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In fact only in 1995 were actual physical examples of a BEC finally realized. These were 

provided not in helium, but in very dilute gases of alkali metal atoms. The techniques for 

trapping and cooling atoms in magnetic and laser traps had been developed and improved 

gradually over the preceding two decades. At first sight it may seem surprising that one can 

achieve the conditions of temperature and density such that BEC can occur in such systems. The 

densities of atoms in the traps are typically of order 1011 - 1015 cm-3, which is many orders of 

magnitude less than the atomic density of 4He, which is about n = 2 x1022 cm-3. Furthermore, the 

atomic masses of the alkalis are very much higher than for 4He, especially for heavy alkali 

atoms such as 87Rb. We would expect T, values perhaps 10-6 -10-8 times smaller than for the 

parameters of 4He. In other words, we expect T, values of order 10 nK – 1K. It is remarkable 

that the techniques for cooling and trapping atoms with lasers and magnetic traps can now 

achieve such incredibly low temperatures in the laboratory.  

 



3/223/2

2/3

2

61238.2

2

)1(

2



















n

mkz

n

mk
T

BB

E

ℏℏ 



 

 

For 4He 

 
3g/cm 145.0)( He . um  4

He
 , 

 

u is the atomic unit mass. u = 1.660538782 x 10-24 g. 
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For Rb87  

 
3g/cm 532.1)( Rb . um  87Rb  . 
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We calculate the Bose-Einstein condensation temperature for 87Rb 
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when n is changed as a parameter. 

 

n (/cm3)  TE  

1010 0.8573  nK 

1011 3.979  nK 

1012 18.47  nK 

1013 85.72   nK 

1014 397.91  nK 



1015 1.847  K 

1016 8.573  K 

1017 39.79  K 

1018 184.7  K 

1019 184.7  K 

1020 3.979  mK 

1021 18.47  mK 

1022 85.73  mK 

1023 397.91  mK 

1024 1.847  K 

 

 

((Note)) The number concentration is related to the average distance a between atoms as 

 

3

1

a
n   

 

So the distance a can be evaluated as follows. 

 

n (cm-3)  a 

1010 4.642 m 

1012 1.0 m 

1014 215.4 nm 

1016 46.416 nm 

1018 100 Å = 10 nm 

1020 21.5 Å = 2.15 nm 

1022 4.64 Å = 0.464 nm 

1024 1 Å = 0.1 nm 

 
Here, we shall only give a brief outline of some of the fundamental principles involved. First, 

how can we view a single large object, such as a rubidium atom as a boson? In quantum 

mechanics a particle will be a boson if it has an integer spin. Alkali metal atoms have a single 

valence electron in the outermost s-orbital, for example 2s for lithium (Li), 3s for sodium (Na), 

4s for potassium (K), or 5s for rubidium (Rb). If the nuclear isotope is one with an odd number 

of protons and neutrons it will have a net half-integer spin. For example, 7Li, 23Na, and 87Rb all 

have S = 3/2 nuclei. In this case the total spin of the atom is the sum of the nuclear spin and the 

valence electron spin, which will be an integer. The spin I = 3/2 nucleus and the J = 1/2 valence 

electron spin combine to give states with a total spin of either F = 2 or F = 1. 

 



122/12/3 DDDD   

 

If we can prepare the gas so that only one of these types of states is present, then this will be a 

gas of particles each with an integer spin. Therefore we can view this as a gas of Bose 

particles. On the other hand, if atoms in both S = 1 and S = 2 quantum states are present in the 

gas, then this is effectively a mixture of two different species of bosons, since the two types of 

atoms are distinguishable from each other. 

In order to see how these atoms can be trapped by a magnetic field we must consider the 

energy levels of the atom and how they are affected by a magnetic field. For definiteness, let 

us assume that the alkali atom has an I = 3/2 nucleus. It is helpful to first find the explicit spin 

wave functions for the different quantum states. First we find the states with maximum total 

spin, F = 2. For F=2, there are five different states, corresponding to z-components of total 

spin given by quantum numbers Fm  = 2, 1, 0, -1, -2. The wave function corresponding to the 

maximum value, Fm , can be represented as follows. 

