Relativistic Fermi Gas
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton

(Date: October 14, 2018)

1. Grand potential

As the Fermi gas is compressed, the mean energy of the electrons increases (ε_{F} increases); when it becomes comparable with $m c^{2}$, relativistic effects begin to be important. Here we discuss a completely degenerate extreme relativistic electron gas, the energy of whose particles is large compared with $m c^{2}$.

Here we consider the equation of state of a relativistic completely degenerate electron gas. The electron energy and momentum is related by

$$
\varepsilon_{p}=\sqrt{m^{2} c^{4}+c^{2} p^{2}}
$$

We note that

$$
\begin{aligned}
& \varepsilon_{p}=\sqrt{m^{2} c^{4}+c^{2} p^{2}}=m c^{2} \sqrt{1+\frac{p^{2}}{m^{2} c^{2}}} \\
& u_{p}=\frac{d \varepsilon_{p}}{d p}=\frac{p}{m \sqrt{1+\frac{p^{2}}{m^{2} c^{2}}}}
\end{aligned}
$$

The grand potential Φ_{G} is given by

$$
\begin{aligned}
\Phi_{G} & =-k_{B} T \sum_{p} \ln \left[1+e^{-\beta\left(\varepsilon_{p}-\mu\right)}\right] \\
& =-k_{B} T \frac{g V}{(2 \pi \hbar)^{3}} \int^{3} d^{3} p \ln \left[1+e^{-\beta\left(\varepsilon_{p}-\mu\right)}\right] \\
& =-k_{B} T \frac{g V}{2 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{2} d p \ln \left[1+e^{-\beta\left(\varepsilon_{p}-\mu\right)}\right]
\end{aligned}
$$

where $g=2$ (spin factor). The integration by part leads to

$$
\begin{aligned}
\int_{0}^{\infty} p^{2} d p \ln \left[1+e^{-\beta\left(\varepsilon_{p}-\mu\right)}\right] & =\int_{0}^{\infty} \frac{p^{3}}{3} d p \frac{e^{-\beta\left(\varepsilon_{p}-\mu\right)}}{1+e^{-\beta\left(\varepsilon_{p}-\mu\right)}} \beta \frac{\partial \varepsilon_{p}}{\partial p} \\
& =\frac{1}{3} \beta \int_{0}^{\infty} p^{3} d p \frac{1}{e^{\beta\left(\varepsilon_{p}-\mu\right)}+1} u_{p}
\end{aligned}
$$

Then we get

$$
\begin{aligned}
\Phi_{G} & =-k_{B} T \frac{g V}{2 \pi^{2} \hbar^{3}} \frac{1}{3} \beta \int_{0}^{\infty} p^{3} d p \frac{1}{e^{\beta\left(\varepsilon_{p}-\mu\right)}+1} u_{p} \\
& =-\frac{g V}{6 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{3} d p \bar{n}_{p} u_{p}
\end{aligned}
$$

The pressure P is obtained as

$$
P=-\left(\frac{\partial \Phi_{G}}{\partial V}\right)_{T, \mu}=-\frac{\Phi_{G}}{V}=\frac{g}{6 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{3} d p \bar{n}_{p} u_{p}
$$

The number N is given by

$$
\begin{aligned}
N & =\sum_{p} \bar{n}_{p} \\
& =\frac{g V}{(2 \pi \hbar)^{3}} \int_{0}^{\infty} 4 \pi p^{2} d p \bar{n}_{p} \\
& =\frac{g V}{2 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{2} d p \bar{n}_{p}
\end{aligned}
$$

The internal energy E is given by

$$
\begin{aligned}
E & =\sum_{p} \bar{n}_{p} \varepsilon_{p} \\
& =\frac{g V}{(2 \pi \hbar)^{3}} \int_{0}^{\infty} 4 \pi p^{2} d p \bar{n}_{p} \varepsilon_{p}
\end{aligned}
$$

where

$$
\bar{n}_{p}=\frac{1}{e^{\beta\left(\varepsilon_{p}-\mu\right)}+1}
$$

2. Grand potential at $\boldsymbol{T}=\mathbf{0} \mathrm{K}$

The grand potential at 0 K is given by

$$
\begin{aligned}
\Phi_{G} & =-\frac{g V}{6 \pi^{2} \hbar^{3}} \int_{0}^{p_{F}} d p\left(p^{3} u_{p}\right) \\
& =-\frac{g V}{6 \pi^{2} m \hbar^{3}} \int_{0}^{p_{F}} d p \frac{p^{4}}{\sqrt{1+\frac{p^{2}}{m^{2} c^{2}}}} \\
& =-\frac{g V}{6 \pi^{2} m \hbar^{3}} \frac{1}{8}\left[m^{2} c^{2} p_{F}\left(2 p_{F}^{2}-3 m^{2} c^{2}\right) \sqrt{1+\frac{p_{F}^{2}}{m^{2} c^{2}}}+3 m^{5} c^{5} \operatorname{arcsinh}\left(\frac{p_{F}}{m c}\right)\right]
\end{aligned}
$$

