Semiconductor statistics
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton
 (Date: October 25, 2018)

Here we discuss the ststistics of semiconductor. The semicondusctors consists of three types semiconductor; intrinsic semiconductor, N-type semiconductor, and P-type semiconductor.

Fig. Intrinsic semiconductor
The energy gap:

$$
\varepsilon_{g}=\varepsilon_{c}-\varepsilon_{v}
$$

In $\mathrm{Si}, \varepsilon_{g}=1.1 \mathrm{eV}$.

The number of conduction electrons is given by

$$
N_{e}=\sum_{C B} f_{e}(\varepsilon)
$$

The number of holes is given by

$$
N_{h}=\sum_{V B}\left[1-f_{e}(\varepsilon)\right]=\sum_{V B} f_{h}(\varepsilon)
$$

where

$$
f_{e}(\varepsilon)=\frac{1}{e^{\beta(\varepsilon-\mu)}+1}=1-f_{h}(\varepsilon)
$$

Classical regime

$$
e^{\beta\left(\mu-\varepsilon_{c}\right)} \ll 1, \quad e^{\beta\left(\varepsilon_{v}-\mu\right)} \ll 1
$$

Such a semiconductor is called nondegenerate.

Then we have

$$
\begin{aligned}
& f_{e}(\varepsilon)=\frac{1}{e^{\beta(\varepsilon-\mu)}+1} \approx e^{-\beta(\varepsilon-\mu)} \\
& f_{h}(\varepsilon)=1-\frac{1}{e^{\beta(\varepsilon-\mu)}+1}=\frac{e^{\beta(\varepsilon-\mu)}}{e^{\beta(\varepsilon-\mu)}+1}=\frac{1}{e^{-\beta(\varepsilon-\mu)}+1}=e^{\beta(\varepsilon-\mu)}
\end{aligned}
$$

The total number of conduction electrons is

$$
N_{e}=\sum_{C B} e^{-\beta(\varepsilon-\mu)}=e^{-\beta\left(\varepsilon_{c}-\mu\right)} \sum_{C B} e^{-\beta\left(\varepsilon-\varepsilon_{c}\right)}
$$

or

$$
N_{e}=N_{c} e^{-\beta\left(\varepsilon_{c}-\mu\right)}
$$

where

$$
\begin{aligned}
N_{C} & =\sum_{C B} e^{-\beta\left(\varepsilon-\varepsilon_{c}\right)} \\
& =2\left(\frac{m_{e}^{*} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2} V
\end{aligned}
$$

where $m_{e}{ }^{*}$ is the effective mass.

((Calculation))

$$
\begin{aligned}
& N_{c}=2 \frac{V}{(2 \pi)^{3}} \int 4 \pi k^{2} d k e^{-\beta\left(\varepsilon-\varepsilon_{c}\right)} \\
& \varepsilon-\varepsilon_{c}=\frac{\hbar^{2} k^{2}}{2 m_{e}^{*}}, \quad k=\left(\frac{2 m_{e}^{*}}{\hbar^{2}}\right)^{1 / 2} \sqrt{\varepsilon-\varepsilon_{c}} \\
& d k=\left(\frac{2 m_{e}^{*}}{\hbar^{2}}\right)^{1 / 2} \frac{1}{2 \sqrt{\varepsilon-\varepsilon_{c}}} d \varepsilon
\end{aligned}
$$

Then we get

$$
\begin{aligned}
N_{c} & =2 \frac{V}{(2 \pi)^{3}} \int 4 \pi k^{2} d k e^{-\beta\left(\varepsilon-\varepsilon_{c}\right)} \\
& =\frac{V}{2 \pi^{2}}\left(\frac{2 m_{e}^{*}}{\hbar^{2}}\right)^{3 / 2} \int_{\varepsilon_{c}}^{\infty} \sqrt{\varepsilon-\varepsilon_{c}} e^{-\beta\left(\varepsilon-\varepsilon_{c}\right)} d \varepsilon
\end{aligned}
$$

We put $x=\beta\left(\varepsilon-\varepsilon_{c}\right)$. Since $d x=\beta d \varepsilon$, we have

$$
\begin{aligned}
N_{c} & ==\frac{V}{2 \pi^{2}}\left(\frac{2 m_{e}^{*} k_{B} T}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} \sqrt{x} e^{-x} d x \\
& =\frac{V}{2 \pi^{2}}\left(\frac{2 m_{e}{ }^{*} k_{B} T}{\hbar^{2}}\right)^{3 / 2} \frac{\sqrt{\pi}}{2} \\
& =2 V\left(\frac{m_{e}{ }^{*} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}
\end{aligned}
$$