 

The total angular momentum:  addition of nuclear spin (
2

3
I ) and electron spin 

1
( )

2
J   
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F = 2 (bosons) 

 

3 3 1 1
2, 2 , ,

2 2 2 2
F m    , 

 

1 3 3 1 1 3 3 1 1 1
2, 1 , , , ,

2 2 2 2 2 2 2 2 2 2
F m        
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2, 0 , , , ,

2 2 2 2 2 2 2 22 2
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2, 1 , , , ,

2 2 2 2 2 2 2 2 2 2
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F = 1 (bosons) 

 

3 3 3 1 1 1 3 1 1 1
1, 1 , , , ,
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((Mathematica)) 

 



Clebsch-Gordan coefficient

Clear "Global` " ;

CCGG j1 , m1 , j2 , m2 , j , m :

Module s1 ,

s1 If Abs m1 j1 && Abs m2 j2 && Abs m j,

ClebschGordan j1, m1 , j2, m2 , j, m , 0

CG j , m , j1 , j2 :

Sum CCGG j1, m1 , j2, m m1 , j, m a j1 , m1

b j2, m m1 , m1, j1, j1

j1 3 2; j2 1 2
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2. Hyperfine interaction  

In zero magnetic field the F = 2 and F = 1 states have slightly different energy due to the weak 
hyperfine interaction between the nucleus and the outermost unpaired valence electron. In zero 
magnetic field all five of the F = 2 states are degenerate with each other, as are the three F = 1 states, 
as shown in Fig. 1.4. But a magnetic field leads to a Zeeman splitting of these degenerate states. To a 
good approximation, we can write the relevant effective Hamiltonian as, 
 

1 21 2 1 2 2
1

ˆ ˆˆ ˆ ˆ ˆ ˆ
ˆˆ [ )] 2 (1 )y yx x z z z

B

I JI J I J J
H A B       

ℏ ℏ ℏ ℏ ℏ ℏ ℏ
 

 

in the presence of an external magnetic field along the z axis, where J is the hyperfine interaction 

between the nuclear spin ( 1I ) and valence electron spins ( 2J ), the valence electron has a 

magnetic moment 22 B J
ℏ

.  
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(b) 

 

J = 1/2 (electron) 
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Using the KroneckerProduct of the Mathematica, the matrix of the Hamiltonian is obtained as 
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We solve the eigenvalue problem by using the Mathematica (Eigensystem). 

 

F = 2: 

 

1
( 2, 2) (3 4 )

4
E F m x    , 

 



21
( 2, 1) ( 1 4 1 )

4
E F m x x        

 

21
( 2, 0) ( 1 4 1 )

4
E F m x       

 

21
( 2, 1) ( 1 4 1 )

4
E F m x x         

 

1
( 2, 2) (3 4 )

4
E F m x      

 

___________________________________________________________________________ 

j = 1 

 

21
( 1, 1) [ 1 4 1 ]

4
E F m x x        

 

21
( 1, 0) ( 1 4 1 )

4
E F m x       

 

21
( 1, 1) [ 1 4 1 ]

4
E F m x x         

 

 
 

 

F 2,m 2

F 2,m 1

F 2,m 0

F 2,m 1

F 2,m 2

F 1,m 1

F 1,m 0

F 1,m 1

0.5 1.0 1.5 2.0 2.5 3.0
B B J

4

2

2

4

E J



 
 

3. Magnetic trap 

This magnetic field dependence of the quantum state energies is exploited in a magnetic 

atom trap. The trap is constructed by producing a region of space in which the magnetic field 

has a local minimum. At first sight it is surprising that it is possible to produce a local 

minimum in magnetic field, because the field must also obey Maxwell's equations for a 

region of free space 
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Fig. A pair of coils with currents in opposite directions produces a quadrupole magnetic field. 
The field is zero at the center of the coils and its magnitude increases linearly in every 
direction for small displacements from the zero point [C.J. Foot, Atomic Physics (Oxford, 
2005)]. 

