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1. Grand potential 

As the Fermi gas is compressed, the mean energy of the electrons increases ( F  increases); 

when it becomes comparable with 2mc , relativistic effects begin to be important. Here we 

discuss a completely degenerate extreme relativistic electron gas, the energy of whose particles is 

large compared with 2mc . 

Here we consider the equation of state of a relativistic completely degenerate electron gas. 

The electron energy and momentum is related by 
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The grand potential G  is given by 
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where g = 2 (spin factor). The integration by part leads to 
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Then we get 
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The pressure P is obtained as 
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The number N is given by 
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The internal energy E is given by 
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  (Fermi-Dirac function) 



 

2. Grand potential at T = 0 K 

The grand potential at 0 K is given by 
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where we use the Mathematica for the integral, 
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3. Pressure at T = 0 K 

When g = 2, we have 
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where 
mc

p
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4. Number at T = 0 K 
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Using 
mc

p
x F , we have 
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5. The internal energy E at T = 0 K 

The internal energy E at T = 0 K is 
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We use Mathematica for the evaluation of integral 
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Then we have 
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6. Ultra-relativistic case: cp   

As the gas is compressed, the mean energy of the electrons increases. When it becomes 

comparable with 2mc , relativistic effects begin to be important. Here we discuss a completely 

degenerate extreme relativistic electron gas. The energy of the particles is large compared with 
2mc . 

In the ultra-relativistic case, the energy dispersion can be expressed by 
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The number N is given by 
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The internal energy U is given by 
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  (Fermi-Dirac function) 

 

Now we use the Sommerfeld formula; 
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The number density: 
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The internal energy: 
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We note that 
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When g = 2, 
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The chemical potential is obtained as 
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The internal energy: 

 

2 4

2

2

3 7
[1 2( ) ( ) ]

4 15

[1 ( ) ]

3
[1 ( ) ]

4

B B

B

B

k T k T

U

k TN

k T

 
 






 




 

 

 

Using the expression of , we get 
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The heat capacity: 

 
2 2

B

F

k TdU
C

dT




   

 



where 2 1/3(3 )F c n  ℏ . 

 

In general case, the pressure P is obtained as 
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We consider the case of u c
p

 and cp   
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The internal energy is  
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At T = 0 K, the pressure P is 
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6. Scaling relation of the grand potential 

When u c
p
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The entropy: 
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is independent of V. It means that if we keep entropy constant and change the volume, namely, 

for adiabatic change, / T  is kept constant. Therefore, for adiabatic change, we have 
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