where we use the Mathematica for the integral,

$$
\int_{0}^{p_{F}} d p \frac{p^{4}}{\sqrt{1+\frac{p^{2}}{m^{2} c^{2}}}}=\frac{1}{8}\left[m^{2} c^{2} p_{F}\left(2 p_{F}^{2}-3 m^{2} c^{2}\right) \sqrt{1+\frac{p_{F}^{2}}{m^{2} c^{2}}}+3 m^{5} c^{5} \operatorname{arcsinh}\left(\frac{p_{F}}{m c}\right)\right]
$$

3. \quad Pressure at $\boldsymbol{T}=\mathbf{0} \mathrm{K}$

When $\mathrm{g}=2$, we have

$$
\begin{aligned}
P & =-\frac{\Phi_{G}}{V} \\
& =\frac{1}{3 \pi^{2} m \hbar^{3}} \frac{1}{8}\left[m^{2} c^{2} p_{F}\left(2 p_{F}^{2}-3 m^{2} c^{2}\right) \sqrt{1+\frac{p_{F}^{2}}{m^{2} c^{2}}}+3 m^{5} c^{5} \operatorname{arcsinh}\left(\frac{p_{F}}{m c}\right)\right] \\
& =\frac{m^{4} c^{5}}{8 \pi^{2} \hbar^{3}}\left[x\left(\frac{2}{3} x^{2}-1\right) \sqrt{1+x^{2}}+\operatorname{arcsinh}(x)\right]
\end{aligned}
$$

where $x=\frac{p_{F}}{m c}$ and $P_{0}=\frac{m^{4} c^{5}}{8 \pi^{2} \hbar^{3}}$. We make a plot of $\frac{P}{P_{0}}$ as a function of $x=\frac{p_{F}}{m c}$

4. Number at $T=0 \mathrm{~K}$

$$
\begin{aligned}
& N=\frac{V}{\pi^{2} \hbar^{3}} \int_{0}^{P_{F}} p^{2} d p=\frac{V}{3 \pi^{2} \hbar^{3}} p_{F}^{3} \\
& n=\frac{N}{V}=\frac{p_{F}{ }^{3}}{3 \pi^{2} \hbar^{3}}, \quad \text { or } \quad p_{F}{ }^{3}=3 \pi^{2} \hbar^{3}\left(\frac{N}{V}\right)=3 \pi^{2} \hbar^{3} n
\end{aligned}
$$

Using $x=\frac{p_{F}}{m c}$, we have

$$
\frac{N}{V}=\frac{m^{3} c^{3}}{3 \pi^{2} \hbar^{3}} x^{3}
$$

5. The internal energy E at $T=0 \mathrm{~K}$

The internal energy E at $\mathrm{T}=0 \mathrm{~K}$ is

$$
E=\frac{V c}{\pi^{2} \hbar^{3}} \int_{0}^{p_{F}} p^{2} d p \sqrt{m^{2} c^{2}+p^{2}}
$$

We use Mathematica for the evaluation of integral

$$
\int_{0}^{p_{F}} d p p^{2} \sqrt{1+\frac{p^{2}}{m^{2} c^{2}}}=\frac{1}{8}\left[p_{F}\left(2 p_{F}^{2}+m^{2} c^{2}\right) \sqrt{1+\frac{p_{F}^{2}}{m^{2} c^{2}}}-m^{3} c^{3} \operatorname{arcsinh}\left(\frac{p_{F}}{m c}\right)\right]
$$

Then we have

$$
\begin{aligned}
E & =\frac{V c}{8 \pi^{2} \hbar^{3}}\left[p_{F}\left(2 p_{F}^{2}+m^{2} c^{2}\right) \sqrt{1+\frac{p_{F}^{2}}{m^{2} c^{2}}}-m^{3} c^{3} \operatorname{arcsinh}\left(\frac{p_{F}}{m c}\right)\right] . \\
& =E_{0}\left[x\left(2 x^{2}+1\right) \sqrt{x^{2}+1}-\operatorname{arcsinh}(x)\right]
\end{aligned}
$$

where $E_{0}=\frac{V m^{3} c^{4}}{8 \pi^{2} \hbar^{3}}$. We make a plot of $\frac{E}{E_{0}}$ as a function of $x=\frac{p_{F}}{m c}$

6. Ultra-relativistic case: $\varepsilon=c p$

As the gas is compressed, the mean energy of the electrons increases. When it becomes comparable with $m c^{2}$, relativistic effects begin to be important. Here we discuss a completely degenerate extreme relativistic electron gas. The energy of the particles is large compared with $m c^{2}$.

