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______________________________________________________________________________ 

Fritz Wolfgang London (March 7, 1900 – March 30, 1954) was a Jewish-German physicist and 

professor at Duke University. His fundamental contributions to the theories of chemical bonding 

and of intermolecular forces (London dispersion forces) are today considered classic and are 

discussed in standard textbooks of physical chemistry. With his brother Heinz London, he made a 

significant contribution to understanding electromagnetic properties of superconductors with the 

London equations and was nominated for the Nobel Prize in Chemistry on five separate occasions. 

London was the first theoretical physicist to make the fundamental, and at the time 
controversial, suggestion that superfluidity is intrinsically related to the Einstein condensation of 
bosons, a phenomenon now known as Bose–Einstein condensation. Bose recognized that the 
statistics of massless photons could also be applied to massive particles; he did not contribute to 
the theory of the condensation of bosons. 
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______________________________________________________________________________ 

Lars Onsager (November 27, 1903 – October 5, 1976) was a Norwegian-born American physical 
chemist and theoretical physicist. He held the Gibbs Professorship of Theoretical Chemistry at 
Yale University. He was awarded the Nobel Prize in Chemistry in 1968. 
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1. Properties of liquid He 

Helium exists in two stable isotropic forms, 4He and 3He. The phase diagram of 4He is shown 

below. The normal boiling point is 4.2 K and the critical temperature is 5.19 K (1,718 Torr = 2.26 

atm). Liquid He exists in two phases, He I and He II, separated by a phase boundary commonly 

called the lambda-line. At T  = 2.172 K, which is termed the -point. There is no latent heat 

associated with this transformation. The specific heat at saturated vapor pressure, becomes large 

as the -point is approached from either side. One of the most remarkable properties of He II is its 

ability to flow through very small capillaries or narrow channels without any friction at all. 

 



 
 

Fig. Phase diagram of liquid 4He. He I (normal liquid) and He II (superfluid) 

 



 
Fig. Specific heat of liquid 4He (point) in comparison with the theoretical curve for an ideal 

Bose gas with the parameters of liquid He (dashed line). 

 



 

 



 

Fig. Temperature dependence of the viscosity of He II as determined from flow experiments 

with thin capillaries. 

 

 

 
 

2. Historical overview on the research on superfluid Helium 4. 

In 1908, Kammerlingh Onnes succeeded for the first time in liquefying helium in Leiden. In 1938 

Allen and Misener, and Kapitza independently discovered that it exhibited a superfluid behavior. Fritz 

London put forth his theory that superfluidity could be related to the Bose-Einstein condensation. Tisza 

suggested that the superfluid phase of the liquid could be described by a two-fluid model, the normal fluid 

and the superfluid. In 1941 Landau suggested that superfluidity can be understood in terms of the special 

nature of the thermally excited states of the liquid: the well-known phonons and rotons. This theory also 

led Landau to the two-fluid model. Experimentally the two-fluid model was supported by the experiment 

of the experiment of Andronikashvili and the discovery of second sound. 

In 1946, Onsager put forth his idea of quantized circulation in superfluid helium. The well-

known invariant called the hydrodynamic circulation is quantized. The quantum of circulation is 

mh / , where m is the exact mass of the bare helium atom. This is a surprising result in itself 

considering how strongly coupled atoms in a liquid really are. Feynman was working on the same 

problem and came to a somewhat different conclusion. He showed that the excitation spectrum 

postulated by Landau can be derived within a quantum-mechanical description. He considered 



that the vortices in the superfluid might take the form of a vortex filament with a core of atomic 

dimensions, truly a line vortex. In this picture, the multiple connectivity of a vortex arises because 

the superfluid is somehow excluded from the core and circulates about the core in quantized 

fashion. The quantization of circulation was experimentally confirmed by Hall and Vinen with the direct 

observation in a macroscopic scale. This work led to an appreciation for the first time of the full significance 

of London’s “quantum mechanism on a macroscopic scale”, and of the underlying importance of Bose-

Einstein condensation in superfluidity. 
 

Here the superfluidity of He II is discussed in association with the statistical mechanics and quantum 

mechanics. 

 

3 Two component fluid model (Tisza, Landau) 

 

 
 

Fig. Density of the superfluid and normal-fluid component in He II as a function of 

temperature.  