Note that

$$
\int_{0}^{\infty} \sqrt{x} e^{-x} d x=\frac{\sqrt{\pi}}{2}
$$

Similarly, for holes, we have

$$
N_{h}=\sum_{V B} e^{\beta(\varepsilon-\mu)}=\sum_{V B} e^{\beta\left(\varepsilon-\varepsilon_{v}+\varepsilon_{v}-\mu\right)}=e^{-\beta\left(\mu-\varepsilon_{v}\right)} \sum_{V B} e^{-\beta\left(\varepsilon_{v}-\varepsilon\right)}
$$

or

$$
N_{h}=N_{v} e^{-\beta\left(\mu-\varepsilon_{v}\right)}
$$

where

$$
N_{v}=2\left(\frac{m_{h}{ }^{*} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2} V
$$

((Calculation))

$$
\begin{aligned}
& N_{v}=2 \frac{V}{(2 \pi)^{3}} \int 4 \pi k^{2} d k e^{-\beta\left(\varepsilon_{v}-\varepsilon\right)} \\
& \varepsilon_{v}-\varepsilon=\frac{\hbar^{2} k^{2}}{2 m_{h}{ }^{*}}, \quad k=\left(\frac{2 m_{h}^{*}}{\hbar^{2}}\right)^{1 / 2} \sqrt{\varepsilon_{v}-\varepsilon}
\end{aligned}
$$

$$
d k=\left(\frac{2 m_{h}^{*}}{\hbar^{2}}\right)^{1 / 2} \frac{1}{2 \sqrt{\varepsilon_{v}-\varepsilon}} d \varepsilon
$$

Then we get

$$
\begin{aligned}
N_{v} & =2 \frac{V}{(2 \pi)^{3}} \int 4 \pi k^{2} d k e^{\beta\left(\varepsilon-\varepsilon_{v}\right)} \\
& =\frac{V}{2 \pi^{2}}\left(\frac{2 m_{h}^{*}}{\hbar^{2}}\right)^{3 / 2} \int_{-\infty}^{\varepsilon_{v}} \sqrt{\varepsilon_{v}-\varepsilon} e^{-\beta\left(\varepsilon_{v}-\varepsilon\right)} d \varepsilon
\end{aligned}
$$

We put $x=\beta\left(\varepsilon_{v}-\varepsilon\right)$. Since $d x=-\beta d \varepsilon$, we have

$$
\begin{aligned}
N_{C} & =\frac{V}{2 \pi^{2}}\left(\frac{2 m_{h}^{*} k_{B} T}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} \sqrt{x} e^{-x} d x \\
& =\frac{V}{2 \pi^{2}}\left(\frac{2 m_{h}^{*} k_{B} T}{\hbar^{2}}\right)^{3 / 2} \frac{\sqrt{\pi}}{2} \\
& =2 V\left(\frac{m_{h}^{*} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}
\end{aligned}
$$

We define the number density n_{c} and n_{v} as

$$
\begin{aligned}
& n_{e}=\frac{N_{e}}{V}=n_{c} e^{-\beta\left(\varepsilon_{c}-\mu\right)}, \\
& n_{h}=\frac{N_{h}}{V}=n_{v} e^{-\beta\left(\mu-\varepsilon_{v}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
& n_{c}=2\left(\frac{m_{e}{ }^{*} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}=2 n_{Q}(e) . \\
& n_{v}=2\left(\frac{m_{h}^{*} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}=2 n_{Q}(h)
\end{aligned}
$$

Note that the factor 2 is from the spin degeneracy of spin $1 / 2$ fermion.

