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_____________________________________________________________________________ 

A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of weakly interacting 

bosons confined in an external potential and cooled to temperatures very near absolute zero (0 K). 

Under such conditions, a large fraction of the bosons occupy the lowest quantum state of the 

external potential, at which point quantum effects become apparent on a macroscopic scale. This 

state of matter was first predicted by Satyendra Nath Bose and Albert Einstein in 1924–25. Bose 

first sent a paper to Einstein on the quantum statistics of light quanta (now called photons). 

Einstein was impressed, translated the paper himself from English to German and submitted it 

for Bose to the Zeitschrift für Physik, which published it. Einstein then extended Bose's ideas to 

material particles (or matter) in two other papers. 

Seventy years later, the first gaseous condensate was produced by Eric Cornell and Carl 

Wieman in 1995 at the University of Colorado at Boulder NIST-JILA lab, using a gas of 

rubidium atoms cooled to 170 nK. For their achievements Cornell, Wieman, and Wolfgang 

Ketterle at MIT received the 2001 Nobel Prize in Physics. In November 2010 the first photon 

BEC was observed.  

The slowing of atoms by the use of cooling apparatus produced a singular quantum state 

known as a Bose condensate or Bose–Einstein condensate. This phenomenon was predicted in 

1925 by generalizing Satyendra Nath Bose's work on the statistical mechanics of (massless) 

photons to (massive) atoms. (The Einstein manuscript, once believed to be lost, was found in a 

library at Leiden University in 2005.) The result of the efforts of Bose and Einstein is the concept 

of a Bose gas, governed by Bose–Einstein statistics, which describes the statistical distribution of 

identical particles with integer spin, now known as bosons. Bosonic particles, which include the 

photon as well as atoms such as helium-4, are allowed to share quantum states with each other. 

Einstein demonstrated that cooling bosonic atoms to a very low temperature would cause them to 

fall (or "condense") into the lowest accessible quantum state, resulting in a new form of matter. 

 

http://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_condensate 

 

_______________________________________________________________________ 

1. Bose-Einstein distribution function 

The Bose-Einstein distribution function is defined as 
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The total number of particles N should be given by 
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For very low temperatures, the chemical potential  is very close to zero and should be negative. 
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The chemical potential in a boson system must always be lower in energy than the ground state. 

Suppose that all the bosons are in the single-particle state of the lowest energy 1 . The total 

energy is then 
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Since the ground state is not degenerate 
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if 1   (in this case )( 1  
e >1 and is very close to 1). This equation yields to 
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((Example)) 

 

For N = 1022 and T = 1 K,  = -1.4 x 10-38 erg <0. 

 

2. Occupancy of the ground state 

Density of states for a particle of spin zero is given by 
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where the energy vs k is given by 
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The number N (fixed) is expressed by 
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where z is the fugacity (which will be defined later), )(TN e
 is the number of atoms in excited 

states (the number of atoms in the normal phase) and ),0()(0 TfTN    is the number of 

atoms in the ground state (number of atoms in the condensed phase) 

Here we note that we must be cautious in substituting 
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into 
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At high temperature there is no problem. But at low temperatures there may be a pile-up of 

particles in the ground state  = 0; then we will get an incorrect result for N. This is because D() 
= 0 in the approximation we are using, whereas there is actually one state at  = 0. If this one 

state is going to be important, we should write 
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with g = 1, where )(  is the Dirac delta function. 
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Here we have 
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where 

 
ez  . 

 

With x , ),( zTNe  can be rewritten as 
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Note that the integral (for z<1) is obtained as 

 














00

2/3
1

2

1
1

2
)(

x

x

x ze

xze
dx

e
z

x
dxz


 , 

 



5 

 

61238.2

61238.2
2

2

)
2

3
()

2

3
(

2

1

2
)1(

0

2/3








 












xe

x
dxz

 

 

where )(2/3 z  is described by 
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in Mathematica. Then we get 
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where )(2/3 z  is the zeta function and )1(2/3 z = 2.61238, and nQ(T) is defined as 
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which is called the quantum concentration. It is the concentration associated with one atom in a 

cube equal to the thermal average de Broglie wavelength th. The de Broglie wavelength is given 

by 
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and v  is the average thermal velocity. 
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Fig. Plot of )(2/3 z  as a function of z. )1(2/3 z = 2.61238 