 

The two-fluid model of liquid helium (Landau) postulates that He II behaves as if it were a 

mixture of two fluids freely intermingling with each other without any viscous interaction. There 

two fluids are termed the normal fluid and have densities n  and s  such that 

 



sn    

 

where   is the ordinary density of liquid He. The normal density n  is a function of temperature, 

and increases from zero at T = 0 K, to the value   at the lambda point. Conversely, the superfluid 

density s  is zero at the lambda point and increases to the value   at T = 0 K. The model 

postulates that the superfluid carries zero entropy, and experiences no resistance whaever to its 

flow, that is, it exhibits neither viscosity nor turbulence. This condition is specified by stipulating 

that the viscosity of the superfluid is zero, and that its velocity sv  satisfies the relation 

 

0 sv   (irrotational). 

 

On the other hand, the normal fluid has a viscosity, the so-called normal viscosity n , and an 

entropy nS  equal to the entropy of liquid He.  

We now derive equations of motion for the two fluids of the model. Let j denotes the 

momentum of unit volume of liquid He, and nv  and sv  the velocities of the two fluids. Then we 

have 
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The flow j  is also related to the density of liquid He by the equation of continuity 
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4. Probability current density (London) in quantum mechanics in Macroscopic scale 

A superfluid has the special property of having phase, given by the wave function. The order 

parameter (wave function) for the BEC phase is given by 
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where 0  is independent of the position vector r and the phase ( ) r  is a real-valued function of 

r. The probability current density is 
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with the velocity 
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The velocity sv  of the superfluid is proportional to the gradient of the phase. 
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We not that 
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In 1941, Landau suggested a test of this assumption in experiments with He II in a rotating vessel. 

Even before such experiments were conducted, Onsager speculated whether the assumption of 

0s v  is generally valid and suspected the occurrence of vortices in rotating He II. 

 



 
 

Fig. Vortex line and vortex ring. 

 

6. Quantization of angular momentum 

 

 
 



 
 

Fig. Quantum vortex with 
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 , where q = 6 and 12.   is the wavelength. 

 

The angular momentum is quantized. We note that 
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where q is integer. The momentum p is 
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The kinetic energy is 
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The velocity is 
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The circulation: 
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The angular momentum: 
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7. Quantization of circulation 

The circulation around any closed loop in the superfluid is zero, if the region enclosed is simply 

connected. The superfluid is thought to be irrotational (no rotation), 
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However, if the enclosed region actually contains a smaller region with an absence of superfluid 

(the singularity), the circulation around a doubly connected system is 

 

q
mm

d
m

d
CC

s  2)(
ℏℏℏ

  lrlv   (Stoke’s theorem) 

 

where q is integer. 
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m is the mass of He4 . 

 



 
 

Fig. Circulating sv  in a doubly connected system. Circulation around a hole. 

 

((Note)) 

Simply connected superfluid and multiply connected superfluid. 



 
 

Fig. (a) Simply-connected superfluid. (b) Multiply-connected superfluid. 

 

___________________________________________________________________________ 

For the velocity vs, we have 
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which means that the angular momentum is quantized. 

The circulation around the path C is either zero or a multiple of the quantum of circulation , 
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For 0q , the velocity around the singularity decreases to zero at infinity. 

 

r , 0v , 

 

0r ,  v , 

 

The sign of q determines the direction of the flow. q is called the charge of the vortex. 

If sn  is the superfluid number density, the kinetic energy is (for q = 1), 
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where l is the depth of liquid, ss mn  is the superfluid density, a is the core radius of the vortex, 

b is the radius of the bucket, or the mean distance between vortices. The line energy per unit length 

is given by 

 

2 ln( )
4

sE b
l

l a





  

 

Feynman conjectured how the vortex line might be arranged. First, note that since the 

circulation   enters squared in the energy, doubly quantized vortex line would have four times 

the energy of a singly quantized line, and would likely be unstable to break up into four separate 

lines. The creation of many vortices with q = 1 is energetically more favorable than the creation 

of a smaller number of vortices with correspondingly higher circulation. 

The angular momentum zL  per unit length associated with a single vortex is given by 
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where 
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We note that 
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We assume that 
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Thus we have 

 

2 2

ln( )
ln( )c

b

hq ba

R m R a




 
   

 



 
 

Fig. Circulation   in units of 4/ mh  as a function of the angular velocity of the rotating 

cylinder. The arrows indicate the sequence in which the angular velocity was changed. 

 

8. Circulation of normal liquid 

Normal fluid: 
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



 22
1

)(
1 2 r

r
r

rr
 : solid body rotation 

 

The velocity v  is proportional to r in the normal phase. 
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  (q: integer). (ii) rv   for the normal fluid. 