2. Law of mass action

We note that

$$
n_{e} n_{h}=n_{c} n_{v} e^{-\beta\left(\varepsilon_{c}-\mu\right)} e^{-\beta\left(\mu-\varepsilon_{v}\right)}=n_{c} n_{v} e^{-\beta\left(\varepsilon_{c}-\varepsilon_{v}\right)}=n_{c} n_{v} e^{-\beta \varepsilon_{g}}
$$

which is independent of the chemical potential.
In a pure semiconductor, $n_{e}=n_{h}=n_{i}$. Then we have the intrinsic carrier concentration

$$
n_{i}^{2}=n_{c} n_{v} e^{-\beta \varepsilon_{g}}
$$

or

$$
n_{i}=\sqrt{n_{c} n_{v}} e^{-\frac{\beta \varepsilon_{g}}{2}}
$$

3. Intrinsic Fermi level

In general we have the relation

$$
n_{e} n_{h}=n_{i}^{2}
$$

For the intrinsic semiconductor, $n_{e}=n_{h}=n_{i}$, leading to

$$
n_{e}=n_{c} e^{-\beta\left(\varepsilon_{c}-\mu\right)}=n_{i}=\sqrt{n_{c} n_{v}} e^{-\frac{\beta \varepsilon_{g}}{2}}
$$

The chemical potential is

$$
\mu=\frac{\varepsilon_{c}+\varepsilon_{v}}{2}+\frac{k_{B} T}{2} \ln \left(\frac{n_{v}}{n_{c}}\right)=\frac{\varepsilon_{c}+\varepsilon_{v}}{2}+\frac{3 k_{B} T}{4} \ln \left(\frac{m_{h}^{*}}{m_{e}^{*}}\right)
$$

where

$$
\frac{n_{v}}{n_{c}}=\left(\frac{m_{h}^{*}}{m_{e}^{*}}\right)^{3 / 2}
$$

The Fermi level for an intrinsic semiconductor lies near the middle of the forbidden gap.

4. The n-type and p-type semiconductor

Fig. Energy diagram for N-type and P-type semiconductors. The acceptor level for the P-type semiconductor and donor level for the N-type semiconductor.

Fig. Intrinsic semiconductor Si . Si has four electrons
((N-type semiconductor))
Si has for electrons, while Sb (antimony) has five electrons. Each Sb has exactly one electron more than Si it replaces. Sb behaves like a donor; $\mathrm{Sb}=\mathrm{Sb}^{+}+e^{-}$

Fig. N-type semiconductor. Sb (donors) is added as impurity. A part of Si is replaced by Sb . Acceptor impurity creates a electron. Sb has five electrons. Notre that $\mathrm{P}, \mathrm{As}, \mathrm{Sb}$, are donors.

Fig. Wave function of electron bound to P atoms in Si (W. Shockley, Electrons and Holes in Semiconductors, D. van Nostrand, 1950).

((P-type semiconductor))

Si has for electrons, while B (boron) has three electrons. Each B has exactly one electron less than Si it replaces

Fig. $\quad P$-type semiconductor. Boron (acceptor) is added as impurity to Si . A part of Si is replaced by B. Acceptor impurity creates a hole. Boron has three electrons. Co-valent bonds are incomplete. Note that $\mathrm{B}, \mathrm{Al}, \mathrm{Ga}, \mathrm{In}$, and so on are acceptors.

In the above figure, we have the relation

$$
\begin{aligned}
& n_{h}=x+n_{a}^{-} \\
& n_{e}=x+n_{d}^{+}
\end{aligned}
$$

Then we have

$$
n_{h}-n_{a}^{-}=x=n_{e}-n_{d}^{+}
$$

or

$$
n_{e}-n_{h}=n_{d}^{+}-n_{a}^{-}
$$

((Neutral (electrical) condition))

$$
n_{e}+n_{a}^{-}=n_{h}+n_{d}^{+} .
$$

n_{d}^{+}: concentration of positively charged donors.
n_{a}^{-}: concentration of negatively charged acceptors.

(a) $\quad N$-type semiconductor

N-type semiconductors have impurity levels which are filled by electrons at 0 K . At finite temperatures, electrons are excited from these levels to the conduction band, thus producing conduction electrons in the conduction band. These impurities are called donors.

$$
n_{e}=n_{h}+n_{d}^{+}
$$

(b) $\quad P$-type semiconductor
P-type semiconductors have impurity levels which are not occupied by electrons at 0 K . At finite temperatures, electrons are excited from the valence band to these levels, thus producing holes in the valence band. These impurities are called acceptors.

