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1. Introduction 

There is a very simple connection between the radiation pressure P and the energy density u. 

This can be derived from the classical electromagnetic theory, but it is simpler to use some 

elementary idea from both quantum theory and the kinetic theory of gases to obtain the result. 

However, the physical origin of this pressure can be understood from the electromagnetic theory. 

It is known from the kinetic theory that the pressure in a gas is 
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where n is he number density, m is the mass of particle, and rmsv  is the root-mean square velocity. 

Since nm  is the density, the pressure P can be rewritten as 
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If we consider the radiation as a photon gas where the photons are all moving with the velocity c, 

we have 
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According to the Einstein energy-mass relation, the energy density is expressed by 
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Thus we have 
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or 
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This is our required relation. 

 

2. Canonical ensemble for the photon gas 

Using the concept of microcanonical ensemble, we can directly show that 
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where the energy of photon is given by cp . 

We consider an ideal gas consisting of N particles obeying classical statistics. Suppose that 

the energy of one particle is given by cp , where p is the linear momentum. We find the 

thermodynamic functions of this ideal gas without considering the internal structure of the 

particles. 

 

First we calculate the one-particle partition function based on the canonical ensemble, 
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where 
TkB

1
 , c is the velocity of light, h is the Planck’s constant. 
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dppp   (Laplace transformation) 

 

The N-particle partition function: 
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Using the Stirling’s law in the limit of large N, 
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The internal energy 
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The Helmholtz free energy: 
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The entropy S is obtained as 
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S can be also derived from the relation as 
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The pressure P: 
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From Eqs.(1) and (2) we get the relation 

 

EPV
3

1
  

 

or 

 

u
V

E
P

3

1

3

1
  

 

where u is the energy density of photon gas. 

 

3. Stefan-Boltzmann law 

Suppose that E is given by 
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leading to the pressure P as 
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and B  is the Stefan-Boltzmann constant. 

 

We note that 
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Since 
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we get the expression of F as 

 

VTF 4

3

1
  

 

and the entropy as 
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(b) 

 

Suppose that R is the radius of the universe, 
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Then we get the expression for S as 
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When S is kept constant, the temperature is inversely proportional to T, 
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