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Abstract 

A lecture note on the lattice waves in the solid is presented. In a crystal each atom are 

coupled with the neighboring atoms by spring constants. The collective motion of atoms 

leads to a well-defined traveling wave over the whole system, leading to the collective 

motion, so called phonon. Here the equation of motion of atoms around thermal 

equilibrium position will be discussed in terms of several methods, which include 

numerical calculation on the eigenvalue problem (based on the Mathematica) and the 

translation operators in the quantum mechanics. We show that all these methods lead to 

the same conclusion, the existence of lattice wave, phonon in the quantum mechanics. 

For students who just start to study the solid state physics, it may be difficult to 

understand the validity of the assumption that the deviation of the displacement of the 

atoms from the thermal equilibrium is well described by a traveling wave. We 

numerically solve the eigenvalue-problem of the motion of atoms in the linear chain 

(typically 50 - 100 atoms) using Mathematica. We will give a bit of evidence for the 

existence of the normal modes propagating along the linear chain. 
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1. Introduction 

Phonons are a quantum mechanical version of a special type of vibrational motion, 

known as normal modes in classical mechanics, in which each part of a lattice oscillates 

with the same frequency. These normal modes are important because, according to a 

well-known result in classical mechanics, any arbitrary vibrational motion of a lattice can 

be considered as a superposition of normal modes with various frequencies; in this sense, 

the normal modes are the elementary vibrations of the lattice. Although normal modes are 

wave-like phenomena in classical mechanics, they acquire certain particle-like properties 

when the lattice is analyzed using quantum mechanics (see wave-particle duality.) They 

are then known as phonons.  

There have been many excellent textbooks on the physics of lattice waves. Typical 

books1-14 which we read during the preparation of writing this lecture note, are presented 

in References. These books are very useful for our understanding physics. 

 

2 Lattice waves  

2.1 Overview 

Consider the elastic vibrations of a crystal with one atom in the primitive cell. We 

want to find the frequency of an elastic wave in terms of the wavevector k and the elastic 

constants. When a wave propagates along the x-direction, entire planes of atoms move in 

phase with displacements either parallel or perpendicular to the direction of k.  

We can describe with a single co-ordinate us the displacement of the plane s from its 

equilibrium position. 
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Fig.1 (a) 
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Fig.1 (b) 

 

Fig.1(a) and (b) 

Planes of atoms in thermal equilibrium (blue atoms ). a is the nearest 

neighbor separation distance between planes. Planes of atoms when 

displaced as for a longitudinal wave (red atoms). The direction of the 

oscillation is parallel to that of the propagating waves. k is the wavevector. 

The coordinate us measures the displacement of the planes. Longitudinal 

wave. k = n (2/Na). N = 10. a = 1. n = 4. N is the total number of planes. 
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Fig.1 (c) 
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Fig.1 (d) 

 

Fig.1(c) and (d) 

Plane of atoms as displaced during passage of transverse wave (red atoms). 

Atoms in thermal equilibrium (blue atoms). The direction of the 

oscillation is perpendicular to that of the propagating waves. k = n (2/Na). 

N = 10. a = 1. n = 4. 

 

For each wavevector there are three modes; one of longitudinal polarization, two of 

transverse polarization. We assume that the elastic response of the crystal is a linear 

function of the forces. Or the elastic energy is a quadratic function of the relative 

displacement of any two points in the crystal. The forces on the plane s caused by the 

displacement of the plane s+p is proportional to the difference us+p - us of their 

displacements. 

For brevity, we consider only nearest-neighbor interactions, so that p = ±1. The total 

force on s comes from planes s ± 1. 

 



  7 

 

 

a a

k

us-1 us us+1

 
 

Fig.2 (a) Longitidinal wave. 
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Fig.2 (b) Transverse wave. 

 

Fig.2(a) and (b) 

 The displacements of atoms with mass M are denoted by us-1, us, and us+1. 

