Thermodynamics of photon gas: Carnot cycle
 Masatsugu Sei Suzuki
 Department of Physics
 (Date: October 12, 2016)

Here we discuss the thermodynamics properties of photon gas including the Carnot cycle.

Part-1

Apply the thermodynamic relation $d E=T d S-P d V$ to a photon gas. Here one can write that $E=V u(T)$, where $u(T)$, the mean energy density of the radiation field, is independent of the volume V. The radiation pressure $P=u(T) / 3$.
(a) Considering S as a function of T and V, express $\mathrm{d} S$ in terms of $\mathrm{d} T$ and $\mathrm{d} V$. Find $(\partial S / \partial T)_{V}$ and $(\partial S / \partial V)_{T}$.
(b) Show that the mathematical identity $\left(\partial^{2} S / \partial V \partial T\right)=\left(\partial^{2} S / \partial T \partial V\right)$ gives immediately a differential equation for $u(T)$ which can be integrated to yield the Stefan Boltzmann law $u(T) \propto T^{4}$. In fact, it is well known that $u(T)=\frac{4 \sigma_{B}}{c} T^{4}$, where the dispersion of photon is given by $\varepsilon=c p$ and the Stefan-Boltzmann constant is defined by $\sigma_{B}=\frac{\pi^{2} k_{B}{ }^{4}}{60 \hbar^{3} c^{2}}$.

Part-2 Carnot cycle

Consider a Carnot engine that uses as the working substance a photon gas (two isothermal stages 1-2 and 3-4, and two isentropic stages 2-3 and 4-1. The schematic diagram for the four processes in the $P-T$ diagram for the photon gas is shown in Fig.

Photon gas

Note that the $P-V$ diagram for the photon gas is rather different from that for the ideal gas. (c) Calculate the entropy S and the pressure P of the photon gas by using the relations given in (a) and (b).
(d) Given T_{1} and $T_{2}\left(T_{1}>T_{2}\right)$ as well as V_{1} and $V_{2}\left(V_{1}>V_{2}\right)$, determine V_{3} and V_{4}.
(e) Discuss the work, the heat and the internal energy in the isothermal process $(1 \rightarrow 2)$. What is Q_{1} transferred as heat from the high temperature reservoir at T_{1} to the photon gas during this process?
(f) Discuss the work, the heat and the internal energy in the isentropic process $(2 \rightarrow 3)$.
(g) Discuss the work, the heat and the internal energy in the isothermal process $(3 \rightarrow 4)$.
(h) Discuss the work, the heat and the internal energy in the isentropic process $(4 \rightarrow 1)$. What is Q_{2} as heat transferred from the photon gas to the low temperature reservoir at T_{2} during this process?
(i) Show the total work done by the photon gas during one cycle is given by

$$
W=\frac{4 \sigma_{B}}{3 c} T_{1}^{3}\left(T_{1}-T_{2}\right)\left(V_{2}-V_{1}\right)
$$

(j) Show that the energy conversion efficiency for the photon gas is the Carnot efficiency for the ideal gas which is given by $\eta=\frac{W}{Q_{1}}=1-\frac{T_{2}}{T_{1}}$.

((Solution))

$$
d U=T d S-P d V
$$

where

$$
U=V u(T), \quad P=\frac{1}{3} u(T)
$$

Note that $u(T)$ is the mean energy density of the radiation field (independent of V).

$$
\begin{aligned}
T d S & =d U+P d V \\
& =d[V u(T)]+\frac{1}{3} u(T) d V \\
& =\frac{4}{3} u d V+V \frac{d u}{d T} d T
\end{aligned}
$$

or

$$
\begin{aligned}
d S & =\frac{4}{3 T} u d V+\frac{V}{T} \frac{d u}{d T} d T \\
& =\left(\frac{\partial S}{\partial V}\right)_{T} d V+\left(\frac{\partial S}{\partial T}\right)_{V} d T
\end{aligned}
$$

since S is assumed to be dependent only on V and T. Then we have

$$
\left(\frac{\partial S}{\partial V}\right)_{T}=\frac{4 u}{3 T}, \quad\left(\frac{\partial S}{\partial T}\right)_{V}=\frac{V}{T} \frac{d u}{d T}
$$

