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Douglas Dean Osheroff (born August 1, 1945) is a physicist known for his work in 

experimental condensed matter physics, in particular for his co-discovery of superfluidity in 

Helium-3. For his contributions he shared the 1996 Nobel Prize in Physics along with David Lee 

and Robert C. Richardson.  

Osheroff joined the Laboratory of Atomic and Solid State Physics at Cornell University as a 

graduate student, doing research in low-temperature physics. Together with David Lee, the head 

of the laboratory, and Robert C. Richardson, Osheroff used a Pomeranchuk cell to investigate the 

behaviour of 3He at temperatures within a few thousandths of a degree of absolute zero. They 

discovered unexpected effects in their measurements, which they eventually explained as phase 

transitions to a superfluid phase of 3He.[4][5] Lee, Richardson and Osheroff were jointly awarded 

the Nobel Prize in Physics in 1996 for this discovery. 

Osheroff received a Ph.D. from Cornell University in 1973. He then worked at Bell Labs in 
Murray Hill, New Jersey for 15 years, continuing to research low-temperature phenomena in 3He. 
In 1987 he moved to the Departments of Physics and Applied Physics at Stanford University, 
where he also served as department chair from 1993-96. His research is focused on phenomena 
that occur at extremely low temperatures. 
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A 3He atom is a fermion with nuclear spin 1/2. Although 3He gas liquefies at low 

temperatures due to the weak van der Waals force, it does not solidify even at T = 0 K, unless the 

pressure exceeds 33.5 atom (= 3.4 x 106 Pa). While Bose liquid 4He becomes superfluid at 2.17 

K, 3He is a Fermi-degenerate at less than the Fermi temperature FT , and shows the properties of 

a normal Fermi gas. The specific heat is proportional to T below TF. It is only at an ultra-low 

temperature in the mK region that the system undergoes a transition to the superfluid state.  

The BCS theory suggests that it may possible for 3He atoms to form Cooper pairs, just like 

electrons in superconductors. In this case, the attraction would come from the van der Waals 

forces. In 1972, using Pomeranchuk cooling, the superfluid of helium-3 was finally discovered 

by Osheroff_, Richardson and Lee. 

 

 

1. Property of Liquid 3He 

Liquid 3He as a Fermi gas 
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where m0 is the mass of 3He atom, 
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Then the Fermi energy is 
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The Fermi temperature 
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2. The heat capacity, entropy and Pauli spin paramagnetism 

The simplest theory regards liquid 3He as a degenerate ideal Fermi gas. It is given by 
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The entropy S is 
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The chemical potential: 
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The Pauli paramagnetic susceptibility arising from the nuclear spin is. 
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Table: Specific heat, sound velocity, and magnetic susceptibility of 3He in comparison with an 

ideal Fermi gas 

 

 
 

3. Quantum concentration )(TnQ  

An atom 3He has a small mass and we are interested in temperatures T<1 K. Thus the 

quantum theory is needed. Indeed, if we treat liquid 3He as a ideal Fermi gas, its Fermi 

temperature is KTF 6 . This value is based on  
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It is compared with the quantum concentration, 
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We make a plot of )(TnQ  as a function of temperature. At temperatures below the Fermi 

temperature, the quantum theory is needed. 

 

 
 

4. Entropy 

The entropy is mainly due to the nuclear spin of the solid 3He around T = 0.3 K. The 3He 

atoms form a lattice. Below 10 mK the nuclear spins starts to order because of the 

antiferromagnetic exchange interaction. The nuclear spins antiferromagnetically ordered below 

the Neel temperature TN = 2 mK. The antiferromagnetic exchange interaction is -0.85 mK. 

For the liquid, the entropy per atom emerges as 
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On the other hand, for the solid, the entropy per atom is 
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reflecting the spin-up state and spin-down state of the nuclear spin ( 2/1I ). 

 

Above 0.3 K, liqS  is larger than solidS , while below 0.3 K solidS  is larger than liquidS . 

 

 
 

Note that 
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For example, at T = 0.3 K, it is determined experimentally that 
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5. Clausius-Clapeyron equation 

In the P-V phase diagram, the solid-liquid boundary below 0.3 K has a negative slope. This is 

very unusual. Note that the solid-liquid boundary for most materials (except water) has a positive 

slope. What are the entropies for the liquid phase and solid phase? The 3He atom is a fermion. 