 

9. Second London equation 

Since 
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or 

 

0 sv   (the second London equation) 

 

The superfluid is irrotational. 

Here note that using the Stokes theorem we have 
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where da is the areal vector of the surface element (inside the closed loop C). This result leads to 

the expression of   around the singularity as 
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)(2 r  is the two-dimensional Dirac delta function. So svω   is zero (the flow is irrotational) 

except at the origin (singularity). 

 

 
 

Fig. Radial (r) dependence of vs around the singularity (origin). 

 

10. Anderson-Josephson evolution relation (time dependent Schrödinger equation) 

We start with the time-dependent Schrödinger equation 
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We assume that the wave function   is given by 
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The phase angle   is dependent on t and r. Thus we have 
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As regards the time derivative, we replace the Hamiltonian with the chemical potential . 
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11. The Gibbs-Duhem relation (thermodynamics) 

The Gibbs free energy is given by 
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leading to the differential form 
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So we get the relation 
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Here N is the number of particles, V is the volume, S is the entropy,  is the pressure and T is the 

temperature. The chemical potential can be written as follows.  
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The Gibbs-Duhem can be rewritten as  
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where  is the entropy per unit mass and  is the density.  

 

12. The first London equation 

We consider the Bernoulli effect for a system in dynamic flow. The pressure P is replaced by 
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Fig. The principle based on the Bernoulli equation (derived from the work energy theorem for 

fluid). const
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Then we have 
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The time evolution of sv  is 
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13. Heat flux density 

The heat flux density (erg/cm2 s) is expressed by 
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The amount of heat per unit mass 
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where   is the entropy per unit mass. Once equilibrium has been established, the heat flow may 

be expressed in terms of the entropy, average temperature T, and flow rate as 
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14. Fountain effect (mechanocaloric effect) 

In a nearly blocked porous plug only the superfluid can flow while the heat flow is blocked. 

This is enough to lift the superfluid against gravity and force it out at the top of vessel. It is an 

unusual example of osmosis. Both the superfluid and normal fluid components carry particle 

current, but only the normal component carries heat current. 

 

 
 

We assume a steady state. 
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A temperature difference implies a pressure difference. 

 

 

 
Fig. Schematic illustration of the principle of the thermomechanical effect. 

 



 
 

Fig Demonstration of the fountain effect. A capillary tube is “closed” at one end by a superleak 

and is placed into a bath of superfluid helium and then heated. The helium flows up through 

the tube and squirts like a fountain. 

 

15. Quantum vortices in the rotating He II 

 



 

 
 



 
Fig. Electrometer signal as a function of angular velocity. The velocity of rotation of He II was 

increased steadily in this experiment 

 



 
Fig. Schematic illustration of vortices in a rotating vessel containing He II. 



 
 



 
 

Fig. Visualization of quantized vortices in rotating He II at T = 0.1 K. 

 

16. Beaker experiment 

 



 
Fig. Schematic illustration of beaker experiments. Pioneering film flow experiments of Daunt 

and Mendelssohn. (a) Beaker filling through the film. (b) Beaker emptying through the 

film. (c) Drops forming on the bottom of the beaker. 

 

17. Andronikashivili experiment 

A schematic drawing of the specially designed torsion oscillator that Andronikashvili used in 
1948 to determine the normal-fluid density n  is shown in Fig. The complete normal-fluid 

component n , but not the superfluid component s , was dragged with the discs above and below 

the lambda point. 



 
 

Fig. Schematic drawing of the apparatus used by Andronikashivili to determine the normal-

fluid density n  of He II. 

 



 



 
 

Fig. Temperature dependence of the normal-fluid density n  normalized to the density   at 

T . The data were obtained with two different methods: ○ Andronikashvili viscometer, 

and ● second-sound measurements. 

 

 

18. First sound, second sound, and third sound 





 
 

Fig. Velocity of second sound in He II as a function of temperature. The solid line shows the 

theoretical prediction. 





 
19. Critical velocity 

 

 
 



 
 

Concept of the critical velocity 
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We assume that M is so large that the 
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 can be neglected. If  is the angle between p and v, we 

then have 
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Thus the condition 
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must be satisfied for excitation to be created. Thus the critical velocity is given by 
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The superfluidity can therefore occur if 
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a condition which is known as the Landau criterion for superfluidity.  