(b)

$$
\begin{align*}
& \frac{\partial^{2} S}{\partial V \partial T}=\left[\frac{\partial}{\partial V}\left(\frac{\partial S}{\partial T}\right)_{V}\right]_{T}=\frac{1}{T} \frac{d u}{d T} \tag{Maxwell'srelation}\\
& \frac{\partial^{2} S}{\partial T \partial V}=\left[\frac{\partial}{\partial T}\left(\frac{\partial S}{\partial V}\right)_{T}\right]_{V}=\frac{d}{d T}\left(\frac{4 u}{3 T}\right)
\end{align*}
$$

Then we have

$$
\frac{1}{T} \frac{d u}{d T}=\frac{d}{d T}\left(\frac{4 u}{3 T}\right)=\frac{4}{3}\left(\frac{T \frac{d u}{d T}-u}{T^{2}}\right)
$$

or

$$
3 T \frac{d u}{d T}=4 T \frac{d u}{d T}-4 u
$$

or

$$
3 T \frac{d u}{d T}=4 T \frac{d u}{d T}-4 u
$$

or

$$
T \frac{d u}{d T}=4 u
$$

Then we have

$$
\begin{aligned}
& \int \frac{1}{u} d u=4 \int \frac{d T}{T} \\
& \ln u=4 \ln T+\text { const. }
\end{aligned}
$$

In conclusion, $u \propto T^{4}$. Note that in fact, $u(T)$ can be expressed by

$$
u(T)=\frac{4 \sigma_{B}}{c} T^{4}
$$

(c)

$$
\begin{aligned}
T d S & =d E+P d V \\
& =d\left(\frac{4 \sigma_{B}}{c} V T^{4}\right)+\frac{V \frac{4 \sigma_{B}}{c}}{3 V} T^{4} d V \\
& =\frac{4 \sigma_{B}}{c}\left[d\left(V T^{4}\right)+\frac{1}{3} T^{4} d V\right] \\
& =\frac{4 \sigma_{B}}{c}\left[4 T^{3} V d T+T^{4} d V+\frac{1}{3} T^{4} d V\right]
\end{aligned}
$$

Then we get

$$
d S=\frac{4 \sigma_{B}}{c}\left(4 V T^{2} d T+\frac{4}{3} T^{3} d V\right)=\frac{4 \sigma_{B}}{c} d\left(\frac{4}{3} V T^{3}\right)
$$

The entropy S is given by

$$
S=\frac{16 \sigma_{B}}{3 c} V T^{3}+\text { const }
$$

The state of equation is obtained as

$$
P=\frac{E}{3 V}=\frac{V \frac{4 \sigma_{B}}{c} T^{4}}{3 V}=\frac{4 \sigma_{B} T^{4}}{3 c}
$$

So that the pressure P is independent of V, and depends only on T.
(d)

Process $1 \rightarrow 2\left(\right.$ at $\left.T=T_{1}\right),:$ isothermal process

$$
P=P_{1}=\frac{4 \sigma_{B}}{3 c} T_{1}^{4} \quad \text { (which is independent of } V \text {) }
$$

Process $3 \rightarrow 4$ (at $T=T_{2}$),: isothermal process

$$
P=P_{3}=\frac{4 \sigma_{B}}{3 c} T_{2}^{4}
$$

Process $2 \rightarrow 3$, and process $4 \rightarrow 1$; isentropics process. $S=$ const, which means that $V T^{3}=$ const , or $P V^{4 / 3}=$ const because of $P=\frac{4 \sigma_{B} T^{4}}{3 c}$. Here we have

$$
V_{2} T_{1}^{3}=V_{3} T_{2}^{3}, \quad V_{4} T_{2}^{3}=V_{1} T_{1}^{3}
$$

(e)

