rigorous development of the statistical 

interpretation of entropy would lead us to the same conclusion. 

 

18. Example:calculation of the entropy in the reversible process 
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Fig. Four paths (in the P-V phase diagram) used for the calculation of the 

change in entropy. 31 AA   (isothermal, denoted by red). 341 AAA   

(partly adiabatic, denoted by blue). 301 AAA   (denoted by green). 

321 AAA   (denoted by purple). 

 

As is shown, the change in the entropy is defined for the reversible process. Here we 

calculate the entropy along the four paths, where the path starts from the point A1 and 

reaches the point A3 in the P-V diagram as shown above. It is shown that the change of 

entropy is independent of the path chosen.  

 

(a) Path-1 (isothermal process): A1 → A3 (denoted by red line)  

 

iRTPV  , 0E , VPWQ   

 

Then the entropy change is 

 

)ln(
1

2

2

1

2

1
V

V
R

V

dV
R

T

PdV
S

V

V

V

V

  . (1) 

 

(b) Path-2 (adiabatic process): A1 → A4 → A3 (denoted by blue line)  

 

Path:  A1 → A4: (adiabatic process) 

 

0Q , 01 S , 
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which means that the change of entropy is zero. 

 

Path:  A4 → A3 (constant volume) 

 

iRTPV  , TCQE V , 

 

Then the change of entropy is 
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where 
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Then we have 

 











1

2
21 ln

V

V
RSSS . (2) 

 

(c) Path-3: A1 → A0 → A3 (denoted by green line) 

 

Path: A1 →A0 

 

TCQ V , 
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Path: A0 →A3 

 

TCQ P , 
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Then we have 
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or 
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where 

 

012 RTVP  . iRTVP 22 , 

 

or 
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V
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Ti  . 

 

(d) Path-4: A1 → A2 → A3 (denoted by purple line)  

 

Path:  A1 →A2 

 

TCQ P , 
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Path: A2 →A3 

 

TCQ V , 
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Then we have 
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or 
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since 

 

223 RTVP  . iRTVP 12  

 

or 
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 . 

 

((Conclusion)) 

For any reversible cycle, in general, we have 

 

0 S
T

dQr  

 

19 Entropy for the ideal gas during the reversible process 

We now consider the reversible process from the initial state (Pi, Vi, Ti) to the final 

state (Pf, Vf, Tf). 

 

fff

iii

RTVP

RTVP




 

 

If a system absorbs an infinitesimal amount of heat dQ during a reversible process, 

the entropy change of the system is equal to 

 

T

dQ
dS   
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Consider one of the expression for dQ of an ideal gas. 
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Dividing by T 
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Since 

 

RTPV  , for ideal gas, 

 

we have 
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The change in entropy depends only on the properties of the initial and final states. It 

does not depend on how the system changes from the initial to the final state. 

 

In general, for n mole (n = N/NA) 
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Then we have 
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In the adiabatic process (S = constant), we have 

 
1TV =const 

 

or 

 
PV  = const 

 

The physical meaning of this equation for S will be discussed in Chapter 20S. 

 

We also note that 
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leading to the Boyle's law. 

 

20 Condition for equilibrium 
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During the infinitesimal irreversible process, 

 

dS
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where dQirr is the heat moving from the surrounding (temperature T(e)) to the system 

(temperature T). For convenience here we use dQirr = dQ. 

 

The first law of the thermodynamics can be written in the usual form 

 

dU dQ dW   

 

And the inequality becomes 

 

0

dQ dU dW TdS

dU PdV TdS

  

  
 

 

This inequality holds during any infinitesimal portion and, therefore, during all 

infinitesimal portions of irreducible process. 

 

During the irreversible process by imposing the condition that two of the thermodynamic 

co-ordinates remain constant, then the inequality can be reduced to a simpler form. 

 

(a) If V and E are constant. 

 

dS>0. 