The repeat distance is a in the direction of the wavevector k. The direction of us is 

parallel to the direction of the wavevector k for the longitudinal wave (a) and is 

perpendicular to the direction of the wavevector k for the transverse wave (b). 

 

2.2 One dimensional case: longitudinal mode 

We start our discussion with the Lagrangian for the displacement of the s-th plane, 

given by 
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where xs is the position of the atom at the s-th site and a is assumed to be the length of the 

unstretched spring. 
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saux ss   

 

where a is the distance between the adjacent atoms in thermal equilibrium. The 

Lagrange’s equation for this system is derived as 
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where 

 

)()( 11   sssss uuCuuCF  

 

is the effective force on the s-th plane (Hooke’s law), C is the force constant between 

nearest-neighbor planes, TL CC   (CL: force constant for longitudinal wave, CT: force 

constant for transverse wave). It is convenient hereafter to regard C as defined for one 

atom of the plane, so that Fs is the force on one atom in the plane s. The equation of 

motion of the plane s is 

 

)2( 112

2

  sss
s uuuC

dt

ud
M , (2.4) 

 

where M is the mass of an atom in the s-th plane. Suppose that this equation has the 
traveling wave solutions of the form 

 
)( tksai

s ueu  .  (2.5) 

 

Note that the validity of this assumption will be verified by solving directly the 
eigenvalue problem (see Sec. 2.5). The boundary condition is illustrated below. 

 

 
 

Fig.3 One-dimensional array of equal masses and springs. This is the simplest model of 
a vibrational band. 
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Alternative representation of the Born-von Karman boundary condition. The object 

connecting the ion on the extreme left with the spring on the extreme right is a massless 
rigid rod of length L = Na. 

 

 

 

 
 
 

Fig.4 The Born-von Karman periodic boundary condition for the linear chain. 
 

2.3 Born-von Karman boundary condition 

The Born-von Karman or periodic boundary condition; 

 

Nss uu  , (2.6) 

 
)( tksai

s eu  . (2.7) 

 

The periodic boundary condition requires that 

1ikNae ,  or  
Na

k
ℓ2

 , (2.8) 

 

 
 

Fig.5 N modes for aka //    

 

where 

���� ����� ��
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2
 . (2.8) 

For each k, there are one longitudinal mode and two transverse modes. Then we have 

 

(1+2)N modes = 3N modes 

⇕  ((very important)) 

N atoms: each atom has 3 freedoms  3N 

 
)( tksai

s eu  , 
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n
a

kk
2

  (n: integer). (2.9) 

 

The displacement of the n-th atom for the wave k 
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So the displacement us is the same as for the wavevector k, for any atom whatsoever. 

Thus the wave k cannot be physically differentiated from the wave k.  

 

2.4 First Brilouin zone 

What range of k is physically significant for elastic waves? 

 Only those in the first Brillouin. 
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The range  to  for the phase ka covers all independent values of the exponential. 
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a
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 . (2.12) 

 

In the continuum limit (a = 0), 
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Fig.6 The relation between k’ and k = k’+2/a. 

 

Suppose that 
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Then  
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Thus the displacement can always be described by a wavevector within the first Brillouin 

zone. Note that G = n
a

2
 is a reciprocal lattice vector. Thus by subtraction of an 

appropriate reciprocal lattice vector from k, we always obtain an equivalent wavevector 

in the 1st zone: k = k + G, where k is the wavevector in the first Brillouin zone.  

 

2.5 Normal modes 

We solve the equations of motion 
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by assuming that 
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Then we have 
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leading to the dispersion relation 
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It is usual for one to assume that  is positive. Then the wave propagates along the 

positive x direction for k>0 and along the negative x direction for k<0. 

