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1. Grand potential
As the Fermi gas is compressed, the mean energy of the electrons increases (&, increases);

when it becomes comparable with mc”, relativistic effects begin to be important. Here we
discuss a completely degenerate extreme relativistic electron gas, the energy of whose particles is

large compared with mc”.
Here we consider the equation of state of a relativistic completely degenerate electron gas.
The electron energy and momentum is related by
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The grand potential @ is given by
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where g = 2 (spin factor). The integration by part leads to
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Then we get
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The pressure P is obtained as
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The number N is given by
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The internal energy E is given by
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2. Grand potential at 7=0 K
The grand potential at 0 K is given by
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where we use the Mathematica for the integral,
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3. Pressure at 7=0K
When g =2, we have
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4. Number at T=0 K
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S. The internal energy E at 7=0K

The internal energy £ at T =0 K is
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We use Mathematica for the evaluation of integral
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Then we have

2
=i ipe2p, e 14-LEr i aresinb(£0))
87°h mc me

= E [x(2x” + 1)3/x* + 1 —arcsinh(x)]

3 4
Vm_c . We make a plot of£ as a function of x —Pr
p

where E, =
* 8rh’ E, mc

0.35 y=EIE,
o.3of—

0.25)

0.20}
0.15)
0.10"

0.05)
i X=pr/mc
0.1 0.2 0.3 04 05

6. Ultra-relativistic case: & =cp

As the gas is compressed, the mean energy of the electrons increases. When it becomes
comparable with mc”, relativistic effects begin to be important. Here we discuss a completely
degenerate extreme relativistic electron gas. The energy of the particles is large compared with
mc’ .

In the ultra-relativistic case, the energy dispersion can be expressed by
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The number N is given by
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The internal energy U is given by
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Now we use the Sommerfeld formula;
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The number density:
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The internal energy:
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We note that

When g =2,
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The chemical potential is obtained as
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The internal energy:
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Using the expression of u, we get
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The heat capacity:
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where &, = hc(37°n)"”.

In general case, the pressure P is obtained as
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We consider the case of u, =c¢ and ¢ =cp
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At T'=0 K, the pressure P is
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6. Scaling relation of the grand potential

When u,=c
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The entropy:
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Thus
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is independent of V. It means that if we keep entropy constant and change the volume, namely,
for adiabatic change, x /7T is kept constant. Therefore, for adiabatic change, we have

P
e const, VT? =const, PV*? =const

indicating that y = g .

((Note))
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