 

which means that the entropy of a system at constant E and V increases during an 

irreversible process, approaching a maximum at the final state of equilibrium. 
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(b) If T and V are constant, the inequality reduces to 

 

( ) 0

0

d U TS

dF

 


 

 

expressing the result that the Helmholtz function (F = U - ST) of a system at constant T 

and V decreases during an irreversible process and becomes a minimum at the final 

equilibrium. 

 

(c) If T and P are constant, the inequality reduces to 

 

( ) 0

0

d U PV TS

dG
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
 

 

expressing the result that the Gibbs function (G = F+PV) of a system at constant T and P 

decreases during an irreversible process and becomes a minimum at the final equilibrium 

state. 

 

21 Intensive and extensive parameters (definitions) 

 

Intensive variable 

P (pressure) 

T (temperature) 

 (chemical potential) 

 

Extensive variable 

V (volume) 

C (heat capacity) 

E (Internal energy) 

Q (heat) 

S (entropy) 

F (free energy) 

N (number of particles) 
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The macroscopic parameter specifying the macro-state of a homogeneous system can 

be classified into two types. 

Let y denotes such a parameter. Consider that the system is divided into two parts by 

introducing a partition, and denoted by y1 and y2, the values of this parameter for the two 

subsystems. 

Then two cases can arise 

(1) One has y1 + y2 = y, in which the parameter y is said to be extensive. 

(2) One has y1 = y2 = y, in which the parameter y is said to be intensive. 

 

In simple terms, one can say that an extensive parameter get doubled if the size of the 

system is doubled, while an intensive parameter remains unchanged. 

The mass (M) and the volume (V) of a system are extensive parameters. The density  

of a system is an intensive parameter: VM / . 

Indeed, it is clear that the ratio of any two extensive parameters is an intensive 

parameter. 

The mean pressure (P) of a system is an intensive parameter, since both parts of a 

system, after subdivision, will have the same pressure as before. Similarly, the 

temperature T of a system is an intensive parameter. The internal energy U of a system is 

an extensive quantity. The total energy of the system is the same after subdivision as it 

was before: 1 2U U U  . The entropy S is an extensive quantity, because the heat Q is an 

extensive quantity. The heat capacity C is an extensive quantity. 

 

V

U
T

S

    
 T (intensive), U (extensive), S (extensive). 

S

U
P

V

    
 P (intensive), U (extensive), V (extensive). 
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TV

F
P 











  P (intensive), F (extensive), V (extensive). 

VT

F
S 











  S (extensive), F (extensive), T (intensive). 

 

22. Selected problems 

 

22.1 

 

Problem 20-22*** (SP-20)   (10-th edition) 

 

 

An insulated Thermos contains 130 g of water at 80.0°C. You put in a 12.0 g ice at 

0°C to form a system of ice +original water. (a) What is the equilibrium temperature of 

the system? What are the entropy changes of the water that was originally the ice cube (b) 

as it melts and (c) as it warms to the equilibrium temperature? (d) What is the entropy 

change of the original water as it cools to the equilibrium temperature? (e) What is the net 

entropy change of the ice + original water system as it reaches the equilibrium 

temperature. 

 

((Solution)) 

Lf = 333 x 103 J/kg = 333 J/g 

Lv = 2256 x 103 J/kg = 2256 J/g 

Cwater = 4180 J/kg.K = 4.180 J/g.K 

Cice= 2220 J/kg.K = 2.22 J/g.K 

M = 0.130 kg water at 353 K 

m = 0.012.kg ice cube at 273 K. 

 

(a) Equilibrium temperature 

 

)353(

)]273([

2

1

ewater

ewaterF

TMCQ

TCLmQ




 

 

From the condition that 21 QQ  , we have 

 

Te = 339.5 K. 