$$
n_{e}=n_{h}-n_{a}^{-}
$$

5. Determination of Fermi levels

The neutrality (in electric charges) condition leads to

$$
n^{-}=n_{e}+n_{a}^{-}=n_{h}+n_{d}^{+}=n^{+}
$$

where n^{-}is the number of electrons in the system and n^{+}is the number of holes in the system

$$
n_{e}=n_{c} e^{-\beta\left(\varepsilon_{c}-\mu\right)}, \quad n_{h}=n_{v} e^{-\beta\left(\mu-\varepsilon_{v}\right)}
$$

and

$$
\begin{aligned}
& n_{a}^{-}=\frac{n_{a}}{1+2 e^{\beta\left(\varepsilon_{a}-\mu\right)}}, \quad \text { (the number of electrons occupied in the acceptor sites) } \\
& n_{d}{ }^{+}=\frac{n_{d}}{1+2 e^{\beta\left(\mu-\varepsilon_{d}\right)}} . \quad \text { (the number of holes occupied in the donor sites, or the number) }
\end{aligned}
$$

The chemical potential can be determined from the equation

((Occupancy of donor))

A donor level can be occupied by an electron with either spin up or spin down. Once the level is occupied by one electron, the donor cannot bind a second electron with opposite spin. We suppose that one, but only one, electron can be bound to an impurity atom, either orientation \uparrow or \downarrow of the electron spin is accessible. The possible microscopic states for a donor level are the empty state, the state occupied by an electron of spin up and that of spin down.

1. electron detached
(energy 0)
2. 1 electron attached: $|+z\rangle \quad$ (energy ε_{d})
3. 1 electron attached: $|-z\rangle \quad$ (energy ε_{d})

The Gibbs sum is given by

$$
Z_{G}=1+z e^{-\beta \varepsilon_{d}}+z e^{-\beta \varepsilon_{d}}=1+2 z e^{-\beta \varepsilon_{d}}
$$

$f\left(D^{+}\right)$: probability that the donor orbit is vacant

$$
f\left(D^{+}\right)=\frac{1}{1+2 z e^{-\beta \varepsilon_{d}}}
$$

$f(D)$: probability that the donor orbit is occupied by one electron

$$
f(D)=\frac{2 z e^{-\beta \varepsilon_{d}}}{1+2 z e^{-\beta \varepsilon_{d}}}=\frac{1}{1+\frac{1}{2} e^{\beta\left(\varepsilon_{d}-\mu\right)}}=1-f\left(D^{+}\right)
$$

The factor 2 is the spin degeneracy.

Fig. $\quad N$-type semiconductor with donor level.

((Occupancy of acceptor))

In the ionized condition A^{-}of the acceptor, each of the chemical bonds between the acceptor atom and the surrounding semiconductor Si atoms, contains a pair of electrons with antiparallel spins. There is only one such state.

Fig. The spin direction is fixed.

In the above figure, the electron in the spin down state.

1. $1 z e^{-\beta \varepsilon_{a}}$: one electron with spin down

In the neutral condition A of the acceptor, one electron is missing from the surrounding bonds. The missing electron may have either spin up or spin down.
2. one \uparrow electron missing $\quad(N=0$, zero energy $)$
3. one \downarrow electron missing $\quad(N=0$, zero energy)

Thus we have the partition function

$$
Z_{G}=2+z e^{-\beta \varepsilon_{a}} .
$$

$$
f\left(A^{-}\right)=\frac{z e^{-\beta \varepsilon_{a}}}{2+z e^{-\beta \varepsilon_{a}}}=\frac{1}{1+z e^{\beta\left(\varepsilon_{a}-\mu\right)}} \quad \quad \text { (the acceptor orbital occupied) }
$$

$$
f(A)=\frac{2}{2+z e^{-\beta \varepsilon_{a}}}=\frac{1}{1+\frac{1}{2} e^{\beta\left(\mu-\varepsilon_{a}\right)}}
$$

The concentration

$$
\begin{array}{ll}
n_{d}^{+}=n_{d} f\left(D^{+}\right)=\frac{n_{d}}{1+2 e^{\beta\left(\mu-\varepsilon_{d}\right)}} & \text { (donor orbital unoccupied) } \\
n_{a}^{-}=n_{a} f\left(A^{-}\right)=\frac{n_{a}}{1+2 e^{\beta\left(\varepsilon_{a}-\mu\right)}} & \text { (donor orbital unoccupied) }
\end{array}
$$

Fig. Graphical determination of the Fermi level and electron concentration in an n-type semiconductor containing both donors and acceptors. (Kittel and Kromer, Thermal Physics)
6. N-type semiconductor