The energy dispersion relation was determined using inelastic neutron scattering. The energy 

spectrum of the rotons is described by 
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where *m  denotes the effective mass of a helium atom. 

 



 
Fig. Dispersion curve of He II as determined experimentally (inelastic neutron scattering) 

 



 
Fig. Phonon-roton spectrum in comparison with free 4He atoms. The two dashed lines are 

tangents to the dispersion curve and reflect the critical velocities of phonons and rotons. 

 

At T = 1 K, one finds that 
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We note that the critical velocity is evaluated as 
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((Mathematica)) 

 



 
 

((Ion mobility and the Landau critical velocity)) 

 

An direct measurement of significance is the study of ions in liquid helium. In this type of 

experiment, ions are injected into the liquid by applying a high voltage to a fine metal tip. The ion 

motion to a collector electrode can be controlled and studied with suitably arranged grids set at 

specific potential. 
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The measurement of negative ion mobility provides an experimental verification of the critical 

velocity. There is virtually no dissipation seen until the Landau critical velocity is reached. This 

a direct measurement of the critical velocity, and the magnitude agrees remarkably well with that 

calculated from the dispersion relation. 

 

 

 
 

Fig. The critical velocity determined experimentally. T = 0.35 K. 

 

20. DC and AC Josephson effect 

Here we consider two vessels containing He II that are connected by a weak link. Suppoe that 

there is a difference in the chemical potential such that 
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Let 1  and 2  be the probability amplitude of macroscopic wave function on either side of the 

aperture. We can write for the Schrödinger equation for the two vessels, 
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where   represents the coupling across the weak link.  
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 
2

1 ,  
2

2  

 

where 1  and 2  are the phases of the two wave functions. We solve the problem using 

Mathematica. 

______________________________________________________________________ 

((Mathematica)) 

 



 
______________________________________________________________________ 

Then we have 

 

0222 11   iei ɺℏɺℏ  (1) 

 

0222 22    iei ɺℏɺℏ   (2) 

 

where the phase difference is defined by 

 

12   . 

 

Now equate the real and imaginary parts of Eqs.(1) and (2), 

 




 sin
2

ℏ
ɺ   (3) 

 

and 



0cos11  ɺℏ  

 

0cos22  ɺℏ  

 

leading to 

 

 
ℏℏ

ɺ 1
)(

1
12  (4) 

 

For  =0 we have a constant phase difference 12    that results in a stationary mass flow 

without any pressure applied. This phenomenon is called the dc Josephson effect. For 0 we 

find an oscillating mass flow with frequency 

 

tJ  
1

 
ℏ

 

 

This phenomenon is called the ac Josephson effect. 

 

21. Experiment on Josephson effect in liquid He II 

 

Phys. Rev. Letts. 106, 055302 (2011) 

Quantum Coherence in a Superfluid Josephson Junction 

by S. Narayana and Y. Sato 

 

 
 

Fig.1 Experimental apparatus. A flexible diaphragm (D) and a rigid electrode (E) form an 

electrostatic pressure pump. The diaphragm also forms the input element of a sensitive 



displacement sensor through a nearby pickup coil (P) connected to a dc- SQUID (not 

shown). A heater (R) is used to induce quantum phase gradients across an aperture array 

(A). 

 

The experimental apparatus is schematically shown in Fig.1. Unshaded regions are filled with 

superfluid 4He, and the entire apparatus is immersed in a temperature regulated 4He bath. Two 

reservoirs of superfluid 4He are coupled through an array of apertures (A). In an ideal weak 

coupling limit, the mass current )(tI  across the junction driven by a chemical potential difference 

  is governed by the Josephson current-phase relation  

 

sin0II  , 

 

where 0I  is the junction critical current, and   is the quantum phase difference across the junction. 

The phase difference   evolves in time according to the Anderson phase evolution equation  

 

ℏ

ɺ 



 . 

 

A constant chemical potential difference   counterintuitively leads to oscillatory mass current 

at the junction 

 








  tItI
ℏ


sin)( 0  (AC Josephson effect). 

 

To observe such Josephson phenomena, a ‘‘weak’’ coupling must be established between two 

quantum fluids. This is achieved by using an aperture whose size matches the superfluid healing 

length 4 . Near the superfluid transition temperature ,17.2 KT  the correlation length 4  

diverges as 

 

67.0
4 )1(4.0 




T

T
,  (nm). 