 

(b) 

 

KJ
L

m F /637.14
273

  

 

(c) 
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Then  

KJ
T

C
L

mS e
water

F
ice /57.25)]

273
ln(

273
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(d) 

 

KJ
T

MCS e
waterwater /18.21)]

353
ln(   

 

(e) 

 

KJSSS watericenet /395.4  

 

________________________________________________________________________ 

22.2 

 

Problem 20-20*** (SP-20)   (10-th edition) 

 

 

Expand 1.00 mol of an monatomic gas initially at 5.00 kPa and 600 K from initial 

volume V1 = 1.00 m3 to final volume Vf = 2.00 m3. At any instant during the expansion, 

the pressure P and volume V of the gas are related by 

 

]/)exp[(00.5 aVVP i   

 

With P in kPa, Vi and Vf in m3, and a = 1.00 m3. What are the final (a) pressure and (b) 

temperature of the gas? (c) How much work is done by the gas during the expansion? (b) 

What is S for the expansion? (Hint: use two simple reversible processes to find S). 

 

((Solution)) 

R = 8.314472 J/mol K 

n =1 mol 

monatomic gas 

CV = 3R/2 

P(V) =5 exp[(Vi-V)/a] kPa 

a = 1.0 m3. 

Ti = 600 K 

Pi = 5 kPa 
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(a) 

 

Pf = P(Vf = 2)= 5/e = 1.8394 kPa 

 

(b) 

 

K
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(c) The work done on the system is 
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The work done by the system is 3.16 J 

 

(d) 
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Then we have 
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________________________________________________________________________ 

22.3  

 

Problem 20-35*** (SP-20)   (10-th edition) 

 

The cicle in Fig. represents the operation of a gasoline internal combustion engine. 

Volume V3 = 4.00 V1. Assuming the gasoline-air intake mixture is an ideal gas with  = 

1.30. What are the ratios (a) T2/T1, (b) T3/T1, (c) T4/T1, (d) P3/P1, and (e) P4/P1? (f) What 

is the engine efficiency? 

 

 
 

((Solution)) 

 = 1.30 

State-1 (P1, V1, T1) 

State-2 (P2 = 3P1, V2 = V1, T2) 

State-3 (P3, V3 = 4V1, T3) 

State-4 (P4, V4 = 4V1, T4) 

 

(a) 

 

1

11

2

11

1

11

2

22

3

T

VP

T

VP

T

VP

T

VP





, 3
3

11

11

1

2 
VP

VP

T

T
 

 

(b) The path 2-3 is adiabatic; TV-1 = constant 

 

1

13

1

12

1

33

1

22

)4( 










VTVT

VTVT
 66.0

4

1

4

1

)4( 3.011

1

1

1

2

3  







V

V

T

T
 

 

or 

1123 98.1366.066.0 TTTT   
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(c) The path 4-1 is adiabatic; TV-1 = constant 

 

66.0)
4

1
()( 11

4

1

1

4

1

11

1

44













V

V

T

T

VTVT

  14 66.0 TT   

 

(d) 

2

1
2

4

1

1

3

3

1

1

3

1

11

3

33





T

T

V

V

P

P

T

VP

T

VP

, 
2

1

1

3 
P

P
 

 

(e) 

165.066.0
4

1

1

4

4

1

1

4

1

11

4

44





T

T

V

V

P

P

T

VP

T

VP

, 165.0
1

4 
P

P
 

 

(f)  

 

The path 2-3 is adiabatic. 

1223323 4.3)(
1

1
nRTVPVPW 





 

The path 4-1 is adiabatic. 

1441141 13.1)(
1

1
nRTVPVPW 





 

The path 1-2 is isobaric. 

11122121212 67.6)(
1

1
)(

1
)( RTVPVPRTRT

n
TTnCQ V 








 

012 W  

 

The path 3-4 is isobaric. 

