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Subrahmanyan Chandrasekhar, FRS (October 19, 1910 – August 21, 1995) was an Indian 

origin American astrophysicist who, with William A. Fowler, won the 1983 Nobel Prize for 

Physics for key discoveries that led to the currently accepted theory on the later evolutionary 

stages of massive stars. Chandrasekhar was the nephew of Sir Chandrasekhara Venkata Raman, 

who won the Nobel Prize for Physics in 1930. Chandrasekhar served on the University of Chicago 

faculty from 1937 until his death in 1995 at the age of 84. He became a naturalized citizen of the 

United States in 1953. 

 

 
 

http://en.wikipedia.org/wiki/Subrahmanyan_Chandrasekhar 

 

In 1930, Subramanyan Chandrasekhar, then 19 years old, was on a sea voyage from India to 

Cambridge, England, where he planned to begin graduate work. Chandrasekhar was interested in 

exploring the consequences of quantum mechanics for astrophysics. During his trip, he analyzed 

how the density, pressure, and gravity in a white dwarf star vary with radius. For a star like Sirius 

B Chandrasekhar found that the Fermi velocity of inner electrons approaches the speed of light. 

Consequently he found it necessary to redo the calculation of the Fermi energy taking relativistic 

effects into account. Chandrasekhar deduced that a high-density, high mass star cannot support 

itself against gravitational collapse unless the mass of the star is less than 1.4 solar masses. This 

finding was quite controversial within the astronomical community and it was 54 years before 

Chandrasekhar was awarded the Nobel Prize for this work. 

 

1. Overview 
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An ordinary planet, supported by material pressure will persist essentially forever. But 

massive stars are a different story. The pressure supporting a star comes from the heat produced 

by fusion of light nuclei into heavier ones. When the nuclear fuel is used up, the temperature 

declines and the star begins to shrink under the influence of gravity. The collapse may eventually 

be halted by Fermi degeneracy pressure. Electrons are pushed so close together that they resist 

further compression simply on the basis of the Pauli exclusion principle. A stellar remnant 

supported by electron degeneracy pressure is called a white dwarf; a typical white dwarf is 

comparable in size to the Earth. Lower-mass particles become degenerate at lower number 

densities than high-mass particles, so nucleus do not contribute appreciably to the presence in a 

white dwarf. White dwarfs are the end state for most stars, and are extremely common throughout 

the universe. 

If the total mass is sufficiently high, however, the star will reach the Chandrasekhar limit 

( M=1.4 Msun), even the electron degeneracy pressure is not enough to resist the pull of gravity. 

When it is reached, the star is forced to collapse to an even smaller radius. At this point electrons 

combine with protons to make neutrons and neutrino (inverse beta decay), and the nuetrinos 

simply fly away. The result is a neutron star, with a typical radius of about 10 km, Neutrons stars 

have a low luminosity, but often are rapidly spinning and possess strong magnetic fields. This 

combination gives rise to pulsars, which accelerate particles in jets emanating from the magnetic 

poles, appearing to rapiddly flash as the neutron star spins. 
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2. Introduction 

Electron degeneracy is a stellar application of the Pauli Exclusion Principle, as is neutron 

degeneracy. No two electrons can occupy identical states, even under the pressure of a collapsing 

star of several solar masses. For stellar masses less than about 1.4 solar masses, the energy from 

the gravitational collapse is not sufficient to produce the neutrons of a neutron star, so the collapse 

is halted by electron degeneracy to form white dwarfs. This maximum mass for a white dwarf is 

called the Chandrasekhar limit. As the star contracts, all the lowest electron energy levels are 

filled and the electrons are forced into higher and higher energy levels, filling the lowest 

unoccupied energy levels. This creates an effective pressure which prevents further gravitational 

collapse. 

 

_____________________________________________________________________________ 

(a) Earth 
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M = 5.973610 x 1024 kg 

R = 6.372 x 106 m 

 

(b) Sun 

M = 1.988435 x 1030 kg 

R =6.9599 x 108 m 

 

(c) Companion of Sirius: first white dwarf (Sirius B) 

M = 2.0 x 1030 kg (≈ the mass of sun) 

R = 6.0 x 106 m (a little shorter than the Earth) 

 

(d) Crab pulsar (neutron star) 

M = 1.4 Msun = 2.78 x 1030 kg 

R = 1.2 x 103 m. 

