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Abstract

As an example we consider a Na atom, which has an electron configuration of
(15)%(25)%(2p)(3s)!. The 3s electrons in the outermost shell becomes conduction electrons
and moves freely through the whole system. The simplest model for the conduction
electrons is a free electron Fermi gas model. In real metals, there are interactions between
electrons. The motion of electrons is also influenced by a periodic potential caused by
ions located on the lattice. Nevertheless, this model is appropriate for simple metals such
as alkali metals and noble metals. When the Schrédinger equation is solved for one
electron in a box, a set of energy levels are obtained which are quantized. When we have
a large number of electrons, we fill in the energy levels starting at the bottom. Electrons
are fermions, obeying the Fermi-Dirac statistics. So we have to take into account the
Pauli’s exclusion principle. This law prohibits the occupation of the same state by more
than two electrons.

Sommerfeld’s involvement with the quantum electron theory of metals began in the
spring of 1927. Pauli showed Sommerfeld the proofs of his paper on paramagnetism.
Sommerfeld was very impressed by it. He realized that the specific heat dilemma of the
Drude-Lorentz theory could be overcome by using the Fermi-Dirac statistics (Hoddeeson
et al.).!

Here we discuss the specific heat and Pauli paramagnetism of free electron Fermi gas
model. The Sommerfeld’s formula are derived using Mathematica. The temperature
dependence of the chemical potential will be discussed for the 3D and 1D cases. We also
show how to calculate numerically the physical quantities related to the specific heat and
Pauli paramagnetism by using Mathematica, based on the physic constants given by
NIST Web site (Planck’s constant 7, Bohr magneton s, Boltzmann constant kg, and so
on).? This lecture note is based on many textbooks of the solid state physics including
Refs. 3 - 10.
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9. Conclusion

1. Schrodinger equation®'?

A. Energy level in 1D system
We consider a free electron gas in 1D system. The Schrédinger equation is given by

v NG

Hl/’k(x)=ﬁl//k(x)= i =&, (X), (1)

where

_hd
i dx’

and ¢, is the energy of the electron in the orbital.

The orbital is defined as a solution of the wave equation for a system of only one
electron: ((one-electron problemy)).
Using a periodic boundary condition: v, (x+ L) =y, (x), we have

v (x) ~ e, )

with

2 2 2

Tom 2m\ L
e™ =1 or kzz—”n,
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where n =0, £1, £2,..., and L is the size of the system.

B. Energy level in 3D system
We consider the Schrédinger equation of an electron confined to a cube of edge L.

2 2
h
Hl//k:p_l//k:__vzl//k:gkl//k' 3)
2m 2m

It is convenient to introduce wavefunctions that satisfy periodic boundary conditions.
Boundary condition (Born-von Karman boundary conditions).

l//k(x+L’y’Z)=l//k(x’y’Z) >

l//k(x’y+L’Z)=l//k(x’y’Z) >



Vi, y,z+ L) =y, (x,,2).
The wavefunctions are of the form of a traveling plane wave.

v, (r)=e"", 4)
with

kx = (2m/L) nx, (nx =0, %1, £2, £3,....),

ky = (2n/L) ny, (ny =0, £1, £2, £3,.....),

k,= 2n/L) ny, (n, =0, %1, £2, £3,.....).

The components of the wavevector k are the quantum numbers, along with the quantum
number m; of the spin direction. The energy eigenvalue is

K’ K
e(ky=——(k’+k’+k>)=—K. (5)
2m m
Here
h
pl/jk(r):_.vkl/jk(r):hk!/jk(r)' (6)

1

So that the plane wave function y, (r) is an eigenfunction of p with the eigenvalue 7k .

The ground state of a system of N electrons, the occupied orbitals are represented as a
point inside a sphere in k-space.

Because we assume that the electrons are noninteracting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have
just found.

((The Pauli’s exclusion principle))

The one-electron levels are specified by the wavevectors k and by the projection of
the electron’s spin along an arbitrary axis, which can take either of the two values +7/2.
Therefore associated with each allowed wave vector k are two levels:

k,T>, k,¢>.

In building up the N-electron ground state, we begin by placing two electrons in the one-
electron level £ = 0, which has the lowest possible one-electron energy £= 0. We have
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(7)

where the sphere of radius kr containing the occupied one-electron levels is called the

Fermi sphere, and the factor 2 is from spin degeneracy. The electron density » is defined
by

= y’%} : (8)

N 1
n=—
%

The Fermi wavenumber £r is given by

1/3

ke =(B7n) " )

The Fermi energy is given by

& :%(372211)2/3. (10)

The Fermi velocity is

Vv, = h:;F :%(37;2,1)”3 : (11)

The Fermi temperature 7F is defined by

In this model, these quantities is dependent only on the number density 7.