In the ultra-relativistic case, the energy dispersion can be expressed by

$$
\varepsilon_{p}=c p
$$

The number N is given by

$$
N=\frac{g V}{2 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{2} d p \bar{n}_{p}=\frac{g V}{2 \pi^{2} \hbar^{3} c^{3}} \int_{0}^{\infty} \frac{\varepsilon^{2} d \varepsilon}{e^{\beta(\varepsilon-\mu)}+1}
$$

The internal energy U is given by

$$
U=\frac{g V}{(2 \pi \hbar)^{3}} \int_{0}^{\infty} 4 \pi p^{2} d p \bar{n}_{p} \varepsilon_{p}=\frac{g V}{2 \pi^{2} \hbar^{3} c^{3}} \int_{0}^{\infty} \frac{\varepsilon^{3} d \varepsilon}{e^{\beta(\varepsilon-\mu)}+1}
$$

where

$$
\bar{n}_{p}=f(\varepsilon)=\frac{1}{e^{\beta\left(\varepsilon_{p}-\mu\right)}+1} \quad \quad \text { (Fermi-Dirac function) }
$$

Now we use the Sommerfeld formula;

$$
\begin{aligned}
\int_{0}^{\infty} g(\varepsilon) f(\varepsilon) d \varepsilon & =\int_{0}^{\mu} g(\varepsilon) d \varepsilon+\frac{1}{6}\left(\pi k_{B} T\right)^{2} g^{(1)}(\mu) \\
& +\frac{7}{360}\left(\pi k_{B} T\right)^{4} g^{(3)}(\mu)+\ldots
\end{aligned}
$$

The number density:

$$
\begin{aligned}
N & \approx \frac{g V}{2 \pi^{2} \hbar^{3} c^{3}}\left[\frac{1}{3} \mu^{3}+\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2}(2 \mu)\right] \\
& =\frac{g V \mu^{3}}{6 \pi^{2} \hbar^{3} c^{3}}\left[1+\left(\frac{\pi k_{B} T}{\mu}\right)^{2}\right]
\end{aligned}
$$

The internal energy:

$$
\begin{aligned}
U & =\frac{g V}{2 \pi^{2} \hbar^{3} c^{3}} \int_{0}^{\infty} \frac{\varepsilon^{3} d \varepsilon}{e^{\beta(\varepsilon-\mu)}+1} \\
& =\frac{g V}{2 \pi^{2} \hbar^{3} c^{3}}\left[\frac{1}{4} \mu^{4}+\frac{1}{2}\left(\pi k_{B} T\right)^{2} \mu^{2}+\frac{7}{60}\left(\pi k_{B} T\right)^{4}\right] \\
& =\frac{g V \mu^{4}}{8 \pi^{2} \hbar^{3} c^{3}}\left[1+2\left(\frac{\pi k_{B} T}{\mu}\right)^{2}+\frac{7}{15}\left(\frac{\pi k_{B} T}{\mu}\right)^{4}\right]
\end{aligned}
$$

We note that

$$
N=\frac{g V}{2 \pi^{2} \hbar^{3} c^{3}} \int_{0}^{\varepsilon_{F}} \varepsilon^{2} d \varepsilon=\frac{g V}{2 \pi^{2} \hbar^{3} c^{3}} \frac{\varepsilon_{F}{ }^{3}}{3} .
$$

When $g=2$,

$$
\varepsilon_{F}=\hbar c\left(3 \pi^{2} n\right)^{1 / 3}
$$

The chemical potential is obtained as

$$
N=\frac{g V \mu^{3}}{6 \pi^{2} \hbar^{3} c^{3}}\left[1+\left(\frac{\pi k_{B} T}{\mu}\right)^{2}\right]=\frac{g V}{2 \pi^{2} \hbar^{3} c^{3}} \frac{\varepsilon_{F}{ }^{3}}{3}
$$

or

$$
\mu=\varepsilon_{F}\left[1-\frac{1}{3}\left(\frac{\pi k_{B} T}{\varepsilon_{F}}\right)^{2}\right]
$$

The internal energy:

$$
\begin{aligned}
\frac{U}{N} & =\frac{\frac{3 \mu}{4}\left[1+2\left(\frac{\pi k_{B} T}{\mu}\right)^{2}+\frac{7}{15}\left(\frac{\pi k_{B} T}{\mu}\right)^{4}\right]}{\left[1+\left(\frac{\pi k_{B} T}{\mu}\right)^{2}\right]} \\
& \approx \frac{3 \mu}{4}\left[1+\left(\frac{\pi k_{B} T}{\mu}\right)^{2}\right]
\end{aligned}
$$

Using the expression of μ, we get

$$
\frac{U}{N}=\frac{3 \varepsilon_{F}}{4}\left[1+\frac{2}{3}\left(\frac{\pi k_{B} T}{\varepsilon_{F}}\right)^{2}\right]
$$

The heat capacity:

$$
C=\frac{d U}{d T}=\frac{\pi^{2} k_{B}^{2} T}{\varepsilon_{F}}
$$

where $\varepsilon_{F}=\hbar c\left(3 \pi^{2} n\right)^{1 / 3}$.

