
 1 

Bloch theorem and Energy band 

Masatsugu Suzuki  

Department of Physics, SUNY at Binghamton, 

(Date: December 25, 2015) 

 

Felix Bloch 

Felix Bloch entered the Federal Institute of Technology (Eidgenössische Technische 

Hochschule) in Zürich. After one year's study of engineering he decided instead to study 

physics, and changed therefore over to the Division of Mathematics and Physics at the 

same institution. After Schrödinger left Zürich in the fall of 1927 he continued his studies 

with Heisenberg at the University of Leipzig, where he received his degree of Doctor of 

Philosophy in the summer of 1928 with a dissertation dealing with the quantum 

mechanics of electrons in crystals and developing the theory of metallic conduction.  

 

By straight Fourier analysis I found to my delight that the wave differed from the 

plane wave of free electrons only by a periodic modulation. This was so simple that I did 

not think it could be much of a discovery, but when I showed it to Heisenberg, he said 

right away; “That’s it!! (F. Bloch, July, 1928) (from the book edited by Hoddeson et al.2). 

 

His paper was published in 1928 [F. Bloch, Zeitschrift für Physik 52, 555 (1928)]. 

There are many standard textbooks3-10 which discuss the properties of the Bloch electrons 

in a periodic potential. 

 

1. Derivation of the Bloch theorem 

We consider the motion of an electron in a periodic potential (the lattice constant a). 

The system is one-dimensional and consists of N unit cells (the size L = Na, N: integer). 

 

)ˆ()1̂ˆ( xVaxV  , 

 

1̂ˆ)(ˆˆ)(ˆ ℓℓℓ 


xTxT xx , 

 

ℓℓ  xxTx )(ˆ , 

 

xp
i

xT xx  ˆ1̂)(ˆ
ℏ

 , 

 

where l is any finite translation (one dimensional) and x is the infinitesimal translation. a 
is the lattice constant. The commutation relations hold 
 

0̂]ˆ),(ˆ[ xx pxT  , 

 

and 

0̂]ˆ),(ˆ[
2
xx pxT  . 
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Therefore the kinetic energy part of the Hamiltonian is invariant under the translation. 
When   ℓ  a  (a is a period of potential V(x)), 

 

1̂ˆ)(ˆˆ)(ˆ axaTxaT xx 


, 

 

)ˆ()1̂ˆ()(ˆ)ˆ()(ˆ xVaxVaTxVaT xx 


. 

 
Thus we have 

 

0̂)](ˆ,ˆ[ aTH x , 

 

or 

HaTHaT xx
ˆ)(ˆˆ)(ˆ 


. (44) 

 
The Hamiltonian is invariant under the translation with a. 

Since axxaTx )(ˆ  and axxaT x 
)(ˆ  or axxaTx 


)(ˆ , 

we have 

 

  

⌢ 
T x


(a) 

⌢ 
T x (a). (45) 

 

So )(ˆ aTx


 is not a Hermite operator. 

We consider the simultaneous eigenket of Ĥ  and )(ˆ aTx  for the system with a 

periodicity of L = Na (there are N unit cells), since 0̂)](ˆ,ˆ[ aTH x . 

 

kkk EH  ˆ , (46) 

and 
 

kkx
p

aT 
1

)(ˆ  , (47) 

 

or 
 

 

k

n

k

n
paT  )](ˆ[   (n = 1, 2, ...., N) 

 
Noting that 

 

)(ˆ aTxax  , 

 
N

aTxNax )](ˆ[  
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we get 

 

k

n

k

n
xpaTx  )](ˆ[  

 
or 

 

k

n

k xpnax    

 
When n = N, 

 

k

N

k xpNax    

 
From the periodicity of the wave function 

 

kk xNax    

 

we have 
 

1Np . 

 
or 

 

)exp()
2

exp()
2

exp( ika
Na

as
i

N

s
ip 


, (49) 

 
with 

 

s
L

s
Na

k
 22

  (s: integer). (50) 

 

Therefore, we have 
 

k

ika

kx eaT  )(ˆ . (51) 

 

The state k  is the eigenket of )(ˆ aTx  with the eigenvalue ikae . 

or 

 

kkx xikaaTx  )exp()(ˆ  , 

 

axaTx x )(ˆ , 
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k

ika

k xeax   , 

 

)()( xeax k

ika

k   . 

 
By changing for a to –a, we have 

 

)()( xeax k

ika

k   . 

 
This is called as the Bloch theorem. 

 
2. Brillouin zone in one dimensional system 

We know that the reciprocal lattice G is defined by 
 

n
a

G
2

 , (n: integer). 

 
When k is replaced by k + G, 

 

)()()( )( xexeax Gk

ika

Gk

aGki

Gk 



   , 

 

since 12  niiGa ee  . This implies that )(xGk   is the same as )(xk . 

 

)()( xx kGk   . 

 

or the energy eigenvalue of )(xGk  is the same as that of )(xk , 

 

kGk EE  . 

 

Note that the restriction for the value of s arises from the fact that )()( xx kGk   . 

 

)
2

(
22

N

s

aNa

s

L

s
k


 , 

 
where 

 

22

N
s

N
 . 

 

The first Brillouin zone is defined as 
a

k


 . There are N states in the first Brillouin zone. 

When the spin of electron is taken into account, there are 2N states in the first Brilloiun 
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zone. Suppose that the number of electrons per unit cell is nc (= 1, 2, 3, …). Then the 
number of the total electrons is ncN. 

(a) nc = 1. So there are N electrons. N/2N = 1/2 (band-1: half-filled). 
(b) nc = 2. 2N/2N = 1 (band-1: filled). 