Process $1 \rightarrow 2$

$$
\begin{aligned}
\Delta Q_{12} & =d U_{12}+P d V \\
& =\frac{4 \sigma_{B}}{c} T_{1}^{4}\left(V_{2}-V_{1}\right)+\frac{4 \sigma_{B}}{3 c} T_{1}^{4}\left(V_{2}-V_{1}\right) \\
& =\frac{16 \sigma_{B}}{3 c} T_{1}^{4}\left(V_{2}-V_{1}\right)
\end{aligned}
$$

The heat Q_{1} taken up is

$$
Q_{1}=\Delta Q_{12}=\frac{16 \sigma_{B}}{3 c} T_{1}^{4}\left(V_{2}-V_{1}\right)
$$

The work done by the photon gas is

$$
-\Delta W_{12}=P d V=\frac{4 \sigma_{B}}{3 c} T_{1}^{4}\left(V_{2}-V_{1}\right)
$$

(f) Process $2 \rightarrow 3$

$$
\begin{aligned}
\Delta Q_{23} & =0 \\
\Delta U_{23} & =\Delta Q_{23}+\Delta W_{23} \\
& =\Delta W_{23} \\
& =\frac{4 \sigma_{B}}{c} V_{3} T_{2}^{4}-\frac{4 \sigma_{B}}{c} V_{2} T_{1}^{4} \\
& =\frac{4 \sigma_{B}}{c}\left[\frac{T_{1}^{3}}{T_{2}^{3}} V_{2} T_{2}^{4}-\frac{4 \sigma_{B}}{c} V_{2} T_{1}^{4}\right] \\
& =\frac{4 \sigma_{B}}{c} V_{2} T_{1}^{3}\left(T_{2}-T_{1}\right)
\end{aligned}
$$

(g) Process $3 \rightarrow 4$

$$
\begin{aligned}
\Delta Q_{34} & =d U_{34}+P d V \\
& =\frac{4 \sigma_{B}}{c} T_{2}^{4}\left(V_{4}-V_{3}\right)+\frac{4 \sigma_{B}}{3 c} T_{2}^{4}\left(V_{4}-V_{3}\right) \\
& =\frac{16 \sigma_{B}}{3 c} T_{2}^{4}\left(V_{4}-V_{3}\right) \\
& =\frac{16 \sigma_{B}}{3 c} T_{1}^{3} T_{2}\left(V_{2}-V_{1}\right)
\end{aligned}
$$

The heat Q_{2} is

$$
Q_{2}=-\Delta Q_{34}=\frac{16 \sigma_{B}}{3 c} T_{1}^{3} T_{2}\left(V_{2}-V_{1}\right)
$$

The work done by the photon gas is

$$
\begin{aligned}
-\Delta W_{34} & =P d V \\
& =\frac{4 \sigma_{B}}{3 c} T_{2}^{4}\left(V_{4}-V_{3}\right) \\
& =\frac{4 \sigma_{B}}{3 c} T_{2} T_{1}^{3}\left(V_{1}-V_{2}\right)
\end{aligned}
$$

(h) Process $4 \rightarrow 1$

$$
\begin{aligned}
\Delta Q_{23} & =0 \\
\Delta U_{41} & =\Delta Q_{41}+\Delta W_{41} \\
& =\Delta W_{41} \\
& =\frac{4 \sigma_{B}}{c}\left(V_{1} T_{1}^{4}-V_{4} T_{2}^{4}\right) \\
& =\frac{4 \sigma_{B}}{c}\left(V_{1} T_{1}^{4}-\frac{T_{1}^{3}}{T_{2}^{3}} V_{1} T_{2}^{4}\right) \\
& =\frac{4 \sigma_{B}}{c} V_{1} T_{1}^{3}\left(T_{1}-T_{2}\right)
\end{aligned}
$$