In general case, the pressure P is obtained as

$$
P=-\left(\frac{\partial \Phi_{G}}{\partial V}\right)_{T, \mu}=-\frac{\Phi_{G}}{V}=\frac{g}{6 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{3} d p \bar{n}_{p} u_{p}
$$

We consider the case of $u_{p}=c$ and $\varepsilon=c p$

$$
P=-\frac{\Phi_{G}}{V}=\frac{c g}{6 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{3} d p \bar{n}_{p}
$$

The internal energy is

$$
\frac{U}{V}=\frac{c g}{2 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{3} d p \bar{n}_{p}=3 P
$$

or

$$
P V=\frac{1}{3} U
$$

At $T=0 \mathrm{~K}$, the pressure P is

$$
P V=\frac{1}{3} U=\frac{\varepsilon_{F}}{4} N=\frac{\hbar c}{4}\left(3 \pi^{2} n\right)^{1 / 3} N
$$

or

$$
P=\frac{1}{4}\left(3 \pi^{2}\right)^{1 / 3} \hbar c n^{4 / 3}
$$

6. Scaling relation of the grand potential When $u_{p}=c$

$$
\begin{aligned}
\Phi_{G} & =-\frac{g V}{6 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{3} d p \bar{n}_{p} u_{p} \\
& =-\frac{c g V}{6 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{3} d p \bar{n}_{p} \\
& =-\frac{g V}{6 \pi^{2} \hbar^{3} c^{3}} \int_{0}^{\infty} \frac{\varepsilon^{3} d \varepsilon}{e^{\beta(\varepsilon-\mu)}+1}
\end{aligned}
$$

or

$$
\Phi_{G}=-\frac{g V k_{B}^{4} T^{4}}{6 \pi^{2} \hbar^{3} c^{3}} \int_{0}^{\infty} \frac{x^{3} d x}{e^{x-\frac{\mu}{k_{B} T}}+1}=V T^{4} F\left(\frac{\mu}{k_{B} T}\right)=V T^{4} f\left(\frac{\mu}{T}\right)
$$

The entropy:

$$
\begin{aligned}
S & =-\left(\frac{\partial \Phi_{G}}{\partial T}\right)_{V, \mu} \\
& =-4 V T^{3} f\left(\frac{\mu}{T}\right)+V T^{3} \frac{\mu}{T} f^{\prime}\left(\frac{\mu}{T}\right) \\
& =V T^{3}\left[-4 f\left(\frac{\mu}{T}\right)+\frac{\mu}{T} f^{\prime}\left(\frac{\mu}{T}\right)\right] \\
& =V T^{3} f_{S}\left(\frac{\mu}{T}\right) \\
N & =-\left(\frac{\partial \Phi_{G}}{\partial \mu}\right)_{T, V} \\
& =-V T^{3} f^{\prime}\left(\frac{\mu}{T}\right) \\
& =V T^{3} f_{N}\left(\frac{\mu}{T}\right) \\
P & =-\left(\frac{\partial \Phi_{G}}{\partial V}\right)_{T, \mu} \\
& =-T^{4} f\left(\frac{\mu}{T}\right)
\end{aligned}
$$

Thus

$$
\frac{S}{N}=\frac{f_{S}\left(\frac{\mu}{T}\right)}{f_{N}\left(\frac{\mu}{T}\right)}=\varphi\left(\frac{\mu}{T}\right)
$$

is independent of V. It means that if we keep entropy constant and change the volume, namely, for adiabatic change, μ / T is kept constant. Therefore, for adiabatic change, we have

$$
\frac{P}{T^{4}}=\mathrm{const}, \quad V T^{3}=\mathrm{const}, \quad P V^{4 / 3}=\mathrm{const}
$$

indicating that $\gamma=\frac{4}{3}$.
((Note))

$$
\frac{\Phi_{G}}{N}=-\frac{1}{4} \varepsilon_{F}\left[1+\frac{2}{3}\left(\frac{\pi k_{B} T}{\varepsilon_{F}}\right)^{2}\right]
$$

REFERENCES

R.K. Pathria and P.D. Beale, Statistical Mechanics, third edition (Elsevier, 2011). ISBN: 978-12-382188-1
L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon Press, 1980).