(c) nc = 3. 3N/2N = 1.5 (band-1: filled, band-2: half-filled). 
(d) nc = 4. 4N/2N = 2 (band-1: filled, band-2: filled). 

When there are even electrons per unit cell, bands are filled. Then the system is an 
insulator. When there are odd electrons per unit cell, bands are not filled. Then the system 

is a conductor. 
 

3. Bloch wavefunction  

Here we assume that 

 

)()( xuex k

ikx

k  , 

 

)()()( axueeaxueeax k

ikxika

k

ikaikx

k   , 

 

which should be equal to 
 

)()( xueexe k

ikxika

k

ika   , 

 
or 

 

uk(x  a)  uk (x), 

 
which is a periodic function of x with a period a. 

The solution of the Schrodinger equation for a periodic potential must be of a special 

form such that )()( xuex k

ikx

k  , where )()( xuaxu kk  . In other words, the wave 

function is a product of a plane wave and a periodic function which has the same 
periodicity as a potential 

Here we consider the 3D case. The solutions of the Schrödinger equation for a 
periodic potential must be of a special form: 

 
rk

kk
rr

 ieu )()(  (Bloch function), 

 

where 
 

)()( Trr
kk

 uu . 

 
Bloch functions can be assembled into localized wave packets to represent electrons that 

propagate freely through the potential of the ion cores. T is any translation vectors which 
is expressed by T = n1a1+n2a2+n3a3 (n1, n2, n3 are integers, a1, a2, a3 are fundamental 

lattice vectors). From Eq.(67), )(r
k

u  can be expanded as follows. (Fourier transform) 
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 


G

rG

Gkk r ieCu )( . (68) 

 
where G is the reciprocal lattice vector. We use the same discussion for the periodic 
charge density in the x-ray scattering. Then the wave function in a periodic potential is 

given by 
 

...)( )()(  




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k

G
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








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or 
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2

2









GkGk

kGkGk

GkGk

kGkGkk

CC

CCC
 

 

k k+Gk-Gk-2G

O
p

a

2 p

a
-
p

a
-

2 p

a

G =
2 p

a  
 

The eigenvalue-problem 

 

kkk  EH ˆ ,  or )()( xExH kkk   . 

 

Ek is the eigenvalue of the Hamiltonian and has the following properties. 

 

(i) Gkk  EE . 

(ii) kk  EE . 

 

The first property means that any reciprocal lattice point can serve as the origin of Ek. 

The relation kk  EE  is always valid, whether or not the system is centro-symmetric. 

The proof of this is already given using the time-reversal operator. The proof can be also 

made analytically as follows. 
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)()( xExH kkk   , 

 

)()(
**

xExH kkk       ( Ĥ is Hermitian), 

 

or 

)()(
**

xExH kkk    . 

 

From the Bloch theorem given by 

 

)()( xeax k

ika

k   , 

 

or 

 

)()( xuex k

ikx

k  , and )()(
**

xuex k

ikx

k

 , 

 

we have 

 

)()()()(
**)(*)(*

xexueaxueax k

ika

k

axik

k

axik

k    , 

 

or 

 

)()(
**

xeax k

ika

k 



   . 

 

Thus the wave functions )(xk and )(
*

xk  are the same eigenfunctions of )(ˆ aTx  with 

the same eigenvalue ikae . Thus we have 

 

)()(
*

xx kk   , (71) 

 

with 

 

kk  EE . 

 

What does this relation mean? 

 

...)( )()(  





 rGk

Gk

rk

k

G

rGk

Gkk r iii eCeCeC  

 


G

rGk

Gkk r
)(**

)(
i

eC , 

 

or 

 



 8 

 





 
G

rGk

Gk

G

rGk

Gkk r
)(*)(**

)(
ii

eCeC . 

 

Then we have the relation 

 

GkCC  
*

Gk
, 

 

or 

 

GkGk   CC
*

. 

 

 

O

G H»G»=
2 p

a
L

k H»k»=
p

a
Lk' H»k'»=

p

a
L

Origin of RL

 
 

______________________________________________________________________ 

APPENDIX 

Properties of translation operator 

 

(i) 

 

axxaT )(ˆ  

 

(ii) 

From the property (i), 

 

axaTxaTaT  
)(ˆ)(ˆ)(ˆ  
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or 

 

xaxaT 
)(ˆ  

 

______________________________________________________________________ 

(iii) 

When a is changed into -a, 

 

xaxaT 
)(ˆ  

 

When x is changed into x +a 

 

axxaT 
)(ˆ ,  h.c.  axaTx  )(ˆ  

 

or 

 

xaTax )(ˆ  
,  h.c.  )(ˆ aTxax   

 

or by changing a into -a 

 

xaTax )(ˆ  ,  h.c.  )(ˆ aTxax   

 

Then we have 

 

)(ˆ)(ˆ aTaT  , 

 

using the relation 

 

xaTax )(ˆ  

 

which means that )(ˆ aT  is not a Hermitian operator. 

 

________________________________________________________________________ 

(iv) Commutation relation I 

 

1̂ˆ)(ˆˆ)(ˆ axaTxaT   

 

and 

 

)1̂ˆ()(ˆ)ˆ()(ˆ axVaTxVaT   
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When )ˆ()1̂ˆ( xVaxV   (periodic potential), we have 

 

)ˆ()(ˆ)ˆ()(ˆ xVaTxVaT   

 

_______________________________________________________________________ 

(v) Commutation relation II 

 

paTpaT ˆ)(ˆˆ)(ˆ   

 

and 

 
22 ˆ)(ˆˆ)(ˆ paTpaT   

 

or more generally 

 

)ˆ()(ˆ)ˆ()(ˆ pfaTpfaT   

 

where )ˆ( pf  is a polynomial function of p̂ . 

 

________________________________________________________________________ 


