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Here we discuss the equation of states for the Bose-Einstein condensation. We use the following

integrals.
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with z as the fugacity, and
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((Series expansion))
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((Derivative))
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The condition for the occurrence of Bose-Einstein condensation is that
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This form tells that the thermal de Broglie wavelength 4, must exceed 1.38 times the average

interatomic separation. In short, the thermal wave packets must overlap substantially. The Bose-
Einstein condensation occurs below
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Since
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with g =1.
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1 1
n= ? or d= 5
n

where 7 is the number density n:



(i1) The thermal de Broglie wave length A,
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1. Pressure and number for the Boson system

The pressure is given by
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We use the following dispersion relation
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The integration by parts gives
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Then the pressure P is obtained as
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This is valid in both the gas and the condensed phase, because particles with zero momentum do
not contribute to the pressure. Since z = 1 in the condensed phase, the pressure becomes
independent of number density.
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The number is given by
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The number density is given by

N(T,z)
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where ngq is the quantum concentration,
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We note that

n(T,z=1)=2.61238 ny(T)

The total particle number is a sum of n(7,z =1)+ n,, where n, is the number density in the

ground state.
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The Bose-Einstein condensation temperature (Einstein temperature) is defined as

n=n(T;(n),z=1)=2.61238n,(T =T ,(n))

So T,(n) depends on the number density as
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Fig. Plotof T, w(n)=T,(n) as a function of the number density 7.

The number density n, in the BE condensed phase is expressed by
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In the vicinity of T, (n), n,(n,T) can be approximated by
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So U is related to the grand potential as
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We get the relation
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4. Equation of state for BE condensation (I)
We consider the variation of the pressure P of the Bose gas with its volume V, keeping the
temperature 7 fixed. The pressure P is given by

P(T,z)= —( aa();/G
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where g =1. and

N(T,z)

n(T,z) = =gan3/2(Z).
For z=1 (u=0), the pressure P is given by
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vanishes as T°'* and is independent of density. This is because only the excited fraction
N(T,z =1) has finite momentum and contributes to the pressure. Alternatively, Bose condensation



can be achieved at a fixed temperature by increasing density (reducing volume). The transition
occurs at a specific volume.
The transition temperature 7, (n) depends on the number density n as
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(1) The normal phase (z#0) [T >T,(n)]

The pressure of the gas changes as
P(T,z) = gk,T nycs,(2).

(i1) The BE phase (z=1) [T <T,(n)]



An appreciable number of particles falls down to the lowest level, this may be called
condensation in momentum space, or Bose condensation.
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which is independent of the volume v =1/n of the system. Since
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Using this relation, we have

P(n,T;(n),z=1) = gk,T,(n) nQ[TE (n) g5, (z=1)

=1.34149gk, ( 2”;";;92 YT, ()]
or
P(n,T;(n),z=1) = gk,T;(n) ny[T;(n) lgs5,(z=1)
=1.34149gk, ( 2”:;32 Y2IT, ()]
or

P(n,T,(n),z=1)=0.270721gk,(

mk, _ -
272-7;32) lv(n) 5/2



P v°'3 =const

T, =const

VcZ Vc1

Fig. Isotherms of the ideal Bose gas. The BE condensation shows up as a first-order phase
transition. 71>1>. For v>v,_, Pv = const.
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For v <v(n), the pressure—volume isotherm is flat, since ™ = 0. The flat portion of isotherms
\

is reminiscent of coexisting liquid and gas phases. We can similarly regard Bose condensation as
the coexistence of a “normal gas” of specific volume v, , and a “liquid” of volume 0. The vanishing

of the “liquid” volume is an unrealistic feature due to the absence of any interaction potential
between the particles.

S. Equation of state for BE condensation (II)

For t(n)>1
P(n,T,z) = gk,T nQ(T)gs/z(Z)
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The pressure can be rewritten as

P=P(n.T.2) = nk,T 522
S32(2)

or

PV — 1(n) Gs52(2)
Nk,T (n) G3,(2)

where n = % . We note that

Py =2 = Nk, 722
3 S32(2)

Py 2 U
Nk,T.(n) 3 Nk,T,(n)

_ t(n)S/Z Gsn(z=1)
Gyn(z=1)
=0.513512 t(n)*?

for t(n) <1

As shown the figure below, the actual PV /[Nk,T,(n)]=2U /[3Nk,T(n)] vs t(n) curve follows
the red line from #(n)=0 up to #(n)=1and thereafter departs, tending asymptotically to the
classical limit.
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Fig. Plot of PV /[Nk,T,.(n)]=2U /[3Nk,T,(n)] as a function of t(n)=T7/T,(n).
(i) Boson (red: boson line): PV /[Nk,T,(n)]=0.513512 [¢(n)]"* both for #(n)<1 and
t(n)>1.
(i1) Extension of the boson line valid for #(n) <1 to that for ¢ > 1 (purple line).
(111) Classic (blue line): PV /[Nk,T,.(n)]=t(n).
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Fig.  P-T diagram of the ideal Bose gas. Note that the space above the transition curve does not
correspond to anything. The condensed phase lies on the transition line itself.



Fig.  P-T curve as the number density # is changed as parameter. (M. Kardar, Statistical Physics
of Particles, Cambridge, 2008).

APPENDIX-I Gamma and zeta functions
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¢(x) is the zeta function defined by
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(ii) Gamma function
I'(x) is the gamma function
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APPENDIX II PolyLog (mathematica)

PolyLog

Polylog[n, =]
gives the polylogarithm function Li,(z).

Polylog[n, p, =]
gives the Nielsen generalized polylogarithm function Sepl2),

» Details

Mathematical function, suitable for both symbolic and numerical manipulation.

Li,iz) = Xy 2% e,

Syplz) = (=1 P = 1t pty [Mog" ™ (0 logP(1 -z 0/,

Sao10z0 = Lig iz,

PolyLog[n, ] has a branch cut discontinuity in the complex : plane running from 1 to ce.
For certain special arguments, Polylog automatically evaluates to exact values.

PolyLog can be evaluated to arbitrary numerical precision.

PolyLog automatically threads over lists.
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APPENDIX
I taught Phys.411 (511) in 2016 by using the textbook of K. Huang; Introduction to
Statistical Mechanics. I found the following nice figures.

Fig. Isotherms of the Bose gas at two temperatures (M. Kardar, Statistical Physics of Particles,
Cambridge, 2007).



Critical line
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Fig. Phase diagram of Bose-Einstein condensation in the density temperature plane.; n oc T
(K. Huang, Introduction to Statistical Physics).



Transition line

Gas phase

Fig. Qualitative isotherms of the ideal Bose gas. The Bose-Einstein condensation shows up as
a first-order phase transition. (K. Huang, Introduction to Statistical Physics).
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Fig. Isotherms of the ideal Bose gas
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