((Note))
The Fermi energy &r can be estimated using the number of electrons per unit volume as

& = 3.64645x10™"° n?? [eV] = 1.69253 no®? [eV],

where 7 and np is in the units of (cm™) and n = n9x10*2. The Fermi wave number kr is
calculated as

ke = 6.66511x107 no'”® [em™'].
The Fermi velocity vr is calculated as

Ve =7.71603x107 no'? [cn/s].



((Example))
The Fermi energy of Au

Atomic molar mass Mo = 196.9666 g/mol
Density p=19.30 g/cm?

p= N _MN _ ,0ﬂ =5.901 x 10 /em?®.
VoV um M,
Since no = 5.901, we have
& = 1.69253 ng*” = 5.526 [eV].
kr = 6.66511x107 no'* = 1.20442 x 10® [cm™'].
vE=7.71603x107 no'"® = 1.39433 x 10® [cn/s].
Tr = &r/ks = 6.4136 x 10* K

((Mathematica))

Fermi energy &r (eV) vs the number of electrons (1 = n9x10% [em™]).

Fig.1 Fermi energy vs number density 7 (= nox10% [cm™]).

2. Fermi-Dirac distribution function®!?



The Fermi-Dirac distribution gives the probability that a state at energy & will be
occupied in an ideal gas in thermal equilibrium

1
f(€)=eﬂ(gT)+ (12)

1 b
where g is the chemical potential and = 1/(ks7).

(1) limu=c¢,.

T—0

(i) fo=12ate=pu

(ili)  For ¢ - 1>>ksT, f(&) is approximated by f(&)=e”“* . This limit is called the
Boltzmann or Maxwell distribution.

(iv)  For kgT<<er, the derivative -df{ €)/de corresponds to a Dirac delta function having
a sharp positive peak at £= .

~ 8f(€) B e/f(a—/t)

oe [/ 41T
=L Eae (- ey -1
o £




Fig.2 Fermi-Dirac distribution function f{¢) at various 7 (= 0.002 — 0.02). kg = 1.
WT=0)=¢e=1.

Fig.3 Derivative of Fermi-Dirac distribution function -df{(¢)/d¢ at various T (=
0.002-0.02). kg =1. s(T=0) =& = 1.

3. Density of states’!°

A. 3D system
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Fig. Density of states in the 3D k-space. There is one state per (2r/L)’.

There is one state per volume of k-space (27/L)°. We consider the number of one-
electron levels in the energy range from ¢to et+deg, D(¢)de

3
D(g)ds = 2L4ﬂk2dk, (13)

(27)
where D(¢) is called a density of states. Since k = (2m/#%)""*\/e , we have
dk =Q2m /1) 2 de I(2V¢).

Then we get the density of states

D(g)= 217; @—TJ Je. (14)

Here we define D*(¢,) [1/(eV atom)] which is the density of states per unit energy per
unit atom.



DA(EF): N ) (15)
where
ep v (2m 3/2¢p oy [2mj3/2 s
N=|D()de =—| — \/Za%:— _— | ¢ ) 16
! () 27:2[722} ! 3277 R r (16)

Then we have

DA(EF)=%- (17)

F

This is the case when each atom has one conduction electron. When there are ny electrons
per atom, D*(&r) is described as’

3n
D, ()= 2; . (18)
F

For Al, we have & = 11.6 eV and ny = 3. Then D*(&) = 0.39/(eV atom).

Here we make a plot of f{¢)D (¢) as a function of £ using Mathematica.

f(e)D(e) =

v (2me Je Je

_ =a
272\ R° e’ +1 A |

where

v o(2mY"
a= —
21’ ( n’ J



Fig.4 D(&)f(¢) at various T (= 0.001 — 0.05). ks = 1. (T = 0) = &r = 1. The
constant a of D(¢) (= ae ) is assumed to be equal to 1. The dashed line
denotes the curve of D(¢).

B. 2D system

10
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Fig. Density of states for the 2D k-space. There is one state per area [Tﬁj of the

reciprocal lattice plane.

For the 2D system, we have

2
D(e)de = 2L 2k (19)

(27)

The factor 2 comes from the spin weight. Since de = (h”/2m)2kdk , we have the density
of states for the 2D system as

2
mL
2)

D(¢) = (20)

which is independent of &.