 

(e) Chandrasekhar limit 

The currently accepted value of the Chandrasekhar limit is about 1.4 Msun (2.765×1030 

kg).  

 

3. Kinetic energy of the ground state of fermion 

The kinetic energy of the fermions in the ground state is given by 
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where Nf is the number of fermions, and m0 is the mass of the fermion. The pressure P is calculated 

as 
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using the formula of P in the non-relativistic limit. Note that emm 0  for the white dwarf where 

electron (spin 1/2) is a fermion, and nmm 0  for the neutron star where neutron (spin 1/2) is a 

fermion. 

The kinetic energy of fermions in the ground state can be rewritten as 
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where 

 

3/5

0

2

10495.1 fN
m

B
ℏ

 . 

 

The volume V is expressed by 
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where R is the radius of the system. We find that P becomes increases as the volume V decreases. 

Here we note that the density of the system, , is given by 
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and M is the total mass of the system. The number density nf for fermions is defined as 
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The average nearest neighbor distance between fermions can be evaluated 
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Note that the more detail of the mass fm  will be discussed in the discussion of white dwarf. fm  

is the mass per fermion. 

 

4. Gravitational self energy 
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We calculate the potential energy of the system. 

 

 
 

Suppose that M(r) is the mass of the system with radius r. 
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The potential energy is given by 
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the potential energy is calculated as 
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and G is the universal gravitational constant.  

 

5. The total energy 

 

 
 

Fig. A balance between the gravitational force (inward) and the pressure of degenerate Fermi 

gas  

 

The total energy is the sum of the gravitational and kinetic energies, 
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Fig. Non-relativistic case. The plot of totE  as a function of R. totE  has a local minimum at 

0RR  , leading to the equilibrium state. 

 

From the derivative of fnonrel(R) with respect to R, we get the distance R in equilibrium. 
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Thus, for the nonrelativistic degenerate Fermi gas, there is a balance between the gravitational 

force (inward) and the force due to the degenerate Fermi gas pressure, leading to a stable radius 

R0. 

 

((Summary)) 

Compression of a white dwarf will increase the number of electrons in a given volume. 

Applying the Pauli’s exclusion principle, this will increase the kinetic energy of the electrons, 

thereby increasing the pressure. This electron degeneracy pressure supports a white dwarf against 

gravitational collapse. The pressure depends only on density and not on temperature. 

Since the analysis shown above uses the non-relativistic formula )2/( 0

2
mpF for the kinetic 

energy, it is non-relativistic. If we wish to analyze the situation where the electron velocity in a 

white dwarf is close to the speed of light, c, we should replace )2/( 0

2
mpF by the extreme 

relativistic approximation Fcp  for the kinetic energy.  

As V is decreased with Nf kept constant, the Fermi velocity increases, 
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in the non-relativistic case. 

 

6. Relativistic degenerate Fermi gas 

The Fermi energy of the non-degenerate Fermi gas is given by 
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where Nf is the number of fermions. As V 0, F  increases. Then the relativistic effect 

becomes important. The relativistic kinetic energy is given by 
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When cmp 0 , 
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where m0 is the mass of fermion and mf is the mass per fermion. Note that 
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The density of states: 
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where fn  is the number density of fermions, 
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The total energy in the ground state is obtained as 
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Using the expression of Nf, UG can be rewritten as 
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The pressure P is calculated as 
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using the formula of P in the relativistic limit. The total mass M is denoted as 

 

ff mNM  , 

 

where fm  is the mass per fermion (electron in white dwarf) (such as the mass of protons and 

neutrons per electron). Note that fm  is not always equal to the mass of each fermion (m0) (such 

as electron). Since f
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M
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which is proportional to R/1 , where 
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Since the gravitational energy is 
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the total energy (relativistic) is given by 
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Fig. Relativistic case. Schematic plot of frel(R) vs R for M>M0 and M<M0. When M = M0, frel(R) 

= 0. For M>M0, the total energy decreases with decreasing R, leading to the stable state 

near R = 0. For M<M0, the total energy decreases with increasing R, leading to the stable 

state near R = ∞. 