 

034 W  

 

The total work W 

 

141342312 27.2 nRTWWWWW   

 

The engine efficiency  is  

 



48 

 

34.0
12


Q

W
  

 

 

23. Hint of SP-20 and HW20 

 

23.1  

 

Problem 20-11** (SP-20)   (10-th edition) 

 

In an experiment, 200 g of aluminum (with a specific heat of 900 J/kg K) at 100°C is 

mixed with 50.0 g of water at 20°C, with the mixture thermally isolated. (a) What is the 

equilibrium temperature? What are the entropy changes of (b) the aluminum, (c) the 

water, and (d) the aluminum-water system? 

 

mAl=0.2 kg,  CAl = 900 J/kg K,  TiAl = 100 °C = 373 K 

mwater = 0.05 kg,  Cwater=4180 J/kg K,  Tiwater = 20 °C = 293 K 

 

Hint: 

dT
T

CmS
sT

AlAlAl 
330 1

 

 

________________________________________________________________________ 

23.2  

 

Problem 20-18** (SP-20)   (10-th edition) 

 

A 2.0 mol sample of an ideal monatomic gas undergoes the reversible process shown 

in Fig. The scale of the vertical axis is set by Ts = 400 K and the scale of the horizontal 

axis is set by Ss = 20.0 J/K. (a) How much energy is absorbed as heat by the gas? (b) 

What is the change in the internal energy of the gas? (c) How much work is done by the 

gas? 
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Hint 

 

Ss = 20 J/K, Ts = 400 K. 

RCV
2

3
 , R = 8.314472 J/mol K, n = 2.0 

 

(a) 

  TdSdQQ  

(b) 

VU nC T    

________________________________________________________________________ 

23.3  

 

Problem 20-16** (SP-20)   (10-th edition) 

 

An 8.0 g ice at -10°C is put into a Thermos flask containing 100 cm3 of water at 20°C. 

By how much has the entropy of the cube-water system changed when equilibrium is 

reached? The specific heat of ice is 2220 J/kg K. 

 

Cice = 2220 J/kg K,  Cwater = 4180 J/kg K 

LF = 333 x 103 J/kg 

mice = 0.008 kg (ice cube), Mwater= 100 cm3 = 0.10 kg (water) 

 

Change of entropy: 

 

dT
T

Cm
Lm

dT
T

CmS
sT

waterice
Fice

iceiceice  
273

273

263

1

273

1
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________________________________________________________________________ 

23.4 

 

Problem 20-30** (HW-20)   (10-th edition) 

 

A 500 W Carnot engine operates between constant-temperature reservoirs at 100°C 

and 60.0°C. What is the rate at which energy is (a) taken in by the engine as heat and (b) 

exhausted by the engine as heat?
 

 

 
 

 

W = QH – QL=500 W (we assume that W is defined as the work done by the gas). 

TH = 373 K,  TL = 333 K 

 

Carnot cycle: 

 

L

L

H

H

T

Q

T

Q


 

________________________________________________________________________ 

23.5  

 

Problem 20-34** (SP-20)   (10-th edition) 

 

An ideal gas (1.0 mol) is the working substance in an engine that operates on the 

cycle shown in Fig. Processes BC and DA are reversible and adiabatic. (a) Is the gas 

monatomic, diatomic, or polyatomic? (b) What is the engine efficiency? 
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Hint: 

 

n = 1 mol. 

PA = P0, VA = V0 

PB = P0, PB = 2V0 

PC = P0/32 PC = 16V0 

PC = P0/32 PC = 8V0 

 

(a) The path BC is adiabatic. 


