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1. Heat capacity and entropy for Fermi gas 

The internal energy FGU  of the Fermi gas 
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The heat capacity: 

 
2 22

23 5
( ) 2

5 12 2

FG B B
FG F

F F

dU k N k
C N T T

dT




 
    

or 

 

The heat capacity FGC : 
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The entropy FGS : 
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((Note)) 

In general case, 
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where ( )FD   is the density of states at the Fermi energy F Using the relation 
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have the specific heat for free electron Fermi gas 
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where  4.94 KFT   for liquid 3He. 

 

2. Pauli paramagnetism for Fermi gas model 

The Pauli paramagnetism is given by 
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The magnetic moment of liquid 3He is 
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where 2.1227 N    and I = ½. The nuclear magneton is defined by 
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(mp is the mass of proton). The gyromagnetic ratio (the ratio of the magnetic moment to the angular 

momentum) is given by  
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The Pauli susceptibility can be rewritten as 
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3. Fermi energy of liquid 3He 

Liquid 3He as a Fermi gas 
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The Fermi energy: 
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where m0 is the mass of 3He atom, 
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Then the Fermi energy is 
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The Fermi temperature 
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That is only a little higher than the boiling point, 3.2 K. 

 

4. Heat capacity of fermi liquid 

As predicted for the fermi gas mode, the heat capacity of liquid 3He should be 
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So although the linear temperature dependence agrees with experiment, the predicted coefficient 

is too small by almost a factor of 3. According to the Fermi liquid theory, the heat capacity of the 

liquid 3He is predicted as 
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where 
( )

1 5.39
s

F   for P (pressure) = 0. Similarly, the entropy S is predicted as 
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The entropy of the solid, meanwhile, should be  
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since each nucleus has two possible spin orientations. This constant value should apply down to 

very low temperatures, when the nuclear spins finally align and the entropy freezes out. Here is a 

sketch of both entropy functions. We make a plot of the entropy of the fermi gas and Fermi 

liquid as a function of T as well as the entropy of solid 3He. 

 

 
 

For the Fermi gas, we have  
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For the Fermi liquid, we have  
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The temperature FLT  (=0.25 K) is much lower than the temperature FGT  (=0.69 K). 

According to the Clausius-Clapeyron relation, the slope of the solid-liquid phase boundary on 

a graph of P vs T should be proportional to the entropy difference, liquid solidS S . The above 

analysis predicts that the slope should be positive for T>0.25 K, and negative at lower temperatures. 

The experimental phase diagram shows just this behavior, with the transition from positive to 

negative slope at about 0.3 K, just slightly higher than the prediction 0.25 K. This discrepancy 

could be because of lattice vibrations giving the solid some additional entropy, and/or the entropy 

of the liquid no longer being quite linear at relatively high temperatures. At very low temperatures, 

where the entropy of the solid also goes to zero, the phase boundary becomes horizontal. 

 

5. Entropy 

The entropy is mainly due to the nuclear spin of the solid 3He around T = 0.3 K. The 3He atoms 

form a lattice. Below 10 mK the nuclear spins starts to order because of the antiferromagnetic 

exchange interaction. The nuclear spins antiferromagnetically ordered below the Neel temperature 

TN = 2 mK. The antiferromagnetic exchange interaction is -0.85 mK. 
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For example, at T = 0.3 K, it is determined experimentally that 
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6. Pomeranchuk cooling 

In the P-V phase diagram, the solid-liquid boundary below 0.3 K has a negative slope. This is 

very unusual. Note that the solid-liquid boundary for most materials (except water) has a positive 

slope. What are the entropies for the liquid phase and solid phase? The 3He atom is a fermion. The 

heat capacity is proportional to T at low temperatures  
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The entropy is evaluated as 
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where FT  is the Fermi temperature. The entropy is proportional to T.  

The entropy of solid 3He is dominated by the much larger contribution of the disordered nuclear 

spins (spin 1/2). Each the nuclear spin (spin 1/2) of 3He atom has a magnetic moment, just like a 

paramagnetic salts. In the paramagnetic state where the directions of spins are random, the solid 

entropy is given by 

 

2lnBAsoilid kNS  . 

