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Here we discuss the ststistics of semiconductor. The semicondusctors consists of three types 

semiconductor; intrinsic semiconductor, N-type semiconductor, and P-type semiconductor.  

 

 

 
Fig. Intrinsic semiconductor 

 

The energy gap: 
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In Si, 1.1g  eV. 

 

The number of conduction electrons is given by 
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Classical regime 

 

1
)(  ce

 ,  1
)(  ve  

 

Such a semiconductor is called nondegenerate. 

 

Then we have 
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The total number of conduction electrons is 
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or 
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em  is the effective mass.  

 

((Calculation)) 
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Then we get 
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We put )( cx   . Since ddx  , we have 
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Note that 
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Similarly, for holes, we have 
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((Calculation)) 
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Then we get 
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We put )(   vx . Since ddx  , we have 
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We define the number density cn  and vn  as 
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Note that the factor 2 is from the spin degeneracy of spin 1/2 fermion. 

 

2. Law of mass action 

We note that 

 

gvcvc ennenneennnn vcvcvche

   )()()(
 

 

which is independent of the chemical potential. 

In a pure semiconductor, ihe nnn  . Then we have the intrinsic carrier concentration 
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3. Intrinsic Fermi level 

In general we have the relation 
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For the intrinsic semiconductor, e h in n n  , leading to 

 

2)(

g

c ennnenn vcice


 

   

 

The chemical potential is  
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The Fermi level for an intrinsic semiconductor lies near the middle of the forbidden gap. 

 

 
 

4. The n-type and p-type semiconductor 

 
 

Fig. Energy diagram for N-type and P-type semiconductors. The acceptor level for the P-type 

semiconductor and donor level for the N-type semiconductor. 



 

 
 

Fig.  Intrinsic semiconductor Si. Si has four electrons 

 

((N-type semiconductor)) 

Si has for electrons, while Sb (antimony) has five electrons. Each Sb has exactly one electron 

more than Si it replaces. Sb behaves like a donor;   eSbSb  
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Fig. N-type semiconductor. Sb (donors) is added as impurity. A part of Si is replaced by Sb. 

Acceptor impurity creates a electron. Sb has five electrons. Notre that P, As, Sb, are 

donors. 
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Fig. Wave function of electron bound to P atoms in Si (W. Shockley, Electrons and Holes in 

Semiconductors, D. van Nostrand, 1950). 

 



 
 

((P-type semiconductor)) 

Si has for electrons, while B (boron) has three electrons. Each B has exactly one electron less 

than Si it replaces  

 



 
 

Fig. P-type semiconductor. Boron (acceptor) is added as impurity to Si. A part of Si is 

replaced by B. Acceptor impurity creates a hole. Boron has three electrons. Co-valent 

bonds are incomplete. Note that B, Al, Ga, In, and so on are acceptors. 
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In the above figure, we have the relation 
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Then we have 

 
  deah nnxnn  

 

or 
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((Neutral (electrical) condition)) 
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
dn : concentration of positively charged donors. 


an : concentration of negatively charged acceptors. 

 

(a) N-type semiconductor 

N-type semiconductors have impurity levels which are filled by electrons at 0 K. At finite 

temperatures, electrons are excited from these levels to the conduction band, thus producing 

conduction electrons in the conduction band. These impurities are called donors. 
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(b) P-type semiconductor 

P-type semiconductors have impurity levels which are not occupied by electrons at 0 K. At 

finite temperatures, electrons are excited from the valence band to these levels, thus producing 

holes in the valence band. These impurities are called acceptors. 
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5. Determination of Fermi levels 

The neutrality (in electric charges) condition leads to 
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where n  is the number of electrons in the system and n  is the number of holes in the system 

 
)(   cenn ce , 

)( venn vh

   

 

and 

 

c

a

v

na

nh

ne



)(
21

 





ae

n
n a
a , (the number of electrons occupied in the acceptor sites) 

 

)(
21 de

n
n d
d  



 . (the number of holes occupied in the donor sites, or the number) 

 

The chemical potential can be determined from the equation 
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((Occupancy of donor)) 

A donor level can be occupied by an electron with either spin up or spin down. Once the 

level is occupied by one electron, the donor cannot bind a second electron with opposite spin. 

We suppose that one, but only one, electron can be bound to an impurity atom, either orientation 

  or   of the electron spin is accessible. The possible microscopic states for a donor level are 

the empty state, the state occupied by an electron of spin up and that of spin down. 

 

1. electron detached   (energy 0) 

2. 1 electron attached: z   (energy d ) 

3. 1 electron attached: z   (energy d ) 

 

The Gibbs sum is given by 
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)(Df : probability that the donor orbit is occupied by one electron 

 

)(1

2

1
1

1

21

2
)(

)(














 Df

e
ze

ze
Df

d

d

d






 

 



The factor 2 is the spin degeneracy. 

 

 
 

Fig.  N-type semiconductor with donor level. 

 

((Occupancy of acceptor)) 

In the ionized condition A- of the acceptor, each of the chemical bonds between the acceptor 

atom and the surrounding semiconductor Si atoms, contains a pair of electrons with antiparallel 

spins. There is only one such state.  
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Fig. The spin direction is fixed. 

 

In the above figure, the electron in the spin down state. 
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 1 : one electron with spin down 

 

In the neutral condition A of the acceptor, one electron is missing from the surrounding bonds. 

The missing electron may have either spin up or spin down. 

 

2. one   electron missing (N = 0, zero energy) 

3. one   electron missing (N = 0, zero energy) 

 

Thus we have the partition function 
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Fig. Graphical determination of the Fermi level and electron concentration in an n-type 

semiconductor containing both donors and acceptors. (Kittel and Kromer, Thermal 

Physics) 

 

6. N-type semiconductor 

For N-type semiconductor, we have 
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In the limit of 0T  , we can neglect the term 
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7. P-type semicondictor 

For P-type semiconductor, we have 
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In the limit of 0T  , we can neglect the term 
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APPENDIX 

Free electron with 
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