Problem and solution Huang Problem 18.10 Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: November 13, 2019)

Possible photon condensation

If the mechanism for photon absorption or emission can be neglected, as may happen in some cosmological settings, the number of photons would be conserved. Can a photon gas undergo Bose-Einstein condensation under these circumstances? If so, give the critical photon density at temperature T.

((Solution))

For a gas of N photons with number conservation, the fugacity z is determined by

$$N = \frac{2V}{(2\pi)^3} \int 4\pi k^2 dk \overline{n}_k = \frac{V}{\pi^2} \int \frac{k^2 dk}{\frac{1}{z} e^{\beta \varepsilon_k} - 1}$$

The zero-momentum state is ignored in the continuum approximation used. The energy dispersion for photon;

$$\varepsilon = \hbar c k$$

Since $d\varepsilon = \hbar c dk$, we have

$$n = \frac{N}{V} = \frac{1}{\pi^2} \frac{1}{(\hbar c)^3} \int \frac{\varepsilon^2 d\varepsilon}{\frac{1}{z} e^{\beta \varepsilon} - 1}$$

We put

$$x = \beta \varepsilon$$

Then we get

$$n = \frac{1}{\pi^2} \frac{(k_B T)^3}{(\hbar c)^3} \int_0^\infty \frac{x^2 dx}{\frac{1}{z} e^x - 1}$$

We note that

$$\int_{0}^{\infty} \frac{x^2 dx}{\frac{1}{z}e^x - 1} = 2\zeta_3(z), \qquad \qquad \zeta_3(z = 1) = 1.20206$$

Then we have

$$n = \frac{1}{\pi^2} \frac{(k_B T)^3}{(\hbar c)^3} 2\varsigma_3(z)$$

The Bose-Einstein condensation temperature is

$$n = \frac{1}{\pi^2} \frac{(k_B T_E)^3}{(\hbar c)^3} 2\varsigma_3(z=1)$$
$$T_E = \frac{\hbar c}{k_B} \left(\frac{n\pi^2}{2 \times 1.20206}\right)^{1/3}$$