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1. Introduction 

After the discovery of electron in 1897, the British physicist Owen Willans Richardson began 

work on the topic that he later called "thermionic emission". He received a Nobel Prize in 

Physics in 1928 "for his work on the thermionic phenomenon and especially for the discovery of 

the law named after him". 

The minimum amount of energy needed for an electron to leave a surface is called the work 

function. The work function is characteristic of the material and for most metals is on the order 

of several eV. Thermionic currents can be increased by decreasing the work function. This often-

desired goal can be achieved by applying various oxide coatings to the wire. In 1901 Richardson 

published the results of his experiments: the current from a heated wire seemed to depend 

exponentially on the temperature of the wire with a mathematical form similar to the Arrhenius 

equation. 
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where J is the emission current density, T is the temperature of the metal, W is the work function 

of the metal, kB is the Boltzmann constant, and AG is constant. 

 

2. Richardson’s law 

We consider free electrons inside a metal. The kinetic energy of electron is given by 
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Fig. The work function   of a metal represents the height of the surface barrier over and 

above the Fermi level. 

 

 

Suppose that these electrons escape from the metal along the positive x direction. To this end, 

only the x components of the momentum should satisfy the inequality 
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where  W ,  is the chemical potential (the Fermi energy F ) and   is the work function. 

 



 
 

Fig. The number of electrons moving at the velocity 
m

p
v x

x   during a time period t  passing 

through an area A. The volume V where electrons pass across the area A, is AtvV x )(  . 

 

The number of electrons leaving per unit area of the metal surface per unit time is given by 
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where )( pn  is the Fermi-Dirac distribution function 
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The integration over the variables yp  and zp  may be carried out by changing over to the 

corresponding polar co-ordinates ( ,'p ) with the result 
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using the Mathematica. Then we have 
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We use the notation 
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Then we get the expression for R 
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where we assume that 
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The thermoionic current density is then given by 
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where e is the charge of electron (-e) with e>0. We introduce the work function as 
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Thus we have 
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Note that 
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Fig. Thermionic current from tungsten (W) as a function of the temperature of the metal. The 

continuous line corresponds to r = 1 2 while the broken line corresponds to r = 0, r being 

the reflection coefficient of the surface. 