The heat capacity is proportional to T at low temperatures  

 
2

2liquid A B

F

T
C N k

T

  
  

 
 

 

The entropy is evaluated as 
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where FT  is the Fermi temperature. The entropy is proportional to T.  

The entropy of solid 3He is dominated by the much larger contribution of the disordered 

nuclear spins (spin 1/2). Each the nuclear spin (spin 1/2) of 3He atom has a magnetic moment, 

just like a paramagnetic salts. In the paramagnetic state where the directions of spins are random, 

the solid entropy is given by 

 

2lnBAsoilid kNS  . 

 

Note that these spins are antiferromagnetically ordered with a Neel temperature NT 1 mK and 

the entropy drops rapidly to zero. The liquid entropy coincides with the solid entropy at a 

characteristic temperature 1T  (=0.32 K). Below 1T , the solid entropy is higher (more disordered) 

than the liquid entropy. Above 1T the liquid entropy (more disordered) is higher than the solid 

entropy. Such a cross-over of the liquid and solid entropies of 3He at about 0.32 K produces a 

pronounced minimum in the melting curve at about 2.93 MPa, followed by a rise in the melting 

pressure to 3.45 MPa at T = 0 K. This negative slope is used to produce adiabatic compressional 

cooling along the melting curve, a technique called Pomeranchuk cooling after its proposer, and 

used by Osheroff et al. (1972a) in their discovery of the superfluid phases of 3He. 
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Fig. Entropy per atom in the coexisting solid and liquid phases of 3He. The entropy of the 

liquid phase is less than that of the solid phase below a characteristic temperature 

1 2

2ln 2
FT T


 . The dotted line from a to b corresponds to slow adiabatic compression 

from pure liquid to pure solid. 

 

 
 

The phase boundary is expressed by the Clausius-Clapeyron equation 
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In the phase diagram of 3He around 0.3 K,  

 

0
dT

dP
 for T>0.3 K corresponding to solidliq SS   

 

0
dT

dP
 for T<0.3 K corresponding to solidliq SS   

 

since Solidliq VV   in the vicinity of 0.3 K.  

 



Consider the liquid-solid boundary (denoted by red open circle) below 0.32 K, where solidliq SS  , 

When temperature is increased, the entropy increases. The only way this can happen here is to 

solid which has higher entropy. So the liquid freezes when the temperature rises. This explains 

the negative slope below 0.32 K. 

In order for entropy to increase, heat must be absorbed from the surrounding (like when a 

normal solid melts). This gives rise to a cooling effect. Higher pressure forces the liquid to 

become solid. This gives a cooling effect. This compressional cooling" method was proposed by 

Issak Pomeranchuk in 1950. 

Pomenranchuk predicted that adiabatic compression of coexisting solid and liquid would 

cool 3He. If the initial temperature is below 0.32 K, then an increase in the external pressure 

moves the helium along the melting curve up and to the left: toward higher pressure and lower 

temperatures. Typically, the temperature decreases from 0.3 K to 1 mK. The solid-liquid 

boundary (arrow) below 0.3 K has a negative slope. 

 

REFERENCE: Baierlein, Thermal Physics (Cambridge, 2001). 

 

((Example)) 

 

TS liq 22  (J/mol K), 2lnRS solid   (J/mol K) 

 

T = 0.2619 K 

 

For the atoms. the main difference between solid and liquid is the ordering. In a normal material, 

the atoms would be more ordered in the solid where they are fixed, and more disordered in the 

liquid where they move randomly. Therefore, we can look for clues in the entropy of solid and 

liquid helium-3. Recall that the 3He atom is a fermion. Let us review what 

we know about entropy of fermions. 

This means that we can use the methods for electrons in metals to calculate heat capacities 

and entropies in liquid helium-3 - provided we assume that the helium-3 atoms acquires a 

different (effective) mass. Recall that we can use the formula for heat capacity of electrons in 

metal: 

For many years, it was believed that supefluid is not possible for 3He. It is a fermion, and 

Bose Einstein condensation cannot happen. That is, until the arrival of the BCS (Bardeen-

Cooper-Schrieffer) theory. 