The boundary of the first Brillouin zone lies at 
a

k


 . 
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a
k
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Fig.7 The dispersion curve ( vs k) for a monatomic linear lattice with nearest neighbor 

interactions only. The first Brillouin zone is the segment between –/a and /a. w 

is linear for small k and that d/dk vanishes at the zone boundaries (k = ±/a. 
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2.6 Continuum wave equation 

We consider an original wave equation given by 
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We assume that us(x) = u(x, t). In the small limit of a = x, sa = x and s is continuous 

variable. Under this assumption, u(x, t) can be expanded using a Taylor expansion, 
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Then the original wave equation can be rewritten as 
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which is the continuum elastic wave equation with the velocity of sound given by 

 

a
M

C
v  . (2.31) 

 

((Note)) Units 

 

[C]=N/m. [M]=N s2/m. [a] = m. [v] = m/s 

 

The solution of Eq.(2.30) is given by 

 

)(),( vtxftxu  , 

 

where f is an arbitrary function. 

 

3. Eigenvalue-problem; solution using Mathematica 

We solve the eigenvalue-problem given by 
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where s = 1, 2, …, N, K = C/M. These equations can be expressed using a matrix M (for 

example, N x N) and column matrix (1xN); 

 

MU = 2
U. (3.2) 

 

Here 2 is the eigenvalue. The number of eigenvalues is N. For example, the matrix M 

and the column matrix U for N = 12 (for example), are given by 
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Using the Mathematica (program called Eigenvalues), we can calculate the dispersion 

relation of k vs k = (/a) (n/N) with N = 1, 2, 3,…, N-1, N. For simplicity, here we 

choose N = 100. For comparison we also make a plot of the solution given 

by |)2/sin(|/4 kaMC . We find that there is a good agreement between these two 

curves. K = C/M. 

 

((Mathematica-1)) 

 

Phonon dispersion relation for one atom in the unit cell.  

 



  15

20 40 60 80 100

p

a

n

100

0.2

0.4

0.6

0.8

1.0

w

2 K

 
 

Fig.8 The dispersion relation with red (from Mathematica calculation) and blue 

( )2/sin(4 kaK  with K = C/M). The x axis is k = (/a) (n/N) with n = 1, 

2, …, N (= 100). The y axis is )2/( K . The agreement between these two 

results are excellent. 

 

((Mathematica-2)) 

Here we use the Mathematica program (Eigensystem) to obtain the eigenvalues and 

the corresponding eigenfunction U. For each eigenvalue, we can calculate the deviation 

(us) of the position of the atom from the equilibrium position, as a function of the 

equilibrium position xs = s a, where s = 1, 2, 3,….. ,N. Here we consider the eigenvalue 

problem (N = 50). We show the plot of Un=(u1, u2, u3, …, uN) as a function of the location 

(xs = s a), where n = 1, 2, …, N. 1u . We find that the wavelength n is given by n = 

2Na/n. The corresponding wavenumber qn is equal to kn = (2/n) = (/a)(n/N). The 

deviation us is well described by the form sin[s(n/N)] = sin[kn(sa)] (
saikne ). 
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Fig.9 Plot of u = (u1, u2, u3, …., u50) as a function of xs = s a for the eigenvalues i (i = 

1, 2, 3, …, 10). 1<2<…<10. Note that u is normalized ( 1u ). N = 50. 
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Fig.10 Plot of u = (u1, u2, u3, …., u50) as a function of xs = s a for the eigenvalues 

i (i = 1, 2, 3, …, 10). 1<2<…<10. The wavenumber kn = (/Na)n. The 

value of n is denoted in each figure. 
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Fig.11 Plot of u = (u1, u2, u3, …., u50) as a function of xs = s a for the eigenvalues 

n (n = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50). 5<10<…<50. 1u . N = 

50. The wavenumber kn = (/Na)n. The value of n is denoted in each 

figure. 

 

((Note)) 

The eigenvalue problems for several simple systems (chains of 2 atoms, 3 atoms, 4 atoms, 

and 5 atoms) is discussed in detail in my web site, 

 

http://bingweb.binghamton.edu/~suzuki/pdffiles/Oscillation_and_Waves_Note.pdf 

 

 

4. First Brillouin zone and group velocity 

4.1 Definition of the group velocity 

The transmission velocity of a wave pocket is the group velocity 
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This is the velocity of energy propagation in the medium. 
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The wave is a standing wave: zero net transmission velocity for a standing wave. Note 

that the phase velocity is defined by kvp / .  