CCBB VPVP   

(b) 

)(
1

1

)(

BBCCBC

ABPAB

VPVPW

TTCQ









 

The engine efficiency  is defined as 

 

AB

tot

Q

W
  

 

________________________________________________________________________ 

23.6  

 

Problem 20-62 (HW-20)   (10-th edition) 

 

Suppose 2.00 mol of a diatomic gas is taken reversibly around the cycle shown in the 

T-S diagram of Fig., where S1 = 6.00 J/K and S2 = 8.00 J/K. The molecules do not rotate 

or oscillate. What is the energy transferred as heat Q for (a) path 1 → 2, (b) path 2 → 3, 

and (c) the full cycle? (d) What is the work W for the isothermal process? The volume V1 

in state 1 is 0.200 m3. What is the volume in (e) state 2 and (f) state 3? What is the 
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change intE  for (g) path 1 → 2, (h) path 2 → 3, and (i) the full cycle? (Hint: (h) can be 

done with one or two lines of calculation using Section 19-8 or with a page of calculation 

using section 19-11.) (j) What is the work W for the adiabatic process? 

 

 
Hint: 

 

diatomic gas, n = 2 

RCV
2

5
 , RCP

2

7
 , 40.1

V

P

C

C
  

S1 = 6.0 J/K,  S2 = 8.0 J/K 

T1 = 350 K,  T3 = 300 K 

V1 = 0.2 m3. 

 

(a)  )( 121112 SSTSTQ   

(b) 023 Q  

(d) E12 = 0  

 

24. Link 

 

Carnot engine (Wikipedia) 

http://en.wikipedia.org/wiki/Carnot_heat_engine 

 

Entropy (Wikipedia) 

http://en.wikipedia.org/wiki/Entropy 

 

_____________________________________________________________________ 

APPENDIX-I 
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Refregerator 

 

 
 

Performance of Refrigerator 

Coefficeint of performance (COP) K 

 

||W

Q
K L  

 

 

((Note)) 

Efficiencies of real engine 


HQ

W ||
  

 

________________________________________________________________________ 

APPENDIX-II 

Empirical temperature and absolute temperature 

Our fundamental theorem shows us that the ratio QL/QH has the same value for all 

reversible engines that operate between the same empirical temperature tH and tL; that is, 

this ratio is independent of the special properties of the engine, provided it is reversible. It 

depends only on the empirical temperatures tH and tL. We may therefore write: 

 

),( LH

H

L ttF
Q

Q
 , 

 

where ),( LH ttF  is a universal function of the two temperatures tH and tL. 

We shall now prove that the function ),( LH ttF  has the following property: 
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),(

),(
),(

0

0

ttF

ttF
ttF

L

H
LH  , 

 

where t0 is arbitrary. 

 

 
 

Fig.1 t0<tL. A series connection of the reversible cyclic engines A1 and A2. A1 and A2 

work between the temperatures tH and tL, and tL and t0, respectively. If A1 absorbs 

an amount of heat QH at tH and gives up an amount of heat QL at tL during a cycle. 
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If A2 absorbs an amount of heat QL at tL and gives up an amount of heat Q0 at t0 

(Tomonaga). 

 

 
 

Fig.2 t0>tL.A1 and A2 are two reversible cyclic engines which work between the 

temperatures tH and tL, and tL and t0, respectively. If A1 absorbs an amount of heat 

QH at tH and gives up an amount of heat QL at tL during a cycle. If A2 absorbs an 

amount of heat QL at tL and gives up an amount of heat Q0 at t0 (Fermi). 

 

We consider a process consisting of series connection of the reversible engine A1 and the 

reversible engine A2 as shown in Fig.1 and Fig.2. For the engine A2, we have the relation 

 

),( 0
0 ttF

Q

Q
L

L

 . 

 

Similarly for the engine A1 (tH>tL), we have 

 

),( LH

H

L ttF
Q

Q
 . 

 

Then we get 

 

),(),(),( 0
00

0 LHL

H

L

LH

H ttFttF
Q

Q

Q

Q

Q

Q
ttF  , 

 

or 
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),(

),(
),(

0

0

ttF

ttF
ttF

L

H
LH  . 

 

Here we note that t0 is arbitrary. Note that t0<tL (in Fig.1) and t0>tL (Fig.2). We choose 

00 tt  . We may keep it constant in all our equations. It follows that the function f(t) can 

be defined as 

 

),(

1
)(

0ttF
tf  . 