 

For M>M0, R tends to zero, while for M<M0, R tends to increase. The critical mass M0 is evaluated 

from the condition, 
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((Example)) 

The interior of a white-dwarf star (electrons as fermion) is composed of atoms like 12C (6 

electrons, 6 protons, and 6 neutrons) and 16O (8 electrons, 8 protons, and 8 neutrons), which 
contain equal numbers of protons, neutrons, and electrons. Thus,  
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where mp and )( pn mm   are the proton mass and neutron mass. Then we have 

 

M0 = 1.72148 Msun. 

 

The currently accepted numerical value of the limit is about 1.4 Msun (Chandrasekhar limit). 

 

((Mathematica)) 
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((Note)) Planck mass 

The Planck mass is nature’s maximum allowed mass for point-masses (quanta) – in other 

words, a mass capable of holding a single elementary charge. The Planck mass, denoted by mPlanck, 

is defined by 
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where c is the speed of light in a vacuum, G is the gravitational constant, and ℏ  is the Dirac 

constant. 

 

7. White dwarf with electron as fermion: non-relativistic case 

In the white dwarf, a fermion is an electron. So we have  

 

emm 0 . 

 

The mass fm  per electron can be described in terms of atomic number Z, and mass number A (the 

sum of the numbers of protons and neutrons) as follows. Since there are Z electrons, mass fm  per 

electron can be evaluated as 
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where mp is the mass of proton and we neglect the mass of electrons. 
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((Note)) 

 

Number of protons = Z,  mass of protons, pZm  

Number of neutron = ZA   mass of neutron, nmZA )(   

Number of electrons = Z  mass of electron Zme  

 

where Z is the atomic number and A is the atomic mass. The mass fm  per fermion is 
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since mmm pn   

 

 
 

Fig. Image of Sirius A (bright star in the center) and Sirius B (white dwarf, very small spot in 

the figure) taken by the Hubble Space Telescope. Sirius B, which is a white dwarf, can be 

seen as a faint pinprick of light to the lower left of the much brighter Sirius A. 

http://www.universetoday.com/wp-content/uploads/dog_star.jpg 
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Fig. A Chandra X-ray Observatory image of the Sirius star system, where the spike-like pattern 

is due to the support structure for the transmission grating. The bright source is Sirius B. 

Credit: NASA/SAO/CXC. 

 

http://en.wikipedia.org/wiki/File:Sirius_A_%26_B_X-ray.jpg 

 

((Note)) 

http://chandra.harvard.edu/photo/2000/0065/ 

An X-ray image of the Sirius star system located 8.6 light years from Earth. This image shows 

two sources and a spike-like pattern due to the support structure for the transmission grating. The 

bright source is Sirius B, a white dwarf star that has a surface temperature of about 25,000 degrees 

Celsius which produces very low energy X-rays. The dim source at the position of Sirius A – a 

normal star more than twice as massive as the Sun – may be due to ultraviolet radiation from 

Sirius A leaking through the filter on the detector. In contrast, Sirius A is the brightest star in the 

northern sky when viewed with an optical telescope, while Sirius B is 10,000 times dimmer. 

Because the two stars are so close together Sirius B escaped detection until 1862 when Alvan 

Clark discovered it while testing one of the best optical telescopes in the world at that time. The 

theory of white dwarf stars was developed by S. Chandrasekhar, the namesake of the Chandra X-

ray Observatory. The story of Sirius B came full cycle when it was observed by Chandra in 

October 1999 during the calibration or test period. The white dwarf, Sirius B, has a mass equal to 

the mass of the Sun, packed into a diameter that is 90% that of the Earth. The gravity on the 

surface of Sirius B is 400,000 times that of Earth! 

 

Video: 

https://www.youtube.com/watch?v=F0qt91rvorU 
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Fig. Mass-radius relationship. mass and radius are in the unit of the mass and radius of sun. 

constRM 3/1  for the non-relativistic case.  

 

http://upload.wikimedia.org/wikipedia/commons/8/81/WhiteDwarf_mass-radius.jpg 

 

The number of fermions is 
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Then the kinetic energy UG (in the non-relativistic case) can be given by 
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The equilibrium distance R is given by 
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where 
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Thus we have the relation 
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for the non-relativistic case. The more massive a white dwarf is, the smaller it is. The electrons 

must be squeezed closer together to provide the greater preasure needed to a more massive white 

dwarf. 