Long wavelength limit 

When ka « 1,  
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The velocity of sound is independent of frequency in this limit. Thus vk , exactly as 

in the continuum theory of elastic waves --- in the continuum limit a = 0 and thus ka = 0.  

 

4.2 The physical meaning of the first Brillouin zone 

We discuss the physical meaning of the first Brillouin zone. To this end, we consider 

the case of us with  

a
kk

3
0


  and 

aaa
Gkk

3

72

3
0


 . 

 

(i) 
a

kk
3

0


 . 

At t = 0, we have )( tksai

s ueu   at t = 0. We make a plot of 
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as a function of s, where s = 0, 1, 2, 3, …, where u = 1 in Fig.17. 

 

(ii) 

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3
0   

We also make a plot of 
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
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 at t = 0 in Fig.17. 
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Fig.12(a) Plot of ]Re[ )( tksaie   at t = 0 for k = k0 + G = 7/3 (the red solid line) and k 

= k0 = /3a (the dotted blue line). 

 

As shown in Fig.12, the wave represents by the solid curve (k = 7/3a) conveys no 

information not give by the dashed curve (k = /3a). Because the wave displacement is 

defined only at lattice points, the propagation of a large wavenumber (k0 + G) lying 

outside the first Brillouin zone is identical to a short wavenumber k0 lying inside the first 

Brillouin zone. In a continuum, the amplitudes would have a value everywhere, as 

represented by the continuous lines, so that both wavenumbers would be distinguishable. 
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((Exmple)) 

s=0 s=5 s=10 s=15 s=20

5 10 15 20
s

-1.0

-0.5

0.5

1.0

Re@usêuD

 
 

 

Fig.12(b) Identity of long and short waves on a lattice. N = 20. a = 1. k = 3/(10a). 

G = 2/a. k' = k + G = 23/(10a). Re[us/u(0)] for k = 3/(10a) (green line). 

Re[us/u(0)] for k = 23/(10a) (black line). These two lines intersect each 

other at the integers s (s = 1, ,2, 3,......., 20). 

 

4.3 Standing wave 

At the zone boundary k = a/ , the group velocity is equal to zero, implying that no 

energy is propagated. The amplitude Re[us] at time t is described 

 

    tueuueu
stistksai

s 
cos)1()1(ReRe]Re[

)(  
  (4.1) 

 

The alternate atoms oscillate in opposite phases, because (-1)s= -1 for odd integers s and 

(-1)s = 1 for even integers s. Note that the wave is a standing wave. A standing wave is an 

example of wave motion with zero group velocity. The wave moves neither to the right 

nor to the left. This situation is equivalent to Bragg reflections of x-ray.  
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Fig.13 The condition for the Bragg reflection in the reciprocal lattice. 

akk /2'   (or ak /  and ak / ) 

 

The Bragg reflection arises when k = a/ . Even if we excite only the state k = /a. we 

should obtain k = -/a through the Bragg reflection. The superposition of these two wave 

leads to a standing wave,  
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 (4.6) 

 

This implies that the wave cannot propagate in a lattice, but through successive 

reflections back and forth, a standing wave is set up. 

 

4.4 General property of the group velocity 

There are two main features of the phonon dispersion relation;  

 

(i) E = ħk is an even function of k; kk  ℏℏ   or kk EE  , where ħ is the Dirac’s 

constant (ħ = h/2) and h is the Planck’s constant. This is related to the fact that 

the equations of motion are invariant with respect to the time  reversal. 

 

(ii) Periodicity in kGk EE   with G [= (2/a) times integer] is the reciprocal lattice.  
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Fig.14 Values of k in the first Brillouin zone related by the symmetrical relation 

(Ek+G = E k and E-k = E k). k = ±/a is the boundary of the first Brillouin 

zone (|k|≤/a). 