 

So we have 

 

)(

)(
),(

H

L
LH

tf

tf
ttF  . 

 

We place  

 

)()( tft   , 

 

where  is an arbitrary constant. Using this equation, we get 

 

)(

)(

H

L

H

L

t

t

Q

Q




 . 

 

 is regarded as a new temperature. Note that (t) increases with increasing an empirical 

temperature. (t) expresses the relation between the empirical temperature and the new 

temperature (the absolute temperature). Note that (t) is not uniquely determined. (t) is 

indeterminate to the extent of an arbitrary multiplicative constant factor . 

 

H

L

H

L

T

T

Q

Q
   (Carnot cycle) 

 

The efficiency is given by 

 

H

L

T

T
1 . 

 

The efficiency becomes 1 at TL = 0 K. 

 

((Comment by S.Tomonaga)) S. Tomonaga, What is physics? (Iwanami, 1979). 

"I do not know who gave a proof for the universal function. When I borrowed a book 

of Clausius from Riken, this proof was written on the book by pencil, next to the proof 
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given by Clausius. This book was bought from Carl Runge in Germany by Riken. The 

proof was written in German. So I think that the proof might be given by Runge." 

 

((Comment by M.S.)) I found similar proof in the book of Enrico Fermi 

(Thermodynamics, 1936). 

 

REFERENCES 

E. Fermi, Thermodynamics (Dover Publication, 1936). p.39-41 

S. Tomonaga, What is physics? Iwanami (1979, in Japanese). 

 

________________________________________________________________________ 

Sin-Itiro Tomonaga  

March 31, 1906 – July 8, 1979) was a Japanese physicist, influential in the 

development of quantum electrodynamics, work for which he was jointly awarded the 

Nobel Prize in Physics in 1965 along with Richard Feynman and Julian Schwinger. 

http://en.wikipedia.org/wiki/Sin-Itiro_Tomonaga 

 

Enrico Fermi; 

29 September 1901– 28 November 1954) was an Italian-American physicist, best 

known for his work on Chicago Pile-1 (the first nuclear reactor), and for his contributions 

to the development of quantum theory, nuclear and particle physics, and statistical 

mechanics. He is one of the men referred to as the "father of the atomic bomb".[4] Fermi 

held several patents related to the use of nuclear power, and was awarded the 1938 Nobel 

Prize in Physics for his work on induced radioactivity by neutron bombardment and the 

discovery of transuranic elements. He was widely regarded as one of the very few 

physicists to excel both theoretically and experimentally. 

http://en.wikipedia.org/wiki/Enrico_Fermi 

 

APPENDIX-III 

1. Born diagram 

(N. Hashitsume, Introduction to Thermal and Statistical Mechanics, Iwanami, 1980, 

in Japanese) 

 

In thermodynamics, we often use the following four thermodynamic potentials, E, F, 

G, and H. The diagram (called the Born's diagram) was introduced by Born (Max). In 

order to memorize this diagram, we give interpretation for the letters. The sun (S; 

entropy) pours lights on the trees (T; temperature). The water falls from the peak (P; 

pressure) of mountain into the valley (V; volume). We draw a square with four vertices 

noted by S, T, P, and V. . The light propagates from the point S to the point T. The water 

flows from the point P to the point V. These two arrows are denoted by the vectors given 

by ST  (the direction of light flow) and PV  (the direction of water flow). These vectors 

are perpendicular to each other. The four sides of the square are denoted by E, F, G, and 

H in a clockwise direction. Note that the side H (H: heaven) is between two vertices S 

(sun) and P (peak). 
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S

V

T

P

E

FG

H

 
 

Fig. Born diagram. S: entropy. T: temperature. P: pressure. V: volume. H: heaven 

(between S and P). E→F→G→H (clockwise). The water flow from P (peak) to V 

(valley). The sun light from S (sun) to T (tree). 