 

((Example)) 
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The interior of a white-dwarf star is composed of atoms like 12C (6 electrons, 6 protons, and 
6 neutrons) and 16O (8 electrons, 8 protons, and 8 neutrons), which contain equal numbers of 

protons, neutrons, and electrons.  

 

pf mm 2  m0 = me. 

 

In this case we have 
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The radius R is proportional to M-1/3. When M is equal to the mass of sun, Msun, then we have 
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which is almost equal to the radius of Earth (6371 km). The number density is 
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The Fermi energy of the electrons is 
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The average distance between fermions is 
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((Mathematica)) Numerical calculation for white dwarf 
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eV 1.602176487 10 19 , kB 1.3806504 10 23, mn 1.674927211 10 27,

mp 1.672621637 10
27
, 1.05457162853 10

34
,

Msun 1.988435 10
30

, c 2.99792458 10
8
;

C1

81 2

16

1 3
2

25 3 G me mp5 3
. rule1

9.00397 10
16

R0
C1

Msun1 3
. rule1

7.16028 10
6

n1
Msun

2 4
mp

3
R03

. rule1

3.86549 10
35
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8. Neutron star with neutron as fermion: relativistic case 

J.S. Townsend, Quantum Physics A Fundamental Approach to Modern Physics (University 

Science Books, 2019). 

“The natural question to raise is what happens if the mass of the star exceeds this 1.4 solar 

mass limit. As the star collapses, the size of the box confining the electrons decreases and, 

consequently, the energy of the electrons confined in the box increases. When the energy of the 

electrons reaches the point that is sufficient to initiate the reaction 

 

npe e   , 

 

that is, an electron combines with a proton to produce the more massive neutron (a spin-1/2 

particle, fermion) and an associated neutrino, the inner core of the star collapses to a neutron star. 

EF1

2

2 me
3

2
n1

2 3
;

EF1

eV
. rule1 ScientificForm

1.93497 10
5

TF EF1 kB . rule1

2.24543 10
9

vF
me

3
2
n1

1 3
. rule1 ScientificForm

2.60893 10
8

1 mp n1 . rule1

6.46551 10
8

d1
2 mp

1

1 3

. rule1

1.72958 10
12
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Calculations similar in spirit to the ones Chandrasekhar did for white dwarf stars show that for 

neutron stars, a typical radius is on the order of 10 km and the density is on the order of 1014 g/cm3 

(the density of nuclear matter). Moreover, there is an upper limit on the mass of a neutron star of 

roughly 1.5 to 3 solar masses. Beyond that limit, the star either collapses to a black hole or ejects 

mass in a catastrophic explosion known as a supernova, often leaving a neutron star surrounded 

by eject gas as a remnant, as is the case for the Crab nebula.” 

 

_____________________________________________________________________________ 

We consider the case of neutron star. The system consists of only neutron (spin 1/2 fermion). 

We use  

 

nmm 0 , nf mm  ,  M = Msun (for convenience). 

 

Then UG (in the relativistic case) can be given by 

 

23/82

3/52
3/2)

4

9
(

10

3

R

B

mR

M
E

n

G 
ℏ

, 

 

where 

 

3/8

3/52
3/2)

4

9
(

10

3

nm

M
B

ℏ
 . 

 

The radius 0R  is obtained as 

 

3/8

2
3/1

2

0
16

81

nGmM
R

ℏ












 

 

Then we have 

 

3/8

2
3/1

2

0

3/1

16

81

nGm
CRM

ℏ












= 1.55112 x 1014 kg1/3 m. 

 

If M = Msun, then we get 

 

3/10

sunM

C
R  = 12.335 km. 
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The Fermi energy is given by 

 

1/3
3

( )
f

F

n
c 


 ℏ

 

= 3.25082 x 108 eV 

 

and the Fermi temperature is 

 

F
F

B

T
k


 F

F

B

T
k


  3.7724 x 1012 K. 

 

where 

 

3

3

4

1

R

M

mmV

N
n

ff

f

f 

 = 1.51008 x 1044 /m3. 

 

with mf = mn. The average distance between fermions is 

 

3/13/1

1






















n

f

m

n
d = 1.87788 x 10-15 m. 

 

The density  is 

 

p fm n   = 2.5293 x 1017 kg/m3. 