C. 1D system

11
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Fig. Energy & vs k for the one dimensional case. The discrete states are
described |k,T> and [k,¥> with k = 2n/L)n. (nx = 0, £1, £2....). All the
states below the Fermi energy &r are occupied at 7= 0 K.

For the 1D system we have

1/2
D(e)de = 22 24k = 2—L(2—TJ 1 g, Q1)
2z T\ h 2

The factor 2 before dk arises from the two states of k£ and -k. Thus the density of states for
the 1D system is

hz

D(g) = %(2—’"j g%, (22)

which decreases with increasing é&.
4. Sommerfeld’s formula

When we use a formula
IE
zk:F(k) N oy [akF (). (23)
the total particle number N and total energy E can be described by

N=23 f(a) 7%3 [aif(5,) = [deD(e) (o). (24)

12



and
E=2Zekf(ek>=é7")3 [ ke, f(5) = [deD()ef (o). (25)

First we prove that

j gL D as - j ¢(@)f &)z
= g(u)+ —kBZT g () +%kB4T g (w)
31 666(6) 127 88 8 (8)
+—Fk +——k, I'x
15120 ® )+ oagoo e T &)
73 10710 _10 _(10) 1414477 12512 12 (12)
+—k, T''x + k, Tx +...
3421440 ° () 553837184000 g
(26)
using Mathematica.
((Mathematica))
Sommerfeld's formula
Clear["Global +"]; £[x ] := _r ; h[x] = -D[£[x], x] // Simplify;

X
Exp[kBT] +1
gl = Series[g[x], {x, u, 14}] // Normal; G1 = kBT (glh[x]) /. {x»>u + kBT y} // Expand;
K[n ] := f Gl[[n]] dy;
G2 = Sum[K[n], {n, 1, 13}]

31 kB® 71® T6 g(®) [1]

1. 2 2.2 . 4 44 (4)
glu] +— kB " T2 g’ [u] + kB> 71" T g [u] + +
6 360 15120
127 kB8 78 T8 g(8) [u] RE kB10 710 710 5(10) )5 , 1414477 kBlZ 712 pl2 5(12) 1)y
604 800 3421440 653837184000

So we get a final result

o df 1. 2.2 2 . 7 4.4 4 _(4) 31 kB® T8 70 g1 []
E) (—*)dlE: ul] + — kBT T U]+ —— kB T 7t ul + +
Lfﬂ dE gtid I 560 o 15120
127 kB8 T8 718 g(8) [u] 73 kBLO 710 P10 g(10) [y] 1414 477 kBI2 12 712 g(12) [
+ +
604800 3421440 653837184000

Here we note that

13



[e@l- L = 1@ +[ g @) (e

) (27)
= [g'(e)f (&)lde

We define

p(e)=g'(¢) and  g(£=0).

or
2(e) = [p(e))ds". (28)
0
Then we have a final form (Sommerfeld’s formula).

2 H
[ 7@ pe)ds = [ oe)ds'+ % ky T2 () + %kﬁ 7o ()
0 0

31 66 _6_(5) 127 818 8 (7)
+—k. Tx +—k. T
512072 T 70 D+ ciagoohe T7 0 ()
73 1414477

kT2 (1) + ...

k 10T107Z'10 9) +
0D 3837182000 7

Y a0 ks
3421440
(29)

5. T dependence of the chemical potential
We start with

N = [deD(e) (e).

where

2 2
7\ h

D(e) =2L(2—’"j Je =avz,

and

3/2
gt [2m
277\ h?

14



® u
N = [ F@D(e)e = [ D@)de + by T D ) = 21 ok T
0 0

3 2

But we also have ¢, = u(T =0). Then we have
t 2a  3p
N=|D(e)de=—¢g, ".
{ (e)de ==,

Thus the chemical potential is given by

&g;/z :Elus/z +lszTz7[2 a

3 3 6 2fu’

or

2
which is valid for the order of (kBTJ in the above expansion formula. The ContourPlot
gF

of 1/er and kpT/er can be obtained by using the Mathematica .

