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Here we discuss the equation of states for the Bose-Einstein condensation. We use the following 

integrals. 
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with z as the fugacity, and  
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Definition: 
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((Derivative)) 
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The condition for the occurrence of Bose-Einstein condensation is that 
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This form tells that the thermal de Broglie wavelength th  must exceed 1.38 times the average 

interatomic separation. In short, the thermal wave packets must overlap substantially. The Bose-

Einstein condensation occurs below 
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with g = 1. 

 

(i) The average interatomic separation between atoms, d 
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where n is the number density n: 

 



(ii) The thermal de Broglie wave length th  
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1. Pressure and number for the Boson system 

The pressure is given by 
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The grand potential G  is 

 




















0

2

3

)(3

3

)(

)1ln(4
)2(

]1ln[
)2(

]1ln[

k

k

k

k

k












zedkk
gV

Tk

ed
gV

Tk

eTk

B

B

BG

 

 

We use the following dispersion relation 
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So we have 
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The integration by parts gives 
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Then the pressure P is obtained as 
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This is valid in both the gas and the condensed phase, because particles with zero momentum do 

not contribute to the pressure. Since z = 1 in the condensed phase, the pressure becomes 

independent of number density. 

 

5/2( ) ( 1)Q

B

P
gn T z

k T
   

 

The number is given by 
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The number density is given by 
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where nQ is the quantum concentration, 
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We note that 
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The total particle number is a sum of 0)1,( nzTn  , where 0n  is the number density in the 

ground state. 

 

)1,(0  zTnnn  

 



 
 

The Bose-Einstein condensation temperature (Einstein temperature) is defined as 
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So ( )ET n  depends on the number density as 
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The number density 0n  in the BE condensed phase is expressed by 
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In the vicinity of ( )ET n , 0 ( , )n n T  can be approximated by 
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3. Calculation of the internal energy U 
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So U is related to the grand potential as 
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We get the relation 
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4. Equation of state for BE condensation (I) 

We consider the variation of the pressure P of the Bose gas with its volume V, keeping the 

temperature T fixed. The pressure P is given by 
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For 1z  ( 0 ), the pressure P  is given by 
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vanishes as 2/5T  and is independent of density. This is because only the excited fraction 

)1,( zTN  has finite momentum and contributes to the pressure. Alternatively, Bose condensation 



can be achieved at a fixed temperature by increasing density (reducing volume). The transition 

occurs at a specific volume. 

The transition temperature ( )ET n  depends on the number density n as 
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(i)  The normal phase ( 0z  )  [ ( )]ET T n  

The pressure of the gas changes as 
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(ii) The BE phase ( )1z   [ ( )]ET T n  

 

v 1 n

TE n

0.5 1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

3.0



An appreciable number of particles falls down to the lowest level, this may be called 

condensation in momentum space, or Bose condensation.  
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which is independent of the volume 1/v n  of the system. Since 
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Using this relation, we have 
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Fig. Isotherms of the ideal Bose gas. The BE condensation shows up as a first-order phase 

transition. T1>T2. For cvv  , Pv const. 

 

For ( )v v n , the pressure–volume isotherm is flat, since 0



v

P
. The flat portion of isotherms 

is reminiscent of coexisting liquid and gas phases. We can similarly regard Bose condensation as 

the coexistence of a “normal gas” of specific volume cv , and a “liquid” of volume 0. The vanishing 

of the “liquid” volume is an unrealistic feature due to the absence of any interaction potential 

between the particles. 

 

5. Equation of state for BE condensation (II) 

 

For ( ) 1t n   
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The pressure can be rewritten as 
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As shown the figure below, the actual / [ ( )] 2 / [3 ( )]B E B EPV Nk T n U Nk T n  vs ( )t n  curve follows 

the red line from ( ) 0t n   up to ( ) 1t n  and thereafter departs, tending asymptotically to the 

classical limit.  

 



 
 

Fig. Plot of / [ ( )] 2 / [3 ( )]B E B EPV Nk T n U Nk T n  as a function of ( ) / ( )Et n T T n . 

(i) Boson (red: boson line): 5/2/ [ ( )] 0.513512 [ ( )]B EPV Nk T n t n  both for ( ) 1t n   and 

( ) 1t n  . 

(ii) Extension of the boson line valid for ( ) 1t n   to that for 1t   (purple line). 

(iii) Classic (blue line): / [ ( )] ( )B EPV Nk T n t n .  

 

 
 

Fig. P-T diagram of the ideal Bose gas. Note that the space above the transition curve does not 

correspond to anything. The condensed phase lies on the transition line itself. 
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Fig. P-T curve as the number density n is changed as parameter. (M. Kardar, Statistical Physics 

of Particles, Cambridge, 2008). 

_______________________________________________________________________ 

APPENDIX-I  Gamma and zeta functions 
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(i) Zeta function 

)(x  is the zeta function defined by 
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(ii) Gamma function 

)(x  is the gamma function 
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APPENDIX II PolyLog (mathematica) 
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APPENDIX 

I taught Phys.411 (511) in 2016 by using the textbook of K. Huang; Introduction to 

Statistical Mechanics. I found the following nice figures.  

 
 

Fig. Isotherms of the Bose gas at two temperatures (M. Kardar, Statistical Physics of Particles, 

Cambridge, 2007). 
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Fig. Phase diagram of Bose-Einstein condensation in the density temperature plane.; 3/2n T  

(K. Huang, Introduction to Statistical Physics). 

 



 
 

Fig. Qualitative isotherms of the ideal Bose gas. The Bose-Einstein condensation shows up as 

a first-order phase transition. (K. Huang, Introduction to Statistical Physics). 

 



 
 

Fig. Isotherms of the ideal Bose gas 
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