 

Note that these spins are antiferromagnetically ordered with a Neel temperature NT 1 mK and 

the entropy drops rapidly to zero. The liquid entropy coincides with the solid entropy at a 

characteristic temperature 1T  (=0.32 K). Below 1T , the solid entropy is higher (more disordered) 

than the liquid entropy. Above 1T the liquid entropy (more disordered) is higher than the solid 

entropy. Such a cross-over of the liquid and solid entropies of 3He at about 0.32 K produces a 

pronounced minimum in the melting curve at about 2.93 MPa, followed by a rise in the melting 

pressure to 3.45 MPa at T = 0 K. This negative slope is used to produce adiabatic compressional 

cooling along the melting curve, a technique called Pomeranchuk cooling after its proposer, and 

used by Osheroff et al. (1972a) in their discovery of the superfluid phases of 3He. 

 

 
 

Fig. Entropy per atom in the coexisting solid and liquid phases of 3He. The entropy of the liquid 

phase is less than that of the solid phase below a characteristic temperature 
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The dotted line from a to b corresponds to slow adiabatic compression from pure liquid to 

pure solid. 
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The phase boundary is expressed by the Clausius-Clapeyron equation 
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In the phase diagram of 3He around 0.3 K,  
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since Solidliq VV   in the vicinity of 0.3 K.  

 

Consider the liquid-solid boundary (denoted by red open circle) below 0.32 K, where solidliq SS  , 

When temperature is increased, the entropy increases. The only way this can happen here is to 

solid which has higher entropy. So the liquid freezes when the temperature rises. This explains the 

negative slope below 0.32 K. 

In order for entropy to increase, heat must be absorbed from the surrounding (like when a 

normal solid melts). This gives rise to a cooling effect. Higher pressure forces the liquid to become 



solid. This gives a cooling effect. This compressional cooling" method was proposed by Issak 

Pomeranchuk in 1950. 

Pomenranchuk predicted that adiabatic compression of coexisting solid and liquid would cool 
3He. If the initial temperature is below 0.32 K, then an increase in the external pressure moves the 

helium along the melting curve up and to the left: toward higher pressure and lower temperatures. 

Typically, the temperature decreases from 0.3 K to 1 mK. The solid-liquid boundary (arrow) below 

0.3 K has a negative slope. 

 

7. Problem: Clausius-Clapeyron equation 

Ralph Baierlein 
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((Solution)) 

 

 

 

Fig. Phase diagram. P (mmHg=torr) vs T (K)of liquid He3. 
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We make a plot of ln P  vs 1/ T  for 3He. 

 

 
 

Fig. Least squares fit to the straight line; Plot of ln P  vs 1/T. 

 

(a) The least-squares fit of the data (lnP vs 1/T) to a straight line yields 
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3.14569v Bl k  (latent heat of evaporation per particle) 

 

or 
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(b) T = 0.1 K. 

 

 ln 4.34001 3.14569 1/ 0.1 27.1169P      

 
121.672 10P    torr. 
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8. Problem: Phonon 

Ralph Baierlein 
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((Solution)) 
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The entropy: 
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Nuclear spin of 3He 

The entropy of solid 3He is dominated by the much larger contribution of the disordered nuclear 

spins (spin 1/2). Each the nuclear spin (spin 1/2) of 3He atom has a magnetic moment, just like a 



paramagnetic salts. In the paramagnetic state where the directions of spins are random, the solid 

entropy is given by 
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Fig. Entropy of lattice vibration (red) and nuclear spin (blue) for Helium three. 

 

 

APPENDIX-I  Fermi liquid theory 

The life time a quasi-particle excitation dressed by interactions is rather long owing to the 

surrounding degenerate Fermi sea. Thus the physical properties at FTT   may be well described 

by a theory based on quasi-particle excitations, the so-called Landau Fermi liquid theory. Since 

the critical temperature Tc of this superfluid is of the order of 1000/FT , similar to that for 

superconductivity in a metal, one can naturally study the system on the basis of this theory. 

 

 
Fermi liquid relations between the Landau parameters and experimentally measured quantities 
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(b) Specific heat: 
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(c) Spin suceptibility: 
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(d) Compressibility: 
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(e) The sound velocity: 
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APPENDIX II Proton; magnetic moment 

Nuclear magnetic moment 2.792 N   and I = 1/2 for proton. 
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