(i)

The total work done by the photon gas is

$$
\begin{aligned}
-\Delta W & =W \\
& =-\left(\Delta W_{12}+\Delta W_{23}+\Delta W_{34}+\Delta W_{41}\right) \\
& =\frac{4 \sigma_{B}}{3 c}\left[T_{1}^{4}\left(V_{2}-V_{1}\right)-3 V_{2} T_{1}^{3}\left(T_{2}-T_{1}\right)+T_{1}^{3} T_{2}\left(V_{1}-V_{2}\right)-3 V_{1} T_{1}^{3}\left(T_{1}-T_{2}\right)\right] \\
& =\frac{4 \sigma_{B}}{3 c} T_{1}^{3}\left(T_{1}-T_{2}\right)\left(V_{2}-V_{1}\right)
\end{aligned}
$$

(j)

$$
\begin{aligned}
& \frac{Q_{1}}{T_{1}}=\frac{16 \sigma_{B}}{3 c} T_{1}^{3}\left(V_{2}-V_{1}\right) \\
& \frac{Q_{2}}{T_{2}}=\frac{16 \sigma_{B}}{3 c} T_{1}^{3}\left(V_{2}-V_{1}\right)
\end{aligned}
$$

Then we have the relation

$$
\begin{aligned}
& \frac{Q_{1}}{T_{1}}=\frac{Q_{2}}{T_{2}} \\
& Q_{1}-Q_{2}=\frac{4 \sigma_{B}}{3 c} T_{1}^{3}\left(T_{1}-T_{2}\right)\left(V_{2}-V_{1}\right)=W
\end{aligned}
$$

The efficiency η;

$$
\eta=\frac{W}{Q_{1}}=\frac{Q_{1}-Q_{2}}{Q_{1}}=1-\frac{T_{2}}{T_{1}},
$$

which is equal to the Carnot efficiency.

Fig. Carnot cycle. $T_{H}=T_{1} \cdot T_{L}=T_{2} \cdot Q_{H}=Q_{1} . Q_{L}=Q_{2} . W=Q_{1}-Q_{2}$.

APPENDIX

2. (Point 40)

Photon gas: (a) Ignoring the zero-point energy, show that the partition function Z for a gas of photons in volume V is given by

$$
\ln Z=-\frac{V}{\pi^{2} c^{3}} \int_{0}^{\infty} \omega^{2} \ln \left(1-e^{-\beta \hbar \omega}\right) d \omega
$$

and hence, by integrating by parts, that

$$
\begin{aligned}
& \ln Z=\frac{V \pi^{2}\left(k_{B} T\right)^{3}}{45 \hbar^{3} c^{3}} \\
& \int_{0}^{\infty} \frac{x^{3}}{\exp (x)-1} d x=\frac{\pi^{4}}{15} .
\end{aligned}
$$

(b) Show that

$$
F=-\frac{4 \sigma_{S B} V T^{4}}{3 c}, S=\frac{16 \sigma_{S B} V T^{3}}{3 c}, U=\frac{4 \sigma_{S B} V T^{4}}{c}, P=\frac{4 \sigma_{S B} T^{4}}{3 c},
$$

and hence that

$$
U=-3 F, P V=\frac{U}{3}, \text { and } S=\frac{4 U}{3 T},
$$

where $\sigma_{S B}=\frac{\pi^{2} k_{B}^{4}}{60 \hbar^{3} c^{2}}$ is the Stefan-Boltzmann constant.
((Solution))
Helmholtz free energy F;
Using the one particle partition function for the mode with $|\boldsymbol{k}\rangle$

$$
Z_{1 k}=\sum_{n=0}^{\infty} \exp \left(-n \beta \hbar \omega_{k}\right)=\frac{1}{1-\exp \left(-\beta \hbar \omega_{k}\right)}
$$

