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A Bose-Einstein condensate (BEC) is a state of matter of a dilute gas of weakly interacting
bosons confined in an external potential and cooled to temperatures very near absolute zero (0 K).
Under such conditions, a large fraction of the bosons occupy the lowest quantum state of the
external potential, at which point quantum effects become apparent on a macroscopic scale. This
state of matter was first predicted by Satyendra Nath Bose and Albert Einstein in 1924-25. Bose
first sent a paper to Einstein on the quantum statistics of light quanta (now called photons).
Einstein was impressed, translated the paper himself from English to German and submitted it
for Bose to the Zeitschrift fiir Physik, which published it. Einstein then extended Bose's ideas to
material particles (or matter) in two other papers.

Seventy years later, the first gaseous condensate was produced by Eric Cornell and Carl
Wieman in 1995 at the University of Colorado at Boulder NIST-JILA lab, using a gas of
rubidium atoms cooled to 170 nK. For their achievements Cornell, Wieman, and Wolfgang
Ketterle at MIT received the 2001 Nobel Prize in Physics. In November 2010 the first photon
BEC was observed.

The slowing of atoms by the use of cooling apparatus produced a singular quantum state
known as a Bose condensate or Bose—Einstein condensate. This phenomenon was predicted in
1925 by generalizing Satyendra Nath Bose's work on the statistical mechanics of (massless)
photons to (massive) atoms. (The Einstein manuscript, once believed to be lost, was found in a
library at Leiden University in 2005.) The result of the efforts of Bose and Einstein is the concept
of a Bose gas, governed by Bose—Einstein statistics, which describes the statistical distribution of
identical particles with integer spin, now known as bosons. Bosonic particles, which include the
photon as well as atoms such as helium-4, are allowed to share quantum states with each other.
Einstein demonstrated that cooling bosonic atoms to a very low temperature would cause them to
fall (or "condense") into the lowest accessible quantum state, resulting in a new form of matter.

http://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_condensate

1. Bose-Einstein distribution function
The Bose-Einstein distribution function is defined as
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where S =—— and kg is the Boltzmann constant. The occupancy of the ground state at =0 is
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The total number of particles N should be given by

N =1lim ! ~ lim 1 ~ KT
T>0e M 1 T501— fu—1 U

For very low temperatures, the chemical potential u is very close to zero and should be negative.

The chemical potential in a boson system must always be lower in energy than the ground state.
Suppose that all the bosons are in the single-particle state of the lowest energy ¢,. The total

energy is then
U; = Ng,

Since the ground state is not degenerate
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if 1< & (in this case e”“*’>1 and is very close to 1). This equation yields to
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((Example))
For N=102?and T=1K, u=-1.4x103%erg<0.

2 Occupancy of the ground state
Density of states for a particle of spin zero is given by

D(e) = fﬂV <;—T>3“JZ g=1)



where the energy vs k is given by

The number N (fixed) is expressed by
N = N,(T,2)+ Ny(T) = [ D(e) f (£)d + Ny(T)
0

where z is the fugacity (which will be defined later), N,(7T) is the number of atoms in excited
states (the number of atoms in the normal phase) and N (T)= f(¢=0,T) is the number of

atoms in the ground state (number of atoms in the condensed phase)
Here we note that we must be cautious in substituting

gV 2m
D(e)=4 ()" e

into
N = TD(g)f(g)dg

At high temperature there is no problem. But at low temperatures there may be a pile-up of
particles in the ground state €= 0; then we will get an incorrect result for N. This is because D(¢)
= 0 in the approximation we are using, whereas there is actually one state at £ = 0. If this one
state is going to be important, we should write

D(g)=6()+ D(e)

with g =1, where 6(¢) is the Dirac delta function.
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Here we have
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where
z=e™,

With x = fe, N,(T,z) can be rewritten as
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Note that the integral (for z<1) is obtained as
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where ¢;,,(z) is described by
3
G32(2) = POlyLOg[EaZ]

in Mathematica. Then we get
N (T,z)=Vny(T)g;,,(2)
where ¢,,,(z) is the zeta function and ¢, ,(z =1)= 2.61238, and no(7) is defined as
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which is called the quantum concentration. It is the concentration associated with one atom in a

cube equal to the thermal average de Broglie wavelength Aw. The de Broglie wavelength is given
by

1
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where

and <v> is the average thermal velocity.
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Fig. Plotof ¢, ,(z) as a function of z. ¢, ,,(z =1)=2.61238

3. Bose-Einstein-Condensation temperature 7k
We start our discussion with the equation given by

N =N,(T,z)+ N,(T)

We note that N, (7,z =1) has a maximum value when z = 1. Since N is constant, N should be

larger than this maximum of N,(T,z=1) atz=1.
N2N,(T,z=1)=Vn,(T)g;,,(z=1).

Here we define the temperature 7k (the Einstein temperature for Bose-Einstein condensation) at
which

N=N,/T,,z=1).
or

N =Vny(T;)s5,,(z=1)=2.61238Vn,(T,)
The temperature 7k can be derived as
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Below Tk,
N,(T)=N-N,T,z=1)>0

We define the molar mass weight as
Ma = mNa

and the molar volume as

Then the Einstein temperature is rewritten as

27 N, IV, 2

kT, =
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((Note))
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Since m = —4
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Fig. Temperature dependence of the thermally excited Bose particle density (blue solid line),
N,(t,z=1) for t<1. The remaining density ( NV, ) occupies the ground state (red solid line).