 

(i) The natural variables of the internal energy E is S and V. 

 
PdVTdSdE   

 

The sign before T is determined as plus from the direction of the vector ST  ( ST : the 

direction of light). The sign before P is determined as minus from the direction of the 

vector PVVP   ( PV ; the direction of water flow). 

 

(ii) The natural variables of the Helmholtz energy F is V and T. 

 
PdVSdTdF   

 

The sign before S is determined as minus from the direction of the vector STTS   

( ST : the direction of light). The sign before P is determined as minus from the direction 

of the vector PVVP   ( PV ; the direction of water flow). 

 

 

(iii) The natural variables of the Gibbs energy G is P and T. 

 
SdTVdPdG   
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The sign before S is determined as minus from the direction of the vector STTS   

( ST : the direction of light). The sign before V is determined as plus from the direction of 

the vector  PV  ( PV ; the direction of water flow). 

 

(iv) The natural variables of the enthalpy H is S and P. 

 

VdPTdSdH  . 

 

The sign before T is determined as minus from the direction of the vector ST  ( ST : the 

direction of light). The sign before V is determined as plus from the direction of the 

vector  PV  ( PV ; the direction of water flow). 

 

Maxwell's relation 

 

(i) The internal energy ),( VSEE   

 

For an infinitesimal reversible process 

 
PdVTdSdE   

 

showing that 

 

VS

E
T 











  and 
SV

E
P 











  

 

The Maxwell’s relation; 

 

VS S

P

V

T






















 

 

(ii) The enthalpy ),( PSHH  is defined as 

 
PVEH   

 

For an infinitesimal reversible process 

 

VdPTdS

VdPPdVPdVTdS

VdPPdVdEdH







 

 

showing that 
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PS

H
T 











  and 
SP

H
V 











 . 

 

The Maxwell’s relation: 

 

PS S

V

P

T






















 

(iii) The Helmholtz free energy ),( VTFF   is defined as 

 

STEF   or STFE   

 

For an infinitesimal reversible process 

 

SdTPdV

TdSSdTPdVTdS

TdSSdTdEdF







 

 

showing that 

 

TV

F
P 











  and 
VT

F
S 











  

 

The Maxwell’s relation: 

 

VT T

P

V

S






















 

 

(iv) The Gibbs free energy ),( PTGG   is defined as 

 

PVFSTPVESTHG  )(  

 

Then we have 

 

SdTVdPdG   

 

showing that 

 

 

PT

G
S 











  and 
TP

G
V 











  

 

(1) The Maxwell’s equation: 
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PT T

V

P

S






















 

 

Here we consider the Maxwell's relation 
VS S

P

V

T






















 

 

For 
VS

P











, in the Born diagram, we draw the lines along the vectors PS and SV . The 

resulting vector is SVPSPV   (the direction of water flow) 

 

V S

T

E

P

 
 

For 
SV

T











, in the Born diagram, we draw the lines along the vectors TV and VS . The 

resulting vector is STVSTVTS   (anti-parallel to the propagating direction of 

light). Then we have the negative sign in front of 
VS

P











 such that 

 

VS S

P

V

T






















 

 

(ii) Maxwell's relation 
VT T

P

V

S





















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Here we consider the Maxwell's relation 
VT T

P

V

S






















 

 

For 
TV

S











, in the Born diagram, we draw the lines along the vectors SV and VT . The 

resulting vector is VTSVST   (the direction of sun light) 

 

T V

P

F

S

 
 

For 
VT

P











, in the Born diagram, we draw the lines along the vectors PT and TV . The 

resulting vector is TVPTPV   (the direction of water flow). Then we have the 

positive sign in front of 
VT

P











 such that 

 

VT T

P

V

S





















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F

S

 
 

 

______________________________________________________________________ 