 

((Mathematica)) Numerical calculation for neutron star  
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Clear "Global` " ;

rule1 G 6.6742867 10
11
, me 9.1093821545 10

31
,
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,
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,
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,
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8
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;
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d1 nf1
1 3

. rule1
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((Note)) 

The electrons are captured by nucleus. N decreases. However, V is also decreased. Then the 

number density n remains unchanged. Thus P does not change. When the system is further 

compressed, then all electrons are captured by nucleus. 

 

Az + e- = Az-1 + 
Az-1 + e- = Az-2 + 

A1 + e- = A0+ 


where A0 is a neutron and  is a neutrino. z is the number of protons. Finally, nucleus is composed 

of only neutrons. 

 

9. Crab pulsar (neutron star) 

The Crab Pulsar (PSR B0531+21) is a relatively young neutron star. The star is the central 

star in the Crab Nebula, a remnant of the supernova SN 1054, which was widely observed on 

Earth in the year 1054. Discovered in 1968, the pulsar was the first to be connected with a 

supernova remnant. The optical pulsar is roughly 25 km in diameter and the pulsar "beams" rotate 

once every 33 ms, The outflowing relativistic wind from the neutron star generates synchrotron 

emission, which produces the bulk of the emission from the nebula, seen from radio waves 

through to gamma rays. The most dynamic feature in the inner part of the nebula is the point 

where the pulsar's equatorial wind slams into the surrounding nebula, forming a termination shock. 

The shape and position of this feature shifts rapidly, with the equatorial wind appearing as a series 

of wisp-like features that steepen, brighten, then fade as they move away from the pulsar into the 

main body of the nebula. The period of the pulsar's rotation is slowing by 36.4 ns per day due to 

the large amounts of energy carried away in the pulsar wind. 
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Fig. The Crab Nebula, which contains the Crab Pulsar. Image combines optical data from 

Hubble (in red) and X-ray images from Chandra (in blue). NASA/CXC/ASU/J. Hester 

 

Video: 

https://www.youtube.com/watch?v=pLivjAoDrTg 
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Fig. X-ray picture of Crab pulsar, taken by Chandra 

 

http://en.wikipedia.org/wiki/Crab_Pulsar 

 

Data of Crab pulsar:  

 

 = 30/s (T = 33 ms), M = 1.4 Msun, R = 12 km. T = 36.4 ns. 

 

The density  is 

 

3

3

4
R

M


  = 3.84598 x 1017 kg/m3. 

 

The moment of inertia I is calculated as 

 

382 1060347.1
5

2
 MRI  kg m2. 

 

The rotational kinetic energy is 
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222

5

2

2

1

2

1
 MRIKrot   = 2.91 x 1042 J, 

 

where the angular frequency  is 

 

T




2
  = 190.4 rad/s. 

 

The loss of energy per day is 

 
2

2

3

1 4

2

rotdK d T
P I I

dt dt T t




       
 = 7.42 x 1031 W, 

 

where T = 36.4 ns per t = 1 day = 24 x 3600 s. The age of the Crab pulsar can be estimated as 

 

1

2

T
t

T



= 3.9 x 1010 s = 1240 years.  

 

The Crab pulsar is thought to be about 930 years, so the age we have just estimated is roughly 

correct.. 
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((Note-1)) Density  

For a rotating object to remain bound, the gravitational force at the surface must exceed the 

centripetal acceleration: 

 

GTT
r

r

G

Tr

GM
mr

r

GM
m

22

2
3

32

2
2

3

2

2

34

3

44 



  . 

 

For T = 33 ms, the density must be greater than 1.31011 g/cm3 = 1.3x1014 kg/m3. This exceeds 

the maximum possible density for a white dwarf. 

 

((Note-2)) Angular momentum conservation 
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Suppose that the Sun (T = 25 days, radius 7108 m, mass 1.988x1030 kg) were to collapse to 

a neutron star with a radius of 16 km. Using the angular momentum conservation law, we have 

 

ffii RR  22  , 

 

or 

 

9
10

2

3

8

2

2

102
256

1049

1016

107


















f

i

i

f

R

R




  

 

In other words, the star is rotating 9102 faster after the collapse than it was before. 

 

9102

1




i

f

T

T
,  

 

or 

 

msT f 1
102

)360024(25
9





 . 

 

 