 

3. Bose-Einstein-Condensation temperature TE 

We start our discussion with the equation given by 
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We note that )1,( zTNe  has a maximum value when z = 1. Since N is constant, N should be 

larger than this maximum of )1,( zTNe  at z = 1. 
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Here we define the temperature TE (the Einstein temperature for Bose-Einstein condensation) at 

which  
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The temperature TE can be derived as 
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Below TE,  
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We define the molar mass weight as  

 

MA = mNA 

 

and the molar volume as 
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Then the Einstein temperature is rewritten as 
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Fig.  Temperature dependence of the thermally excited Bose particle density (blue solid line), 

)1,( ztNe  for t<1. The remaining density ( 0N ) occupies the ground state (red solid line). 

For t>1, NztNe  )10,( . 
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Fig. z vs the normalized temperature ETTt /  ( )1t . ez   (We use the ContourPlot to get 

this plot). NztNe ),( . 

 

((Example)) 

(a) Liquid 4He; 

 

VM = 27.6 cm3/mol, MA = 4 g/mol. 

 

TE = 3.13672 K. 

 

Note that the density  is given by 
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(b) Alkali metal Rb atom (which shows the Bose-Einstein condensation at extremely low 

temperatures); 
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TE = 91.8 mK. 

 

(c) Na atom 

 

968.0
M

A

V

M
  g/cm3. MA = 22.98977 g/mol 

 

74976.23


A
M

M
V  cm3/mol 

 

TE = 603.258 mK. 

 

 

((Mathematica)) 

 

 
 

4. Physical meaning 

In the limited space of the system, the energy of boson (as a single-particle) is quantized. At 

high temperature, each boson has an energy as a single-particle state. At T = 0 K, the boson is in 

the ground state ( 0 , in Fig.). Suppose that N bosons are in the ground state of the single 

particle. This situation is very different from fermions. One fermion is at the ground state. Other 

fermions cannot stay in the ground state, because of the Pauli-exclusion principle. The second 

fermion will stay at the first excited state.  

Clear@"Global`∗"D;

rule1 = 9NA → 6.02214179× 1023, R → 8.314472, kB → 1.3806504× 10−23,

h → 6.62606896 × 10−34, — → 1.05457162853 × 10−34, cm → 10−2,

g → 10−3, VM → 27.6 cm3, MA → 4 g=;

TE =
2 π —2

kB MA ê NA

NA ê VM

2.61238

2ê3
êê. rule1

3.13672
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Fig. Bose-Einstein condensation. Each boson has the lowest energy of the single particle state. 

The de Broglie wave length beco0mes very large, forming a coherent state. 

 

5. Order parameter N0(T) 

We consider the temperature dependence of the occupancy number N0(T) of the ground state 

below TE. 
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The Einstein temperature TE is defined as 
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Then we get 
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We make a plot of 
N

TN )(0  as a function ot ETTt / . 
N

TN )(0  becomes zero above TE. 

 

 
 

Fig. Plot of N0(T)/N as a function of reduced temperature t = T/TE, showing the critical 

behavior in the vicinity of TE.  

 

6. The temperature dependence of z above TE 
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At T = TE, 
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Then we have 
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From the numerical calculation (ContourPlot), the parameter z can be evaluated as a function of t 
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Fig. Plot of z vs a reduced temperature t above TE. ez  . The value z tends to z = 1 at t = 1. 

Mathematica (ContourPlot): 2/32/3
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7. Possibility of Bose-Einstein condensation in two dimensions 

The density of states for the 2D system is given by 
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Suppose that all bosons are in the excited states, 
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with 
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Noting that 
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we get the number density as 
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where 
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When 1z , we have 0ET  . So we do not have any finite critical temperature. In other word, 

the Bose-Einstein does not occur in the 2D system. 

 

 
 

Fig. Plot of )1ln( z  as a function of z. It diverges at z = 1. 

 

In other words, there is no finite critical temperature for the Bose-Einstein condensation in 2D 

systems. 

 

In conclusion 

3D system: Bose-Einstein condensation 
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2D system: No condensation occurs. 

 

The phenomena of the superconductivity and superfluidity are observed only for the 3D system. 

 