15
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Clear["Global +"]; eql = yl/2 == y2 + 18 %2 ;
f1l = ContourPlot[Evaluate[eql], {x, 0, 0.1},

{yv, 0.99, 1.00}, ContourStyle -» {Red, Thick}];
£2 =
Graphics|[

{Text[Style["kpzT/E", Black, 12], {0.09, 0.99} 1],

Text[Style["u/Ez", Black, 12], {0.004, 0.999}],

Text[Style["3D system", Black, 15],

{0.07, 0.9995}1}1:

Show[fl, f2, PlotRange - All]

1.000 - 4
0 3D system
HEER

0.998 f f
0.996 f ,
0.994 f ,
0.992 f ,

0.990 - ‘ ‘ ‘ _ kpT/ER -
0.00 0.02 0.04 0.06 0.08 0.10

Fig. ContourPlot of 1/ &r and ksT/er for small values of k7/&r

The chemical potential x is approximated by the forms,

7 kT

U =¢.[1-—(—*—)"] (3D case). (30)
12 " &,

For the 1D case, similarly we have

ust[l+7lz—22(kB—T)2] (1D case). (31)

&

16



((Mathematica))
We now discuss the 7" dependence of x by using the Mathematica. The higher order
terms (proportional to 7%, 7°,..) are also taken into account. The results are as follows.

Fig.5 T dependence of chemical potential y for the 3D system. kg = 1. & = (T=0) = 1.

17



Fig.6 T dependence of chemical potential y for the 1D system. kg = 1. &r = (T=0) = 1.

6. Total energy and specific heat
Using the Sommerfeld’s formula, the total energy U of the electrons is approximated
by

w(T)

U= f@)eDe)de = [aDe)de + 7k, T (DT + DD TUCTT}

The total number of electrons is also approximated by

w(T)

N= ]0 f(&)D(e)de = [D(e)des + %ﬂz(kBT)ZD'[ w(T)].

Since ON /0T =0 (N is independent of 7), we have

18



4 (T)DL(D] 3 7k TD (D] <0,

or

, 1 L, o D[u(T)]
T)=——n%k, T2
W == T

The specific heat Ce is defined by

= ‘Zi_lT] - %ﬁszZTD[y(T)] + {% 7k TD'[ ()]} + 1 (T)D(u(T))}pu(T) .

The second term is equal to zero. So we have the final form of the specific heat

C, - %ﬁszZTD[ u(T)].

When u(T)=¢,,
c, =Lk,
. —571 ky, D(e,)T . (32)
In the above expression of Ce, we assume that there are N electrons inside volume V (=

L?). The specific heat per mol is given by

C, 1 ., D(gp) 1

W’NA = 57[2 TFNAk;T = gﬁZDA(gF)NAkBZT :

where N is the Avogadro number and D“(g,) [1/(eV at)] is the density of states per
unit energy per unit atom. Note that

%ﬁzNAk32=2.35715 mJ eV/K2,

((Note)) The heat capacity of free electron
D(e;) ayJ& 3 3
N Zig s 2g, 2k,T
3 F

The electronic heat capacity per mol is

19



2
lﬂ'szAszT=l7Z'2 3 RkBT=7Z—Rl
3 N 3 2k,T, 2 T

Then y is related to D*(&,.) as

) %nZNAkBZDA(gF) ,

or
y(mJ/mol K?) =2.35715 D*(¢,.). (33)

We now give the physical interpretation for Eq.(32). When we heat the system from 0
K, not every electron gains an energy kg7, but only those electrons in orbitals within a
energy range kg7 of the Fermi level are excited thermally. These electrons gain an energy
of ksT. Only a fraction of the order of kg7 D(&r) can be excited thermally. The total
electronic thermal kinetic energy E is of the order of (ksT)> D(&r). The specific heat Cq is
on the order of kg>TD(&¥).

((Note))
For Pb, y=2.98, D" (g,)=1.26/(eV at)
For Al y=135, D*(£,)=0.57/(eV at)
For Cu 7=0.695, D" (g,)=0.29/(eV at)
((Mathematica))

20



Heat capacity for the 3D case. We use the Sommerfeld's formula for the calculation of the total energy and the total number
Clear["Global *"];

u[r] 1 2 _2 7 4_4
U=J; gx] d1X+_6 (kBT)“ n“D[E[u[T]], {H[T]/l}]+£) (kBT)" 7" D[E[u[T]], {wm[T], 3}1;

replace = {£ > (# De[#] &)}; Ul =U/. replace;
Ce =D[Ul, T] // Expand

}kBZ 20 1. .2 2 , ,
3 m e[U[TH+3kB 7" T p[T) De' [u[T]] + De[u[T])] p[T] 1 [T] +
é kB% 7% T? De’ [u[T]] 1 [T] +3_7o kB 7% T2 De” [u[T]] +%J kB% 7% T2 [ T] W' [T] D’ [u[T]] +