 

6. Cornell group’s experiment 

We shall now look at some of the experimental evidence for 3He superfluid, starting with the 
discovery in 1972. 
 



 
 

Fig. The original data of Osheroff, Richardson and Lee which indicated the discovery of the 

A- and B-phases of superfluid 3He. 

 

In 1972, Osheroff, Richardson and Lee cooled liquid 3He using the Pomeranchuk method. 

They increased the pressure and recorded the falling temperature until about 1 mK. Then they 

release the pressure and continued recording the rising temperature. They plotted the graph and 

expected to see a smooth curve. They saw 2 small kinks on the way up, and 2 tiny glitches on the 

way down. After careful measurements, they concluded that these were due to the formation of 2 

new phases, which the called A and B. 

The meaning of the bends at A and A' are less obvious, but can also be explained in terms of 

phase transitions. 



 
 

However, whereas B and B' are first order transition, A and A' are second order transition. 

Second order transitions are phase transitions in which latent heat is zero. It is less common, but 

examples include: 

 

- transition through triple point of water 

- transition from para to ferromagnet 

- transition from normal to superconductor 

 

That the transition to phase A and the transition to superconductor are both second order 

suggests possible connection. Soon after the discovery of the new phases, Anthony Leggett 

proposed that phases A and B are the result of 3He atoms forming Cooper pairs. The difference is 

that in phase A, the spins are parallel, so that the total spin is 1 (S = 1, l = 1, 3P). In phase B, the 

spins are opposite, so total spin is 0 (S = 0, l = 0; 1S). In both cases, the 3He atoms pair up to 

form bosons. This means that Bose-Einstein condensation and superfluidity are then possible. 

The suggestion that phases A and B are Cooper pairs is reasonable, but needs to be checked 

by experiments. One experiment is to measure the magnetic energy levels. If the phase A has 

spin 1, it would have magnetic levels in a field. Phase B has zero spin, so there would be no 

levels. Photons from a high frequency magnetic field at the right energies could be absorbed and 

re-emitted, just as in atomic spectra. This way of measuring the magnetic energy levels is called 

nuclear magnetic resonance (NMR). 

The NMR spectrum is taken as liquid 3He is cooled below 2.5 mK. A new peak from phase A 

appeared. On further cooling to phase B, the peak disappeared. This observation is consistent 

with the theory that phase A contains Cooper pairs with spin 1, and Phase B Cooper pairs with 

spin 0. 

 



 
 

Fig. Transverse NMR absorption spectra observed in a mixture of solid and liquid 3He at the 

melting pressure for different temperatures. The grey tinted line corresponds to the 

absorption line in the liquid phase. 

 

Another way to verify that phase B contains Cooper pair with spin 0 is to check this relation 
from BCS theory:  
 

cBTk52.32  . 

 
Using the phase B transition temperature cT , the energy gap   can be predicted. One experiment 

to measure   is to use ultrasound. Ultrasound is transmitted into phase B. The frequency  is 

increased. If there are indeed Cooper pairs, they will break up when the phonon energy ℏ  

reaches  . When this happens, the ultrasound will be strongly attenuated, since it has to give up 

its energy to break up the Cooper pairs. 

The following shows the ratio of the energy gap measured  measured from the ultrasound 

experiment, to the energy gap BCS  predicted by the BCS theory 

 

Pressure P (bars) Ratio 
BCS

exp  

 
4.85 0.994 
9.80 1.030 



18.10 1.050 
 

[Movshovich, Kim, and Lee, Phys. Rev. Lett. 64, p. 431 (1990)] 

 
The ratio is quite close to 1, showing that the BCS prediction is accurate. This provides further 

evidence that the Cooper pairs exist.  

In another experiment, phase A flows through a narrow channel. The pressure difference 

between the two ends of the channel is measured. The result shows that below transition 

temperature, the pressure difference fall to zero. No pressure is needed to keep phase A flowing. 

This means it has no viscosity, confirming that it is a superfluid. 

 

 
 

The experiments on superfluid helium-3 provide strong evidence that our understanding of 

helium-4 superfluid, superconductivity, and Bose-Einstein condensate is correct. Many questions 

remain, such as why superfluid helium-4 is only 10% BEC, why the BCS theory cannot fully 

explain high cT  superconductors, and so on. 