we have the partition function for the total system (canonical ensemble)

$$
Z_{C}=\prod_{k} Z_{1 k}
$$

or

$$
\begin{aligned}
\ln Z_{C} & =-\sum_{k} \ln \left(1-e^{-\beta \hbar \omega_{k}}\right) \\
& =-\frac{2 V}{(2 \pi)^{3}} \int 4 \pi k^{2} d k \ln \left(1-e^{-\beta \hbar \omega_{k}}\right) \\
& =-\frac{2 V}{(2 \pi)^{3}} 4 \pi \int \frac{\omega^{2}}{c^{3}} d \omega \ln \left(1-e^{-\beta \hbar \omega}\right) \\
& =-\frac{V}{\pi^{2} c^{3}} \int \omega^{2} d \omega \ln \left(1-e^{-\beta \hbar \omega}\right)
\end{aligned}
$$

where the factor 2 comes from the two kinds of the polarization vectors, and $\omega_{k}=c k$. Taking the integral,

$$
\begin{aligned}
\ln Z_{C} & =\frac{2 V}{(2 \pi)^{3}} \frac{4 \pi}{3 c^{3}} \beta \hbar \int_{0}^{\infty} \omega^{3} \frac{1}{e^{\beta \hbar \omega}-1} d \omega \\
& =\frac{2 V}{(2 \pi)^{3}} \frac{4 \pi}{3 c^{3}} \frac{1}{(\beta \hbar)^{3}} \int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x \\
& =\frac{V}{3 \pi^{2} c^{3}} \frac{1}{(\beta \hbar)^{3}} \int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x \\
F= & -k_{B} T \ln Z_{C} \\
= & -k_{B} T \frac{V}{3 \pi^{2} c^{3}} \frac{1}{(\beta \hbar)^{3}} \int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x
\end{aligned}
$$

The integration by part leads to

$$
\frac{F}{V}=-\frac{k_{B}{ }^{4}}{3 \pi^{2} \hbar^{3} c^{3}} T^{4} \int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}=-\frac{1}{45} \frac{\pi^{2} k_{B}^{4}}{\hbar^{3} c^{3}} T^{4}=-\frac{4}{3 c} \sigma_{S B} T^{4}
$$

or

$$
F=-\frac{4 \sigma_{S B} V}{3 c} T^{4}
$$

where

$$
\int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}=\frac{\pi^{4}}{15}
$$

or

$$
F=-\frac{1}{3} U
$$

using the value of U.
We note that

$$
\ln Z_{C}=\frac{4 \sigma_{S B} V}{3 c k_{B}} T^{3}
$$

The entropy S :

$$
S=-\left(\frac{\partial F}{\partial T}\right)_{V}=\frac{16 \sigma_{S B} V}{3 c} T^{3}=\frac{4 U}{3 T}
$$

The total energy:

$$
U=F+S T=-\frac{4 \sigma_{S B} V}{3 c} T^{4}+\frac{16 \sigma_{S B} V}{3 c} T^{4}=\frac{4 \sigma_{S B} V}{c} T^{4}=-3 F
$$

The pressure:

$$
P=-\left(\frac{\partial F}{\partial V}\right)_{T}=\frac{4 \sigma_{S B}}{3 c} T^{4}=\frac{U}{3 V}
$$

The Gibbs free energy:

$$
G=\mu N=F+P V=-\frac{1}{3} U+\frac{1}{3} U=0
$$

leading to

$$
\mu=0
$$

In other words, the chemical potential is zero for the photon gas.

The Stefan Boltzmann constant:

$$
\sigma_{S B}=\frac{c}{4}\left[\frac{\pi^{2} k_{B}^{4}}{15(\hbar c)^{3}}\right]=\frac{\pi^{2} k_{B}^{4}}{60 \hbar^{3} c^{2}}=5.670367 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)
$$