 

We now consider the value of the group velocity at the Brillouin zone boundary. 

From the condition kk EE  , we have E(3) = E(4). From the condition Gkk EE  , we 

have E(3) = E(5). Therefore, we have E(4) = E(5). On taking → 0, the group velocity at 

the boundary of Brillouin zone is defined as 2/)]4()5([ EE  , which reduces to zero 

(dk/dk→0). 

 

((Note)) 

It follows that from the condition ( kk EE  ), we have E(1) = E(2). On taking →0, 

the group velocity defined by 2/)]1()2([ EE   reduces to zero (dk/dk→0). On applying 

the periodicity condition Gkk EE   this result can immediately be extended as follows. 

dk/dk→0 at k = 0, ±2/a, ±4/a,….. This prediction (only from the symmetry 

consideration) that the group velocity is equal to zero at k = 0, may be inconsistent with 

the result derived from the linear chain model above described. In the linear chain model, 

it is predicted that there is a discontinuous jump in the group velocity at k = 0, from -v0 

(v0 = MCa / ) at k = 0- to –v0 at k = 0+. We note that this motion at k = 0 is a translation 

of the crystal as a whole and it is therefore not property of a vibration. 

 

5. Determination of force constants 

5.1 The system with the nearest neighbor interaction 

We can make a statement about the range of the forces from the observed dispersion 

relation for . The generalization of the dispersion relation to p nearest planes is found to 

be 
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Fig.15 Linear chain having the nearest-neighbor coupling (C1), the second 

nearest-neighbor coupling (C2), and the third nearest-neighbor coupling 

(C3), and the  
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Thus 

 

a

C
rkadkM r

k

a

a






2)cos(
2

/

/




, (5.5) 
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gives the force constant at range pa, for a structure with a monatomic basis. 

 

5.2 System with long-ranged interactions 
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Fig.16 Linear chain with the nearest-neighbor and the next nearest-neighbor 

interactions. 

 

Here we assume that there are the second-, third,…nearest neighbor interactions in the 

system in addition to the nearest neighbor-interaction. Then the Lagrangian L is given by 
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The Lagrange equation is 
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Here we assume a traveling wave given by )( tksai

s ueu  . Then we have 
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which includes the higher harmonics terms through long-range spring constants. The 

value of Cp can be determined experimentally from the phonon dispersion relation. 
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6A.. Vibration of square lattice4 

 

 
Fig.17 Square array of lattice constant a. The displacements are normal to the 

plane of the lattice. 

 

We consider transverse vibrations of a planar lattice of rows and columns of identical 

atoms, and let u(l, m) denote the displacement normal to the plane of the lattice of the 

atom in the l-th column and m-th row. The mass of each atom is M, and C is the force 

constant for nearest neighbor atoms. 

The equation of motion is expressed by 
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 (6.1) 

 

We assume that the solution of u(l, m) is given by 

 

)(exp[)0(),( tamkalkiml yx  uu , (6.2) 

 

where a is the spacing between nearest-neighbor atoms. The equation of motion is 

satisfied only if  
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where the first Brillouin zone is 
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Fig.18a Brillouin zone of the two-dimensional square lattice with a lattice constant 

a. Bragg reflections occur at the zone boundary of the first Brillouin zone. 

 

   

Fig.18b Three-dimensional plot of the dispersion relation (of the 2D square lattice. 

The height () is plotted as a function kxa vs kya (in the 2D wavevector-

plane). 
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Fig.18c Contour plot of constant energy in the reciprocal lattice plane. The first 

Brillouin zone is shown by the red solid line. The energy of the point (the 

corner of the first Brillouin zone) is higher than that of the point ( the 

middle of the zone boundary). 

 

6B.Two-dimensional triangular lattice (supplement) 

 

Problem 5-10 (H. Myer, Introductory Solid State Physics, Taylor & Francis, 1990. 