’

7 7
— kB 3T De® [uT)] +— kB A Tt W [T) De®) [ulT]] +

(4)
50 50 360 [T] De " [H[T]]

xkB? 5 T ulT] u

The chemical potential u[T] can be estimated from the expression of N

N1=U/.{f~> (De[#] &) }; N2 =D[N1, T] // Expand
—lkBZNZTD’ , 1.2 2.2, ’
e [KU[T]] +De[u[T]] L [T] + . kB® % T° p" [T] De” [u[T]] +

7 4 4.3 (3) 7 4 4.4 (4)
— kB st" T” De UlT +—— kB st T ' [T] De UlT
50 [ulT]] 20 [T] [ulT]]

For simplicity we use the approximation to the order of 0 (T2) for the total energy and number.
Note that D[N1,T]=0 since N is independent of T.

eql=N2[[1]]+N2[[2]]==0;eq2=Solve[eql, u'[T]]

kB? 712 T De’ [u[T] ] 1)
3De[u[T]]

{{w'1T) > -

Cel=Ce[[1l]]+Ce[[2]]+Ce[[3]] Ce2=Cel/.eq2[[1]]//Simplify

}kBZ 2
3 7" T De[u[T]]

7. Pauli paramagnetism
The magnetic moment of spin is given by

~ 2 ,uBS”

Z

=— 1,0, (quantum mechanical operator).

Then the spin Hamiltonian (Zeeman energy) is described by

- 2
H=-jB=~(-“E

S )
; 2)B = u,0.B, (34)

in the presence of a magnetic field, where the Bohr magneton uy is given by

Hpg="7T"_. (e>0)

with

21



11, =9.27400915(23) x 102* /T (S.L. unit)
1y =9.27400915(23) x 10! erg/Oe (cgs unit)

erg/Oe = emu

H Spin H Spin
up-state down-state
F 3
L i
F 3
1B ug
L
Magnetic Magnetic
moment moment
Zeeman energy +ugH Zeeman energy -ugH

Fig.  The magnetic field is applied along the z axis. (a) Spin—up state |az> =|+>. The
spin magnetic moment is antiparallel to the magnetic field. The Zeeman energy is +usH.
(b) Spin-down state |az> =|—>. The spin magnetic moment is parallel to the magnetic

field. The Zeeman energy is -usH.

(1) The magnetic moment antiparallel to H. Note that the spin state is given by a up-
state,

The energy of electron is given by
E=¢&, +uH,

with &, = (h*/2m)k’. The density of state for the spin-up state (the down-state of the

magnetic moment) is

22



V2m

r 3/2 [
D (e)de = ) e—uzHds,
or
D(g):%D(g—/JBH). (35)

The factor 2 comes from the fact that D_(¢) is the density of states per spin. Then we
have

N_= j ~D(s— u,H) f(£)ds . (36)

upH

(i1) The magnetic moment parallel to H. Note that the spin state is given by

The energy of electron is given by
=&, — UH ,

The density of state for the spin down-state (the up-sate of the magnetic moment) is

r V. 2m
D+(é‘)d€:(2 5 = 2(h2 =" Je+uHde ,
or
D, (¢)= %D(s +u,H). (37)

Then we have

j —D(s+ u,H)f(¢)de . (38)

—upH

23



|+ = state

D_(€)

Fig. Density of states for the Pauli paramagnetism of free electron. Left: (D+(¢)
for the |GZ> = | —> , the direction of the spin magnetic moment is parallel to
that of magnetic field). Right: (D(g) for GZ> :|+>; the direction of the

spin magnetic moment is antiparallel to that of magnetic field).

The magnetic moment M is expressed by

M=uB(N+—N,>=%[ [D(e+u,H) f(e)de - [ D(e - u,H) f(e)de],  (39)

—kgH HpH

or

24



M =5 [ D()LS (e = pyH) = f (& + pH))de

(40)
R of (&
- 1y H[ D)L e = 1 DGz, )
0 £
Here we use the relation;
of (¢
2O s e,
oe
(see Fig.3).
The susceptibility (M/H) thus obtained is called the Pauli paramagnetism.
%, =1y D(&p). (41)
Experimentally we measure the susceptibility per mol, y, (emu/mol)
D(¢
1 =1 2EN = PN D). “2)