 

Order parameter: 



 

7. Phase diagram 

Here is the phase diagram showing the superfluid phases with variables T, P and an external 

magnetic field in the mK region. It should be noted that there are two thermodynamically distinct 

phases so-called the A phase and B phase even at 0H , and that for 0H  the A1 phase 

appears. The transition between the A phase and B-phase is of the first order, which suggests that 

these are ordered phases with different symmetries. The appearance of superfluidity has been 

suggested by the specific heat jump, observation of the fourth sound propagating in the :super 

leak: of packed fine powder, the anomaly in heat conductance, and above all, the shift in NMR 

frequency. The existence of the A1 phase in a magnetic field is deduced from the specific heat 

measurement.  

 

 
Fig. P-T Phase diagram of 3He in the absence of a magnetic field. The point A (34.3 bar, 2.44 

mK). The point B (34.3 bar, 1.90 mK). PCP (21.5 bar, 2.24 mK). Z (0 bar, 0.92 mK). The 



superfluid phases are grey tinted. Solid 3He forms an antiferromagnetic lattice with a 

Neel temperature NT  of about 1 mK. 

 

 

 
 

Fig. P-T phase diagram of liquid 3He below 2.6 mK in a magnetic field of 380 Oe.  

 



 
 

 
 

Fig. The phase diagram of 3He at millikelvin temperatures, showing the superfluid phases in 

zero applied magnetic field. (B) Schematic phase diagram of 3He in an applied magnetic 

field. 

 

8. Critical behavior of heat capacity 

 



 
Fig. Reduced specific heat C/R of 3He at a pressure of 28.7 bar as a function of temperature. 

At cT  a clearly visible jump in C exists, while a weak variation of C occurs at ABT . 

 



 
 

Fig. Specific heat of superfluid 3He at the melting pressure as a function of the reduced 

temperature cTT /  in a magnetic field of 880 Oe. The solid lines above 1AT  and below 

2AT  are fits to zero-field data in 3He-N and 3He-A, respectively. 

 

9. Fermi liquid theory 

The life time a quasi-particle excitation dressed by interactions is rather long owing to the 

surrounding degenerate Fermi sea. Thus the physical properties at FTT   may be well 

described by a theory based on quasi-particle excitations, the so-called Landau Fermi liquid 

theory. Since the critical temperature Tc of this superfluid is of the order of 1000/FT , similar to 

that for superconductivity in a metal, one can naturally study the system on the basis of this 

theory. 

 



 
Fermi liquid relations between the Landau parameters  and experimentally measured quantities 
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Comprressibility: 
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The sound velocity: 
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Link 

D. Osheloff’s lecture on the discovery of superfluidity 3He 

https://www.youtube.com/watch?v=XB-RMEnlG7E 

 

In Landau’s theory the frequently colliding 3He atoms are replaced by an equal number of nearly 

independent quasiparticles, which have an effective mass m* ≅ 3m in the liquid under its 

saturated vapor pressure. At very low temperatures, FTT  , the quasiparticles have a long 

mean free path and form a rarefied gas in momentum space with energies within a region of 

width TkB  around the Fermi sphere of radius FBTk , where FT  on Landau theory is lowered to 

1.5 K 

Another consequence of this model is that it can predict the temperature dependence of the 

viscosity of liquid 3He. According to elementary transport theory the viscosity of a fluid is  
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where ρ is the fluid density, τ is the mean time between collisions, and ν is the mean speed of the 

atoms. For liquid 3He the number of quasiparticles available to scatter a given one is proportional 

to TkB , while the number of final states is also proportional to TkB . As a result the collision 

frequency for quasiparticle scattering is proportional to 2T  or the relaxation time 2/1 T . The 

speed of the atoms is approximately equal to the value at the Fermi surface, Fv , and so is 

independent of temperature. So the viscosity is proportional to 2/1 T . 

 

 
 

As a result the viscosity of liquid 3He, in striking contrast to that of superfluid 4He, rises 

dramatically at millikelvin temperatures, becoming 2 mP at 40 mK (Betts et al. 1966) and no less 

than 0.3 P at 3 mK—which is the same as olive oil at 40 °C! In a similar way its thermal 

conductivity λ rises at mK temperatures, where T/1 .  

