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1. Heat capacity and entropy for Fermi gas
The internal energy U,,; of the Fermi gas
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The heat capacity:
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((Note))
In general case,

2

r
Cic = ?D(EF)szT

where D(g,.) is the density of states at the Fermi energy ¢, Using the relation D(¢, )= ;—N , We
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have the specific heat for free electron Fermi gas
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where T, =4.94 K for liquid *He.
2. Pauli paramagnetism for Fermi gas model

The Pauli paramagnetism is given by
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The magnetic moment of liquid *He is
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where p=-2.1227 u,, and I ="%. The nuclear magneton is defined by
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(myp 1s the mass of proton). The gyromagnetic ratio (the ratio of the magnetic moment to the angular
momentum) is given by
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The Pauli susceptibility can be rewritten as
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3. Fermi energy of liquid *He
Liquid *He as a Fermi gas



spin [ =% (fermion)

Density p =0.081 g/cm’
The Fermi energy:
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where my is the mass of *He atom,
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The number density:
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Then the Fermi energy is
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The Fermi temperature
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=494 K.

That is only a little higher than the boiling point, 3.2 K.

4. Heat capacity of fermi liquid
As predicted for the fermi gas mode, the heat capacity of liquid *He should be
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So although the linear temperature dependence agrees with experiment, the predicted coefficient
is too small by almost a factor of 3. According to the Fermi liquid theory, the heat capacity of the
liquid *He is predicted as
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The entropy of the solid, meanwhile, should be
k,In2" =k,NIn2

since each nucleus has two possible spin orientations. This constant value should apply down to
very low temperatures, when the nuclear spins finally align and the entropy freezes out. Here is a
sketch of both entropy functions. We make a plot of the entropy of the fermi gas and Fermi
liquid as a function of T as well as the entropy of solid *He.
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For the Fermi gas, we have
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For the Fermi liquid, we have
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The temperature 7,, (=0.25 K) is much lower than the temperature 7, (=0.69 K).

According to the Clausius-Clapeyron relation, the slope of the solid-liquid phase boundary on

a graph of P vs T should be proportional to the entropy difference, S, S, - The above

iquid

analysis predicts that the slope should be positive for 7>0.25 K, and negative at lower temperatures.
The experimental phase diagram shows just this behavior, with the transition from positive to
negative slope at about 0.3 K, just slightly higher than the prediction 0.25 K. This discrepancy
could be because of lattice vibrations giving the solid some additional entropy, and/or the entropy
ofthe liquid no longer being quite linear at relatively high temperatures. At very low temperatures,

where the entropy of the solid also goes to zero, the phase boundary becomes horizontal.

S. Entropy

The entropy is mainly due to the nuclear spin of the solid *He around 7= 0.3 K. The *He atoms
form a lattice. Below 10 mK the nuclear spins starts to order because of the antiferromagnetic
exchange interaction. The nuclear spins antiferromagnetically ordered below the Neel temperature
I~ =2 mK. The antiferromagnetic exchange interaction is -0.85 mK.
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For example, at 7= 0.3 K, it is determined experimentally that
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v =2.1x 10 em’ / atom
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6. Pomeranchuk cooling

In the P-V phase diagram, the solid-liquid boundary below 0.3 K has a negative slope. This is
very unusual. Note that the solid-liquid boundary for most materials (except water) has a positive
slope. What are the entropies for the liquid phase and solid phase? The *He atom is a fermion. The
heat capacity is proportional to 7 at low temperatures
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The entropy is evaluated as
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where T is the Fermi temperature. The entropy is proportional to 7.

The entropy of solid *He is dominated by the much larger contribution of the disordered nuclear
spins (spin 1/2). Each the nuclear spin (spin 1/2) of *He atom has a magnetic moment, just like a
paramagnetic salts. In the paramagnetic state where the directions of spins are random, the solid
entropy is given by

Soiia =N kgln2.

Note that these spins are antiferromagnetically ordered with a Neel temperature 7, ~ 1 mK and

the entropy drops rapidly to zero. The liquid entropy coincides with the solid entropy at a
characteristic temperature 7; (=0.32 K). Below 7}, the solid entropy is higher (more disordered)
than the liquid entropy. Above 7;the liquid entropy (more disordered) is higher than the solid
entropy. Such a cross-over of the liquid and solid entropies of *He at about 0.32 K produces a
pronounced minimum in the melting curve at about 2.93 MPa, followed by a rise in the melting
pressure to 3.45 MPa at 7= 0 K. This negative slope is used to produce adiabatic compressional
cooling along the melting curve, a technique called Pomeranchuk cooling after its proposer, and
used by Osheroff et al. (1972a) in their discovery of the superfluid phases of *He.
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Fig.  Entropy per atom in the coexisting solid and liquid phases of *He. The entropy of the liquid
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The dotted line from a to b corresponds to slow adiabatic compression from pure liquid to

pure solid.

phase is less than that of the solid phase below a characteristic temperature 7, =
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The phase boundary is expressed by the Clausius-Clapeyron equation
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In the phase diagram of *He around 0.3 K,

Z;—; >0 for 7>0.3 K corresponding to S, > S,
dP 1
dar <0 for 7<0.3 K corresponding to S, < S,

since V,, >V, in the vicinity of 0.3 K.