N

where 1p*Na = 3.23278x107° (emu eV/mol) and Da(sr) [1/(eV atom)] is the density of
states per unit energy per atom. Since

y= %ﬁZNAkBZDA(gF) , (43)

we have the following relation between yp (emu/mol) and y (mJ/mol K?),
Zp=137148x107y. (44)
((Exampl-1)) Rb atom has one conduction electron.

y=2.41 mJ/mol K2, yp = (1.37x10°)x2.41 (emu/mol)
1 mol=85.468 g
zp =0.386x10° emu/g (calculation)

((Exampl-2)) K atom has one conduction electron.
7=2.08 mJ/mol K2, yp = (1.37x10°)x2.08 (emu/mol)

1 mol = 39.098 g
zp =0.72x10° emu/g (calculation)

25



((Exampl-3)) Na atom has one conduction electron.

7= 1.38 mJ/mol K2, y» = (1.37x10°)x1.38 (emu/mol)
1 mol = 29.98977 g
zp =0.8224x107° emu/g (calculation)

The susceptibility of the conduction electron is given by
X=Xpt X =Xp—Xp!3=22,13, (45)

where y1 is the Landau diamagnetic susceptibility due to the orbital motion of conduction
electrons.
Using the calculated Pauli susceptibility we can calculate the total susceptibility:

Rb:  y=10.386%(2/3)x10° =0.26x10° emu/g
K: 7= 0.72x(2/3)x10° = 0.48x10° emu/g
Na:  z=0.822x(2/3)x10% = 0.55x 10" emu/g

These values of y are in good agreement with the experimental results.®

8. Physical quantities related to specific heat and Pauli paramagnetism

Here we show how to evaluate the numerical calculations by using Mathematica. To
this end, we need reliable physics constant. These constants are obtained from the NIST
Web site: http://physics.nist.gov/cuu/Constants/index.html

Planck’s constant, h=1.05457168x10" erg s
Boltzmann constant kg = 1.3806505%107'¢ erg/K
Bohr magneton 4 = 9.27400949x102! emu
Avogadro’s number Na = 6.0221415x10% (1/mol)
Velocity of light ¢ =2.99792458x10'° cm/s
electron mass m=9.1093826x10%% g
electron charge e=1.60217653x10" C

e =4.803242x107 esu (this is from the other source)
1 eV =1.60217653x10"'% erg
1 emu = erg/Gauss
ImJ] = 10* erg

Using the following program, one can easily calculate many kinds of physical
quantities. Here we show only physical quantities which appears in the previous sections.

((Mathematica)) Physics constants
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Use the physical constants to calculate the physical quantities (in the units of cgs)

Clear["Global %"];

rulel = {uB - 9.27400949x 107%, kB - 1.3806505x 107*¢, NA » 6.0221415x 10%,
c>2.99792458x 10'°, A 1.05457168x 1072, m > 9.1093826x 1072, e » 4.803242x 10717,
eV > 1.60217653x 107, mJ » 10%};

Fermi energy

2

a
— (3#%10%n0)?/3 (1/ev) /. rulel
2m

1.69253 n0?/3

Fermi wavenumber

(37210% n0)*/3 /. rulel // N

6.66511x 10’ no'/3

Fermi velocity

h
— (3% 10% n0)*? /. rulel
m

7.71603x 107 not/3

heat capacity

1, 2

—3 7° NA kB / (eVvmJ) /. rulel

2.35715

Pauli paramagnetism

u32 NA /eV /. rulel // ScientificForm
3.23278x107°

Relation between Pauli paramagnetrism and heat capacity

3 uB?

mJ /. rulel // ScientificForm
72 kB?

1.37148x107°

9. Conclusion

The temperature dependence of the specific heat is discussed in terms of the free
electron Fermi gas model. The specific heat of electrons is proportional to 7. The
Sommerfeld’s constant y for Na is 1.38 mJ/(mol K?) and is close to the value [1.094
mJ/(mol K?)] predicted from the free electron Fermi gas model. The linearly T
dependence of the electronic specific heat and the Pauli paramagnetism give a direct
evidence that the conduction electrons form a free electron Fermi gas obeying the Fermi-
Dirac statistics.
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It is known that the heavy fermion compounds have enormous values, two or three
orders of magnitude higher than usual, of the electronic specific heat. Since y is
proportional to the mass, heavy electrons with the mass of 1000 m (m is the mass of free
electron) move over the system. This is due to the interaction between electrons. A
moving electron causes an inertial reaction in the surrounding electron gas, thereby
increasing the effective mass of the electron.
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