 



 
 

The interaction between 3He atoms in liquid 3He which can lead to superfluidity is more 

subtle. The 3He atoms are inert and uncharged; there is no ion lattice to be polarized. The 

polarization therefore takes place in the Landau Fermi liquid itself, which has been shown to 

have a strong spin polarization. So we can visualize a 3He atom travelling through the viscous 

liquid leaving in its wake a partially spin-polarized track. This polarization fades slowly and so a 

second 3He atom coming near this track would be either attracted or repelled (depending on its 

spin) and so effectively interact with a spin dependent interaction with the first 3He atom. This 

mechanism can lead to correlated pairs of parallel-spin particles and so favors spin triplet pairing 

(S = 1) rather than the spin singlet pairing (S = 0) of the electrons. 

 



 
 

Fig. The susceptibility of liquid 3He, plotted as CT /  for various pressures. A.L. Thomson 

et al. Phys. Rev.128, 509. 

 



 
 

Fig. Magnetic Susceptibility of the B-phase as a function of cTT / . The pressure is below the 

PPCP critical point. 
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APPENDIX-1 



 

1. Approximation of C and U up to the second order 
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APPENDIX-II 

1 atm = 1.01325 x 105 Pa 

1 bar = 0.98692 atm = 105 bar 

1 Mbar = 9.8692 atm 

 

 

 

The nucleus of 3He consists of two protons, one neutrons, and two electrons. The nuclear spin is  

zero. The nuclear spin is 1/2. The nucleus of 4He consists of two protons, two neutrons, and two 

electrons. The nuclear spin is  zero. 

 

((R. Dobbs, Helium Three Oxford 2001)) 

 



 
 

((Dobbs, Helium Three Oxford, 2001)). 
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((Dobbs, Helium Three Oxford, 2001)). 

 

 

 

Thouless 

 

 

Since the interaction between He atoms is repulsive at short distance it is not surprising that the 

pairing occurs in a higher relative angular momentum state rather than in the S state in which 

electrons are paired for conventional superconductors. In fact the pairing occurs in a P state, 

which, since the atoms are fermions, implies that the nuclear spins must also be couples together 

in a triplet state.  

 

 



A triplet P state is described by 3 x 3 = 9 complex degrees of freedom. In the A phase  \the 

orbital state  

 

 

 

 
 

At the fixed pressure, when the magnetic field is applied, the critical temperature Tc splits into 

two critical temperatures. In this case, the system undergoes successive phase transitions from 

the N phase to the phase A through a new phase A1 ( AAN  1 ). 

 



 
 

What happens to the susceptibility? In the presence of the pressure, the system undergoes 

successive phase transitions ( BAN  ) as the temperature decreases, where N is the normal 

phase. The temperature dependence of the susceptibility is schematically shown in Fig. The 

suspceptibility A  of the A phase is nearly equal to N . This suggests that the pair formation of 

nuclear spins in the A phase is different from the Cooper pair formation with antiparallel spin in 

the conventional superconductor (cancellation of total spin). 

 

((Effective potential)) 

 

The effective potential between pair particles is given by the sum of the actual potential energy 

)(rV  and the centrifugal 
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where   is the reduced mass 
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and lℏ is the orbital angular momentum. Suppose that )(rV  is given by a Lennard-Jones type 

potential 
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where 11  kJ/mol, and   (the collision diameter) is 58.2  Å for He.  It is the hard-sphere 

potential. The potential energy rises abruptly to infinity as soon as the particles come within the 

separation . We consider the effective potential as a function of the reduced distance 

r

x  ; 
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For simplicity we put 
2

2

8
ℏ

a , which is an adjustable parameter. It is found that equilibrium 

position shifts to larger distance with increasing the relative angular momentum l.  

 

 
 

Fig. Effective potential effV  as a function of /rx   with .02.0
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The equilibrium position is obtained as 
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The solution of this equation yields the distance in thermal equilibrium, which depends on the 

angular momentum. 