For N-type semiconductor, we have

$$
n_{c} e^{-\beta\left(\varepsilon_{c}-\mu\right)}=n_{v} e^{-\beta\left(\mu-\varepsilon_{v}\right)}+\frac{n_{d}}{1+2 e^{\beta\left(\mu-\varepsilon_{d}\right)}}
$$

In the limit of $T \rightarrow 0$, we can neglect the term $n_{v} e^{-\beta\left(\mu-\varepsilon_{v}\right)}$ (the excitation of electrons from the valence band). So we get

$$
e^{-\beta\left(\varepsilon_{c}-\mu\right)}\left[1+2 e^{\beta\left(\mu-\varepsilon_{d}\right)}\right]=\frac{n_{d}}{n_{c}}
$$

When $\mu \approx \varepsilon_{c}$,

$$
e^{-\beta\left(\varepsilon_{c}-\mu\right)}+2 e^{\beta\left(2 \mu-\varepsilon_{d}-\varepsilon_{c}\right)}=\frac{n_{d}}{n_{c}}
$$

or

$$
2 e^{\beta\left(2 \mu-\varepsilon_{d}-\varepsilon_{c}\right)}=\frac{n_{d}}{n_{c}} \quad \text { (the first term of the left-hand side is neglected). }
$$

$\mu=\frac{\varepsilon_{d}+\varepsilon_{c}}{2}+\frac{k_{B} T}{2} \ln \left(\frac{n_{d}}{2 n_{c}}\right)$

The chemical potential is $\mu \approx \frac{\varepsilon_{d}+\varepsilon_{c}}{2}$. Then the number density

7. $\quad P$-type semicondictor

For P-type semiconductor, we have

$$
n_{c} e^{-\beta\left(\varepsilon_{c}-\mu\right)}+\frac{n_{a}}{1+2 e^{\beta\left(\varepsilon_{a}-\mu\right)}}=n_{v} e^{-\beta\left(\mu-\varepsilon_{v}\right)}
$$

In the limit of $T \rightarrow 0$, we can neglect the term $n_{c} e^{-\beta\left(\varepsilon_{c}-\mu\right)}$ (the excitation of electrons from the conduction band). So we get

$$
\frac{n_{a}}{1+2 e^{\beta\left(\varepsilon_{a}-\mu\right)}}=n_{v} e^{-\beta\left(\mu-\varepsilon_{v}\right)}
$$

When $\mu \approx \varepsilon_{v}$,

$$
e^{-\beta\left(\mu-\varepsilon_{v}\right)}+2 e^{\beta\left(\varepsilon_{a}+\varepsilon_{v}-2 \mu\right)}=\frac{n_{a}}{n_{v}}
$$

or

$$
\begin{aligned}
& 2 e^{\beta\left(\varepsilon_{a}+\varepsilon_{v}-2 \mu\right)}=\frac{n_{a}}{n_{v}} \quad \text { (the first term of the left-hand side is neglected). } \\
& \mu=\frac{\varepsilon_{a}+\varepsilon_{v}}{2}-\frac{k_{B} T}{2} \ln \left(\frac{n_{a}}{2 n_{v}}\right)
\end{aligned}
$$

The chemical potential is $\mu \approx \frac{\varepsilon_{a}+\varepsilon_{v}}{2}$. Then the number density

REFERENCES

C. Kittel and H. Kromer, Thermal Physics, second edition (W.H. Freeman and Company, 1980). W. Shockley, Electrons and Holes in Semiconductors, D. van Nostrand, 1950).

APPENDIX

Free electron with

$$
\varepsilon=\frac{\hbar^{2}}{2 m} k^{2}, \quad k=\sqrt{\frac{2 m}{\hbar^{2}}} \sqrt{\varepsilon}
$$

$$
\begin{aligned}
N_{e} & =2 \frac{V}{(2 \pi)^{3}} \int 4 \pi k^{2} d k \frac{1}{e^{\beta(\varepsilon-\mu)}+1} \\
& =\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} \frac{\sqrt{\varepsilon} d \varepsilon}{e^{\beta(\varepsilon-\mu)}+1} \\
& =\frac{V(4 \pi)^{3 / 2}}{2 \pi^{2}}\left(\frac{2 m k_{B} T}{4 \pi \hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} \frac{\sqrt{x} d x}{\lambda e^{-x}+1} \\
& =V\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2} \frac{4}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\sqrt{x} d x}{\lambda e^{-x}+1}
\end{aligned}
$$