 



 

 

Fig. Magnetic field distribution on the x-z plane for the magnetic quadrupole configuration. 

 

 

Fig. Distribution of the magnetic field along the z axis as a function of 22
yx  . The 

magnetic field shows a local; minimum for z<0 and has a local maximum for z>0. 
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In fact it is indeed possible to both obey these and to have a local minimum in the field 

magnitude. Now, if we prepare an atom in a quantum state such as F = 1, Fm  = 1, 0, ,-1, then 

it will lower its energy by moving toward a region of smaller magnetic field. It will therefore 

be attracted into the magnetic trap, which will appear to the atom as a local minimum in 

potential energy. This potential is only a local minimum. Atoms which have too much kinetic 

energy, that is, are too "hot," will not be bound by the trap and will escape. While atoms 

which have less kinetic energy, that is, are "cold," will be bound by the local minimum in 

potential energy.  

 

 

 



 

 

5. Critical behavior 

Ph.D. Thesis of J.R. Ensher 

“The first experiments with Bose-Einstein condensation of 87Rb”. 

University of Colorado at Boulder 1996 

 

(a) Number density in the ground state (BEC phase) 
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For a 3D harmonic oscillator potential, the number of particles in the condensate is 
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We put 
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leading to the critical temperature T0 
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Note that 
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The number of particles in the condensate phase is 
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We assume that ckℏ  (energy dispersion) 
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At ETT  , 
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The number density at the ground state is derived as 
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The Bose-Einstein temperature ET : 
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The expression of ET  is different from that of ET  for the system with the energy dispersion   

 

(b) The energy density and specific heat 

Specific heat, at constant external potential, vs. scaled temperature 0/T T  is plotted for 

various theories and experiment: theoretical curves for bosons in an anisotropic 3D harmonic 

oscillator and a 3D square well potential, and the data curve for liquid 4He. The flat dashed 

line is the specific heat for a classical ideal gas. The derivative (bold line) of the polynomial 

fits to our energy data is compared to the predicted specific heat (fine line) for a finite 

number of ideal bosons in a harmonic potential.  

 



 

 

 



 

 

Fig. The scaled energy per particle 0/ ( )BE Nk T  of the Bose gas is plotted vs. scaled 

temperature 0/T T . The straight, solid line is the energy for a classical, ideal gas, and 

the dashed line is the predicted energy for a finite number of non-interacting bosons. 

The solid, curved lines are separate polynomial fits to the data above and below the 

empirical transition temperature of 0.94T0. The difference   between the data and the 

classical energy emphasizes the change in slope of the measured energy-temperature 

curve near 0.94 0T (vertical dashed line).  



 

6. Interference behavior 

 

Ph.D. Thesis 

O. Garcia-Salazar 

Bose-Einstein-Condensate Interferometer with Macroscopic Arm Separation 

University of Virginia (1998) 

 

 



 

 

 



 



 

 



 

 



 

 

Fig. Observation of BE condensate by absorption imaging. In absorption imaging, the 

atom cloud is illuminated with a laser beam, and its shadow is imaged onto a digital 

camera. Pictures taken from expanding ultracold atom clouds reveal the onset of BE 

condensation below a critical temperature Tc. The BEC is characterized by its slow 

expansion observed after 6 ms time of flight. The left picture shows an expanding 

cloud cooled to just above the transition point; middle: just after the condensate 

appeared; right: after further evaporative cooling has left an almost pure condensate. 

The width of the image is 1 mm. The total number of atoms at the phase transition is 

about 7 x 105, the temperature at the transition point is 2k. The bottom picture is a 

3D plot where the height of the peak represents the darkness of the shadow. The BE 

condensate appears as a sharp peak. 