 
 

 

Fig. Plot of )(xf  as a function of /rx  . The blue lines denote )1(2  laly  with a = 0.02. 

l = 0, 1, 2, 3, and 4. The equilibrium distance increases with increasing l. x = 1.12246 (l = 

0. x = 1.12653 (l = 1). x = 1.1354 (l = 2). x = 1.15114 (l = 3), x = 1.17978 (l = 4). 

 

Symmetry 

 

Addition of two spin 1/2: 

 

012/12/1 DDDD   

 

leading to the S=1 state (symmetric state) and S = 0 (anti-symmetric  state). 

 

S = 1 (triplet) 
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S = 0 (singlet) 
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The relative orbital angular momentum; 

 

mlmlPml l ,)1(,ˆ,ˆ 12   

 

0l  (S): symmetric 

1l  (P): anti-symmetric 

1l  (P): symmetric 

2l  (F): anti-symmetric 

 

where ̂  is the parity operator and 12P̂  is the exchange operator. In this case, the exchange 

operator is equivalent to the parity operator for the relative angular momentum. 

 

 

((Enss)) 

The most general wave function of the quasiparticle pairs in superfluid 3He can be 

represented by a linear superposition of all three spin states. Furthermore, since the angular 

momentum of the pair is a well-defined quantity, the pair wave function can be expanded in 

terms of the three states mz = -1, 0, 1 of the l = 1 manifold. The general expression for the wave 

function can thus be written as a linear combination of 3 × 3 = 9 terms. The amplitudes of the 

terms are complex-valued, since each has a magnitude and phase. In other words, the wave 

function of quasiparticle pairs in superfluid 3He is determined by 2(2S + 1)(2L + 1) = 18 real-

valued parameters. Therefore, the order parameter of superfluid 3He is not described by a 

complex scalar, as in the case of helium II or in the case of conventional  superconductors, but by 

a 3 × 3 matrix with complex-valued components. 

For mathematical convenience, Balian and Werthamer introduced a vector representation 

)ˆ(kd  for this order parameter. Since this notation is widely used in the literature, we also adopt it. 

The vector )ˆ(kd  represents the pair amplitude for a particular direction k̂  defining a point on 

the Fermi surface  or in other words, it defines the amplitude of the quasiparticle condensate for a 

point on the Fermi surface. The components xd , yd  and zd  are each described by three 



complex-valued parameters and transform under rotation like a vector. The direction of d is such 

that its projection onto the direction of the spin of the quasiparticle pairs is zero for any point of 

the Fermi surface, i.e., d・S = 0. We would like to point out that this not only defines the plane 

in which d lies, but fully determines the direction of d, because d is a vector with complex 

components. Furthermore, we note that, in the case where d has only real-valued components, 

the expectation value of S is zero. The definition of d implies that it represents a unique direction 

in spin space, as well as the amplitude of the quasiparticle pairs for a particular direction k̂ . 

Using d the general pair wave function can be written as 
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In principle, the internal degrees of freedom of the spin-triplet pairing allows for many different 
quasiparticle pair states and hence superfluid phases. Of the different states, the one with the 
lowest energy for a given set of external parameters will be realized. Using the general wave 
function (1) as a starting point, we will discuss the pair states of the different superfluid 
phases of 3He that have actually been observed. 
 
3He-A1 

The simplest case is that of 3He-A1, which only exists in magnetic fields. The spins are 

aligned parallel to the applied magnetic field ( 1zS ) that means only pairs in the state   

exist and that the components of d must obey the relations 0 yx idd  and 0zd . In this case, 

the pair wave function reduces to 

 

 xA d2
1

  

 
3He-A 

The wave function of the A phase is a linear combination of the states ( 1zS ) and thus the 

zd  component must be zero. This corresponds to a pair state predicted by Anderson, Brinkman 

and Morel and is therefore often referred to as the ABM state. The wave function of this state is 

given by 

 

 )()( yxyxA iddidd  

 
3He-B 

The B phase corresponds to a pair state predicted by Balian and Werthamer in which the 

wave function is given by the general expression Eq.(1) that consists of all possible linear 

combinations. The so-called BW state is quasi-isotropic with vanishing total angular momentum 



J = L + S = 0. It is noteworthy that both the ABM and the BW model were worked out long 

before the experimental discovery of superfluid 3He. 
 

