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This part is already discussed in the section of the Sommerfeld formula. For convenience, I 

put this part again in the new section for convenience. 

 

1. Sommerfeld formula: 1D case 

We consider the case of one-dimensional system. 
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where the density of the state for the 1D system is 
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The factor 2 of 2dk  comes from the even function of the 1D energy dispersion relation. We use 

the Sommerfeld formula 
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Thus we have 
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But we also have 
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Combining Eqs.(1) and (2), we get 
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Then the chemical potential  is 
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We make a plot of the number distribution as a function of 
/ Fx  
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where 
/B Fk T 

 is changed as a parameter. We choose 0.3  . 

 



 
 

 
 

Fig. The number distribution vs 
/ Fx  

. 
/ 0.3B Fk T  

 for the 1D case. The chemical 

potential for the temperature with 
/ 0.3B Fk T  

 is denoted by the dashed line. It shifts 

to the high energy side from the Fermi energy at T = 0 K (x = 1). The area for 1x   (shaded 

region denoted by green) is the same as the area below 1x  . 

 



 
 

 
 



 
 

 
 



 
 

 
 

2. Sommerfeld formula for the 3D system 

Next we consider the case of three-dimensional system. 
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where the density of states for the 3D system is 
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We use the Sommerfeld formula 

 
2

2 2

0 0

( ) ( ) ( ) '( )
6

BN d f d k T

 
        



     

 

Thus we have 
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Combining Eqs.(1) and (2), we get 
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Then the chemical potential is 
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Fig. Chemical potential as a function of temperature for the ideal 3D Fermi gas and the 1D 

Fermi gas. 

 

 



 
 

 
 



 
 

 
 



 
 

Fig. The number distribution vs 
/ Fx  

. 
/B Fk T  

 0.1 – 0.6 for the 3D case. The 

chemical potential for the temperature with 
/B Fk T 

 is denoted by the dashed line. It 

shifts to the low energy side from the Fermi energy at T = 0 K (x = 1) with increasing 

temperature. The area for 1x   (shaded region denoted by green) is the same as the area 

below 1x  . 

 

3. Exact solution for the chemical potential for the 2D case 

The density of stares for the 2D system is 
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The density of states for the 2D system is independent of  . The chemical potential can be 

evaluated exactly as follows. In other words, we do not have to use the Sommerfeld approximation. 
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Then we have 
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We put 
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Thus we have 
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Fig. Chemical potential of the 2D system. Plot of 
/ Fy  

 as a function of 
/B Fy k T 

 
 

 

x kBT F

y F

2D system

0.5 1.0 1.5 2.0 2.5 3.0

2

1

1

2D

3D

1D

x
kB T

F

y
F

0.5 1.0 1.5 2.0

2

1

1

2

3

4



 

Fig. Chemical potential of the 1D, 2D, and 3D  systems. Plot of 
/ Fy  

 as a function of 

/B Fy k T 
 

 

4. Problem and solution (Schroeder, Problem 7-28) 

D.V. Schroeder, An Introduction to Thermal Physics (Addison-Wesley, 2000) 

 

Fermi gas in two dimension: Consider a free Fermi gas in two dimensions, 

confined to a square area 
2

A L . 
(a) Find the Fermi energy (in terms of N and A), and show that the average energy of the 

particles is / 2F . 

(b) Derive a formula for the density of states. You should find that it is a constant, independent 

of  . 

(c) Explain how the chemical potential of the system should behave as a function of 

temperature, both when B Fk T   and when T is much higher. 

(d) Because ( )D   is a constant for this system, it is possible to carry out the integral for the 

number of particles analytically. Do so, and solve for  as a function of N. Show that the 
resulting formula has the expected qualitative behavior. 

(e) Show that in the high-temperature limit, B Fk T  , the chemical potential of this system 

is the same as that of an ordinary ideal gas. 
 

((Solution)) 
 

(b) 
 

2 2

2
( ) 2

(2 )

A mA
D d kdk d   

 
 

ℏ
 

 

where 
 

2
2

2
k

m
 
ℏ

, 
2

d kdk
m

 
ℏ

  

 

So the density of states for the 2D system is 
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The number density is 
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The internal energy: 
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The ratio: 
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The average energy of the particles is 
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(c), (d), (e) 
 

2

0

2

0

( ) ( )

1

1
1

F

mA
N

D f d

mA
d

e
z






  



















ℏ

ℏ

 

 

or 

 

0

1

1
1

F d

e
z


 






  

 

 

We get 

 

0
1

1
F

d

e
z











  



 

We put 
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Thus we have 
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Fig. Chemical potential of the 2D system. Plot of 
/ Fy  

 as a function of 
/B Fy k T 
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which is the same as that of ideal 2D gas. We note that the quantum c0oncentration for the 2D 

system is 
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The factor 2 in the denominator of ln term arises from the spin degeneracy. 
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