 



 

 

Fig. Phase contrast images of trapped Bose gases across the BEC phase transition. At high 

temperature, above the BEC transition temperature, the density profile of the gas is 

smooth. As the temperature drops below the BEC phase transition, a high-density 

core of atoms appears in the center of the distribution. This is the Bose-Einstein 



condensate. Lowering the temperature further, the condensate number grows and the 

thermal wings of the distribution become shorter, Finally, the temperature drops to the 

point where a pure condensate with no discernible thermal fraction remains. Each 

image shows an equilibrated gas obtained in one complete trapping and cooling cycle. 

The axial and radial frequencies are about 17 and 230 Hz, respectively. 

 



 

 

Fig. MIT atom laser operating at 200 Hz. Pulse of coherent Na atoms are coupled out from 

a BEC (Bose-Einstein condensate) confined in a magnetic trap (field of view 2.5 x 5.0 

mm2). Every 5 ms, a short rf pulse transferred a fraction of these atoms into an 



unconfined quantum state. These atoms were accelerated downward by gravity and 

spread out due to repulsive interactions. The atom pulses were observed by absorption 

imaging. Each pulse contained between 105 and 106 atoms. 

 

 

 

 

Fig. Interference pattern of two expanding condensates observed after 40 ms time of flight 

using absorption imaging. This observation proved that the atoms in a Bose-Einstein 

condensate form one big matter wave that can interfere with another Bose-Einstein 

condensate in the same way as two beams interfere and create a pattern of dark and 

bright fringes. 
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Time-of-flight: 

 

The cloud fall with gravity and expends as no force applies on it. After some time (4-20 

millisecond) we image the atoms by shining the laser beam through the atom cloud and into the 

CCD camera. 
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Huang: 

K. Huang, Introduction to Statistical Physics, second edition (CRC Press, 2010) 

 

Chapter 20 Superfluidity 

 

20.1 In the photograph in Figs.1 and 2, the interference fringes between two Bose-Einstein 

condensates have a spacing of 1.5 x 10-3 cm. Find the relative velocity between the two 

condensates. 

 
 

Fig.1 Two condensates approach each ot6her, overlap, and exhibit interference fringes. 

 



 
 

Fig.2 Photograph of interference fringes produced by two overlapping condensates of Na atoms. 

The separation between fringes is 1.5 x 10-3 cm (Ketterle)  

 

In the paper of Ketterle, there is no detail on the experiment. I think that Bragg refection occurs 

in the BEC. I am not sure that my solution is appropriate. 

 

((Solution)) 

Suppose that two BE condensates (BEC) undergoes an elastic collision. The wave vector of 

one BCE is k before the collision and kk '  after the collision. On the other hand, the wave 

vector of the other BCE is -k before the collision and kk '  after the collision. We just consider 

the Bragg reflection for the one BEC.  

 

 
 

Fig. Ewald sphere for the Bragg reflection for the 1D system.  
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We consider the Bragg reflection for the 1D system. In the reciprocal lattice, there appears the 

Bragg plane at 
D

G
2

 , where D is the lattice constant. The red circle denotes the Ewald sphere. 

The Bragg reflection occurs when the 2D Bragg plane intersects the Ewald sphere (denoted by 

purple color).  The Bragg reflection occurs when 

 

Gkk  ' , 

 

where 

2

'  kk , and kk ' . G is the reciprocal lattice vector and. The magnitude of G is 

given by 

 

D
G

2
 G  

 

where D = 1.5 x 10-3 cm. Then we have the relation 

 

D
Gk

2
2  . 

 

The relative velocity is 

 

Dm
k

m
v

ℏℏ
  = 0.057 cm/s 

 

where the mass of Na atom is given by m(Na) = 22.98976 u.  

 

((Note)) 

We consider the two waves (incident wave and reflected wave). 

 

2 sin( )ikx ikxe e i kx     

 

From  sin( ) 0kx  , we have  

 

kx n  or x
k


   

 

When x D  , we have 

 



mv
k

D


 

ℏ
 

 

Thus we get the velocity v as 

 

v
mD



ℏ

= 0.057cm/s 
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