 





 
 



Clebsch-Gordan coefficient
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Orbital angular momentum 
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which is almost equivalent to the expression given by Enns 
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Tony Guenault 

 

5.2.2 p-wave pairing 

Having seen that simple intuition based on ideal gases can work for the normal fluid phase of 
3He, we are now equipped to talk about the nature of the superfluid. As we have noted, it is now 

widely accepted that p-wave pairing occurs. This is strongly suggested since: 

 



1. An ideal looking second-order transition visible in the heat capacity of the Fermi system 

suggests formation of “weak” Cooper pairs by analogy with conventional BCS 

superconductivity. 

2. Experimentally there are magnetic properties, ruling out S = 0, since the simple BCS s-

wave pairing ties up opposite spins in a nonmagnetic pair. 

3. For 3He, it might somewhat stretch one’s credulity to imagine pairs having L = 0, even 

for a true believer in the indistinguishability of identical particles according to the ideas 

of quantum mechanics. This is because L = 0 means no angular momentum of the pair, so 

that they must pass right through each other (electrons, point particles, yes; 3He, 

enormous atoms, no !?). 

4. In any case, if we accept that S = 1 from the observed magnetic properties, then we must 

have L odd; and L = 1 is by far the simplest option. This result comes from the wave 

function symmetry for identical fermions; the total wave function must be antisymmetric 

for co-ordinate exchange, S = 1 means a spin symmetric function, so the spatial wave 

function must be antisymmetric, and that means L odd. When we decide on p-wave 

pairing, the theoretical situation is fascinating, yet very complex and quite a challenge. 

 

In s-wave theory, there is just one sort of Cooper pair, constructed from the ,k  and  ,k  

one-particle states. The pair is a spin singlet and an orbital (spatial) singlet. The superfluid 

ordering can be described by an order parameter, the macroscopic wave function of the form 

Ψ=C exp(iφ) with C and φ simple scalars. This is the recipe we have adopted in discussing both 

superfluid 4He and (conventional BCS) superconductivity. We have seen that it leads to a simple 

isotropic energy gap Δ between the superfluid ground state and the excitations. But now, in p-

wave pairing, we have triplets in both space and spin coordinates. There are three possible spin 

configurations, giving 1 ,0 ,1 zS . In an obvious terminology, these spin states may be 

referred to a  ,   and  . The Sz = 0 state, here written simply as   is of course the 

symmetric spin pairing more fully written as 2/(  . We also have three orbital 

configurations corresponding to 1 ,0 ,1 zL . Therefor there are in all no fewer than 9 types of 

Cooper pair, and the order parameter must in general be written as a 3 × 3 matrix, jA  where μ 

cover the three spin states and j the three orbital states. Since each of the A is a complex number, 

that means that a Cooper pair has 18 number associated with it.  

In principle, therefore, there is a fantastic variety of possibilities for the most stable state. 

Fortunately, however, there is a simplification in that the various spin components in the Cooper 

pair wave function behave almost independently. Thus the observed magnetic properties of the A, 

and A1 phases can be used to give imp ortant clues about the make-up of these phases. 

 



1  We saw that the A-phase susceptibility is the same as in the unpaired normal state. This is 

a signal that only   and   states are involved, since the   state has no magnetic 

properties. Thus the A-phase is referred to as an “equal spin pairing” state. 

2  The A1-phase only occurs near TC and when a magnetic field is applied. It is thought to 

involve ↑↑ spins only, i.e. those spins aligned to the applied field. 

3  The B-phase susceptibility is lower than that in the normal state, a signal that the ↑↓ state 

is now involved. In fact it is believed that all three spin components are equally involved. 

At first sight this might seem to imply that the susceptibility should reduce by a factor of 

2/3 rather than the observed factor of about 1/3. However the interactions, as described 

by the Landau parameters, need to be considered. In the normal fluid, we saw above that 

N  is enhanced by the large ferromagnetic interaction measured by 
)(

0

a
F . But this spin-

dependent interaction is decreased when non-magnetic   pairs are involved, and hence 

the theory based on Landau’s Fermi liquid theory turns out to give good agreement with 

the observed 3/NB    

. 