For~1, N,(t,0<z<1)=N.
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Fig.  z vs the normalized temperature t =T /T, (t>1). z=¢e™ (We use the ContourPlot to get
this plot). N, (¢,z) = N.

((Example))
(a) Liquid “He;

Vm=27.6 cm*/mol, Ma =4 g/mol.
Te =3.13672 K.
Note that the density p is given by

p=Mi_ % _ 4145 glem’,
v, 276

(b) Alkali metal Rb atom (which shows the Bose-Einstein condensation at extremely low
temperatures);



p= A;A =1.532 g/em’. Ma = 85.4678 g/mol

M

Vi M, 55.78838 cm®/mol
P
Te=91.8 mK.

(©) Na atom

p= % =0.968 g/cm?. Ma =22.98977 g/mol

M

M,
P

V= =23.74976 cm?/mol

T = 603.258 mK.

((Mathematica))

Clear["Global %"];

rulel = {NA 5 6.02214179x 10%, R » 8.314472, kB » 1.3806504x 1072,
h- 6.62606896x 1073, 7 -» 1.05457162853x1073*, cm - 1072,
g- 10'3, VM—>27.6cm3, MA—>4g};

2 7 h? NA / VM
TE (

2/3
) //. rulel

" kBMA/NA \2.61238

3.13672

4. Physical meaning

In the limited space of the system, the energy of boson (as a single-particle) is quantized. At
high temperature, each boson has an energy as a single-particle state. At 7= 0 K, the boson is in
the ground state (& =0, in Fig.). Suppose that N bosons are in the ground state of the single
particle. This situation is very different from fermions. One fermion is at the ground state. Other
fermions cannot stay in the ground state, because of the Pauli-exclusion principle. The second
fermion will stay at the first excited state.
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Fig. Bose-Einstein condensation. Each boson has the lowest energy of the single particle state.
The de Broglie wave length becoOmes very large, forming a coherent state.

5. Order parameter No(7)
We consider the temperature dependence of the occupancy number No(7) of the ground state
below Tk.
N = Ny(T)+ N(T,z = 1) = Ny(T) +Vny (T)g3,,(z = 1)

The Einstein temperature 7 is defined as

N =Vny(T, )¢y, (2 = 1) = 2.61238Vn,(T,)
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Then we get

T 3/2
N= NO(T)+N[FJ .

E

From this Eq., we have

We make a plot of N as a functionot t =7/T.
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Plot of No(7T)/N as a function of reduced temperature ¢t = 7/Tg, showing the critical

behavior in the vicinity of 7k.

The temperature dependence of 7 above Tk

N=N,T,z)=Vny(T)s;,(2)
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At T=Tg,

N=N,(Tyz=1)=Vny(Ty)gs 5 (z =1) = Viny(T,)2.61238 ,

Then we have

N =N,T,z)=Vny(T)s;,,(2)
and

N =Vny(T;)G5,,(z=1) =Vn,(T;)2.61238
Thus we get

Vig(T)g;,,(2) = Viny(T,)2.61238

or
TE 3/2 -3/2
6:12(2) = (5)72.61238 = 2.612381

since

2mmk, T T
nQ(T):( th j )

From the numerical calculation (ContourPlot), the parameter z can be evaluated as a function of ¢
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Fig. Plot of z vs a reduced temperature ¢ above T. z = e” . The value z tendstoz=1 at 1= 1.

Mathematica (ContourPlot): ¢;,,(z) = (%)3/22.61238 =2.61238¢7"?

7. Possibility of Bose-Einstein condensation in two dimensions
The density of states for the 2D system is given by

LZ
D,(&)ds = dakdk .

(27}

2me

Using the dispersion relation g=—o1*k" or k
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Suppose that all bosons are in the excited states,

N =N,T,z)

where

N(T,2) = TDz(E)f(é‘)a’f9

ml* ¢
= j f(&)de

_ml 7 de
270 ) P
_ mk,TL* ¢ dx
27’

0 le" -1
z

_ mk,TL’ ]o- ze "dx

270 g l-ze™

with

Noting that

[= D in(1-z)=In(—)
1-z

0l—ze

we get the number density as

N,(T,z) _ kaT1 1

1
I’le(T,Z) = 2 I n(l—Z) = n2D(T)ln(:)
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where

mk T
27

n,,(T) =

Since n,(T,z) = n=constant, we have

=y (T In()

or

n = mk, T,
z—1 2

-z

When z —1, we have 7, — 0. So we do not have any finite critical temperature. In other word,

the Bose-Einstein does not occur in the 2D system.
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Fig. Plot of —In(1-z) as a function of z. It diverges at z = 1.

In other words, there is no finite critical temperature for the Bose-Einstein condensation in 2D
systems.

In conclusion
3D system: Bose-Einstein condensation
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2D system: No condensation occurs.

The phenomena of the superconductivity and superfluidity are observed only for the 3D system.
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