Consider the liquid-solid boundary (denoted by red open circle) below 0.32 K, where S, <,
When temperature is increased, the entropy increases. The only way this can happen here is to
solid which has higher entropy. So the liquid freezes when the temperature rises. This explains the
negative slope below 0.32 K.

In order for entropy to increase, heat must be absorbed from the surrounding (like when a

normal solid melts). This gives rise to a cooling effect. Higher pressure forces the liquid to become



solid. This gives a cooling effect. This compressional cooling" method was proposed by Issak
Pomeranchuk in 1950.

Pomenranchuk predicted that adiabatic compression of coexisting solid and liquid would cool
3He. If the initial temperature is below 0.32 K, then an increase in the external pressure moves the
helium along the melting curve up and to the left: toward higher pressure and lower temperatures.
Typically, the temperature decreases from 0.3 K to 1 mK. The solid-liquid boundary (arrow) below
0.3 K has a negative slope.

7. Problem: Clausius-Clapeyron equation
Ralph Baierlein
12-9

9. For liquid *He, the temperature and associated vapor pressure are given by the
following pairs of numbers:

(T, P): (0.2, 1.21 X 107%), (0.3, 1.88 X 107%), (0.4, 2.81 X 1072), (0.5, 1.59 X 1071).

The temperature is in kelvin; the pressure is in millimeters of mercury. Atmospheric
pressure corresponds to 760 millimeters of mercury (in an old fashioned mercury
manometer).

(a) What is the latent heat of vaporization, Li,p, in the temperature range 0.2 <
T <0.5K?
(b) Determine the vapor pressure at 7 = 0.1 K.

((Solution))
0.100
0.010
0.001
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Fig. Phase diagram. P (mmHg=torr) vs T (K)of liquid He3.
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We make a plotof InP vs 1/T for *He.
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Fig.  Least squares fit to the straight line; Plot of In P vs 1/T.

(a) The least-squares fit of the data (InP vs 1/T) to a straight line yields

In P =4.34001-3.14569(1/T)

[ =3.14569k, (latent heat of evaporation per particle)

or



[, =2.7108x107" (eV/particle)
by T=0.1K.

In P =4.34001-3.14569(1/0.1) = —27.1169

P=1.672x10" torr.

8. Problem: Phonon
Ralph Baierlein
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10. For solid *He, calculate the entropy per atom that the lattice vibrations contribute:
at temperatures below 1 K. The Debye temperature is fp = 16 K. Compare this
contribution to sg, with that from the nuclear spin.

((Solution))
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Nuclear spin of *He
The entropy of solid *He is dominated by the much larger contribution of the disordered nuclear
spins (spin 1/2). Each the nuclear spin (spin 1/2) of *He atom has a magnetic moment, just like a



paramagnetic salts. In the paramagnetic state where the directions of spins are random, the solid
entropy is given by
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Fig.  Entropy of lattice vibration (red) and nuclear spin (blue) for Helium three.

APPENDIX-I Fermi liquid theory

The life time a quasi-particle excitation dressed by interactions is rather long owing to the
surrounding degenerate Fermi sea. Thus the physical properties at 7' << 7, may be well described
by a theory based on quasi-particle excitations, the so-called Landau Fermi liquid theory. Since
the critical temperature 7. of this superfluid is of the order of 7,./1000, similar to that for

superconductivity in a metal, one can naturally study the system on the basis of this theory.

Table 6.1. The molar volume, the Landau parameters at T < T, and the
critical temperature of liquid *He

P V. nx10? kex107 ® 6 @ T.  Tas
(bar) (cm?®) (cm™3 cm™ly m/m F| Fy Fy (mK) (mK
) ( ( (

0 3684 16.3 7.84 280 539 930 —0.6951 0.929 -
15 28.89 20.8 8.49 428 985 41.73 —0.753  2.067
344 2550 23.6 8.87 585 1456 8847 —0.753 2491 1.933

Fermi liquid relations between the Landau parameters and experimentally measured quantities

(a) Effective mass:
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(b) Specific heat:
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(c) Spin suceptibility:
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(d) Compressibility:
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(e) The sound velocity:
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APPENDIX II Proton; magnetic moment

Nuclear magnetic moment x =2.792 4, and I = 1/2 for proton.
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The gyromagnetic ratio:
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