 

Because of this property, various Josephson phenomena emerge at temperatures roughly 1 – 10 

mK away from T  if the aperture size is 50 nm. A Josephson mass current signal from a single 

≈50 nm aperture is on the order of 1610   kg/sec, too small to detect. Furthermore, large thermally 

induced fluctuations in superfluid order parameter phase at 2 K are expected to destroy the 

Josephson effect even if one had the capability to detect such a small signal. 

 



 
Fig.2 SEM image of aperture array. Each black dot is a 60 nm diameter aperture spaced 2 m 

apart from each other. 
 

Typically, 5000 to 10 000 apertures (each one ≈50 nm in size) have been utilized to raise the 

overall signal to a detectable level. In such experiments, phase fluctuations expected to wipe out 

the Josephson effect in a single aperture have shown no adverse effect. This has led to a model 

where thermal fluctuations are shared among N junctions with their phases rigidly locked together. 

In a weakly coupled regime, individual natures of various apertures have never been observed in 

any dynamical behaviors. All experiments done up to this point have always shown that thousands 

of apertures are amazingly locked together and act as a ‘‘single junction’’ in the Josephson regime. 

An array used in this experiment consists of 75 x 75 60 nm apertures spaced on a 2 m square 

lattice e-beam lithographed in a 60 nm-thick silicon nitride window. An SEM image of the array 

is shown in Fig. 2. As can be seen in the apparatus schematic (Fig. 1), an aperture array is 

configured as a part of a wall surface of a horizontal channel. The fluid volume within the channel 

is significantly smaller than the volume outside, and the outer can of the apparatus is well heat 

sunk to an even larger helium bath. Therefore, a resistor (R) placed at the end of a channel works 

as a local heat source while the fluid outside the channel behaves as a heat sink. When power Qɺ  

is applied to the heater, superfluid fraction of the fluid (with density s ) flows towards the heat 

source while the normal component (with density n ) flows away carrying all the entropy. 

Landau’s two-fluid model predicts superfluid velocity to be sv  

 



Qɺɺ



Tm

v
s

n
s

4

  

 

where  is the total fluid density,  is the specific entropy, and T is the temperature. London’s 

wave function view of the condensate leads to superfluid velocity related to quantum phase 

gradient by  

 


4m

vs

ℏ
. 

 

A phase gradient is then induced along the channel (and along the aperture array): 

 

Qɺ
ℏ

ɺ





Ts

n1
 . (1) 

 
This apparatus configuration allows us to directly apply finite phase gradient along the array of 

apertures, giving us an unique opportunity to probe their collective dynamics. In operation, we 

apply a pressure difference (and hence a chemical potential difference) across the aperture array 

by pulling a diaphragm [labeled (D) in Fig. 1] towards a nearby electrode (E). In response, the 

array exhibits Josephson mass current oscillation. The diaphragm motion (indicating fluid flow 

through the array) is detected using a dc-SQUID based displacement transducer. We record the 

overall mass current oscillation amplitude while applying finite external phase gradient [Eq. (1)] 

along the array in an attempt to unlock their phases and reveal their individuality. 

In Fig. 3, we plot the overall mass current oscillation amplitude as a function of heat input in 

the channel for three different temperatures. If all the apertures are indeed phase locked due to 

strong coupling or interactions, the oscillation amplitude from the array should remain constant. 

However, as the heater power is increased, we find that the oscillation amplitude varies. The 

surprisingly smooth and nonchaotic behavior implies that different apertures maintain temporal 

coherence of Josephson oscillations with a well-defined frequency of h/  in the background of 

externally applied phase gradients. 

 



 
 

Fig.3 Oscillation amplitude as a function of heater power. The solid lines are fits. At power levels 
higher than what is shown here, turbulence sets in, rendering the oscillation amplitude 
measurement difficult 

 
((Note)) 
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

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j
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APPENDIX Fraunhofer diffraction pattern 
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APPENDIX-II Important equations equations 
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0




t


j   (equation of continuity) (1) 

 

0



P
t
j   (Euler equation) (2) 

 

Usual hydrodynamic equation of continuity for the liquid as whole and has the effect of ensuring 

conservation of mass. 
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Conservation of entropy on the assumption that viscous effects are negligible. 
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From Eqs.(1) and (2) 
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((Proof)) 
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since 
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from Eq.(2). Then we get 
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For Eq.(6), we have 
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From (a) and (b), we get 
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When 0
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(iii) 
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((Proof)) 

From Eqs.(5) and (2) 
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Thus we have 
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((Proof)) 

From Eq.(8) 
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From Eq.(9), 
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APPENDIX III 
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