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This part is already discussed in the section of the Sommerfeld formula. For convenience, I
put this part again in the new section for convenience.

1. Sommerfeld formula: 1D case
We consider the case of one-dimensional system.
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where the density of the state for the 1D system is
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The factor 2 of 2dk comes from the even function of the 1D energy dispersion relation. We use
the Sommerfeld formula
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Thus we have
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Combining Egs.(1) and (2), we get
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Then the chemical potential y is
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We make a plot of the number distribution as a function of * ~ &l éep
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where &~ kT /& is changed as a parameter. We choose @ = 0.3



Number

x=¢le, a=k,T/¢,

=03

=0.3 for the 1D case. The chemical

potential for the temperature with a=k,T'/&; is denoted by the dashed line. It shifts
to the high energy side from the Fermi energy at 7= 0K (x = 1). The area for ¥ > 1 (shaded
region denoted by green) is the same as the area below X <1.

Fig. The number distribution vs
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28 Sommerfeld formula for the 3D system

Next we consider the case of three-dimensional system.

N = szdgf(g)D3 (&)= T deD;(¢)de

where the density of states for the 3D system is
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We use the Sommerfeld formula
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Combining Egs.(1) and (2), we get
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Fig. Chemical potential as a function of temperature for the ideal 3D Fermi gas and the 1D
Fermi gas.
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Fig. The number distribution vs *=¢/%r @=KT/€:= 01 _ 06 for the 3D case. The

chemical potential for the temperature with a=kT/ée; is denoted by the dashed line. It
shifts to the low energy side from the Fermi energy at 7= 0 K (x = 1) with increasing
temperature. The area for X >1 (shaded region denoted by green) is the same as the area

below ¥ <1,

3. Exact solution for the chemical potential for the 2D case
The density of stares for the 2D system is
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The density of states for the 2D system is independent of &. The chemical potential can be
evaluated exactly as follows. In other words, we do not have to use the Sommerfeld approximation.

ml?

hz

&

Ny = [ Dy(e)de =—
0



T Dy(e)de mLl’7  de
Nap = ;[ P 41 o ;[eﬁ(“‘) +1
Then we have
h’
F= np
with
N.
Mp = LzzD
We get
T de T o de
EF = P =
z
We put
x=e”
dx = pe’de = Bxde
T ode _]3 dx
0~ e 1
—e"+1 1 fx| —x+1
z z
=]3 zdx
1 ,Bx(x+z)
15, 1 1
= (- ———)
B1 x x+z
1 X
=—[In ;
,6’[ ( Z)L
1
=—In(1+2)

or



e’ =1+z

Thus we have
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2D system

Fig. Chemical potential of the 2D system. Plot of ' = # /€r 45 a function of ¥ = KsT / &r
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Fig. Chemical potential of the 1D, 2D, and 3D systems. Plot of y=ule; as a function of
v=k,T/&.

4. Problem and solution (Schroeder, Problem 7-28)
D.V. Schroeder, An Introduction to Thermal Physics (Addison-Wesley, 2000)

Fermi gas in two dimension: Consider a free Fermi gas in two dimensions,

confined to a square area 4=1".

(a) Find the Fermi energy (in terms of N and A), and show that the average energy of the
particles is &, /2.

(b) Derive a formula for the density of states. You should find that it is a constant, independent
of ¢.

(c) Explain how the chemical potential of the system should behave as a function of
temperature, both when k,7T << ¢, and when T is much higher.

(d)  Because D(¢) is a constant for this system, it is possible to carry out the integral for the

number of particles analytically. Do so, and solve for g as a function of N. Show that the
resulting formula has the expected qualitative behavior.

(e) Show that in the high-temperature limit, k,7 >> &, , the chemical potential of this system
is the same as that of an ordinary ideal gas.
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So the density of states for the 2D system is
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The number density is
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We put
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Thus we have
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Fig. Chemical potential of the 2D system. Plot of y=plés as a function of ~ ~ kT / &
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For Bér >>1
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which is the same as that of ideal 2D gas. We note that the quantum cOoncentration for the 2D
system is
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The factor 2 in the denominator of In term arises from the spin degeneracy.
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