London, U.K.). 

Consider the following two-dimensional close-packed lattice and its unit cell: 
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Fig.19a Real space for the 2D triangular lattice. 

 

Primitive cell vectors a1 and a2 are shown. Determine the first Brillouin zone appropriate 

to this lattice. Arrange that the reciprocal lattice vectors b1 and b2 are correctly oriented. 

Then, using the nearest-neighbor approximation for a vibrating net of point masses, 

determine the dispersion equation [let the central mass points have coordinates (la1, ma2)]. 

Calculate the frequency at two-non-equivalent symmetry points on the zone boundary. 

 

((Solution)) 

The primitive lattice vectors: 

)0,1())0sin(),0(cos(1 aa a , )
2

3
,

2

1
())60sin(),60(cos(2 aa a . 

 

The reciprocal lattice vectors; 
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4
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4
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4
))90sin(),90((cos(

3

4
2
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
b  

 

We set up the equation of the motion for the atom at the center. There are nearest 

neighbor interactions from atoms surrounding the atom at the center. 
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where M is the mass of atom, C is the spring constant, and ml ,1u  is the displacement 

vector for the atom at the position (la1, ma2). We assume the solution of the form as 

 

])(exp[)0(),( 21 tmliml  aakuu . 

 

with 
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Substituting these into Eq.(1), we get 
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Then we have the dispersion relation of vs kas 
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where  

 

yyxx kk eek   

 

The Brillouin zone for the triangular lattice is shown below. 
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Fig.19b Relation between the real space (lattice vectors a1 and a2) and the 

reciprocal lattice (b1 and b2). The magnitude of a1 and b1 are chosen 

appropriately. 

 

(a) At the middle of a Brillouin zone (zone boundary) 
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(b) At the corner of a Brillouin zone. 
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Fig.19c Contour plot of constant energy in the reciprocal lattice plane. The first 

brillouin zone is shown by the blue solid line. The energy of the point K 

(the corner of the first Brillouin zone) is higher than that of the point M 

( the middle of the zone boundary). 

 

((Note)) 

The Brillouin zone for the 2D triangular lattice is shown below. 
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Fig.19d Reciprocal lattice. Brillouin zone. M (the zone boundary) and K (the 

corner). The numbers are related to the number of Brillouin zone.  

 

 

7. Two atoms per primitive basis 

We consider a cubic crystal where atoms of mass M1 lie on one set of planes and 

atoms of mass M2 lie on planes interleaved between those of the first set.  
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Fig.20(b) 
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Fig.20(c) 
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Fig.20 (a), (b) Diatomic linear chain, There are two atoms with masses M1 and 

M2 per unit cell (lattice constant a). (b) The plane of atoms stacked 

alternatively (lattice constant a). 

 

The Lagrangian of the system is given by 
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Note that the coordinates of the positions of the atom with mass M1 and atom with mass 

M2 are described by 
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The Lagrange’s equations are as follows. 
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Similarly 
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Let a denote the repeat distance of the lattice in the direction normal to the lattice plane. 

Equation of motion is given by 
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Here we assume that each plane interacts only with its nearest-neighbor and that the force 

constants are identical between all pairs of nearest-neighbor planes. Suppose that us and 

vs have the forms of 
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When the determinant of the coefficients of u and v vanishes, the homogeneous linear 

equations have a non-trivial solution. 

 
  0

21

12
2

2

2

1 


 




MCeC

eCMC
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, (7.10) 

 

or 

 

  0cos12)(2 22

21

4

21  kaCMMCMM  . (7.11) 

 

We examine this equation in the limiting cases 

 

(i) ka « 1 

(ii) ka = ± at the zone boundary 

 

(i) ka « 1 
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Then we have the two roots for ka « 1 

 











21

2 11
2

MM
C  (optical branch), (7.14) 

22

21

2

)(2
ak

MM

C


  (acoustic branch). (7.15) 

 

(*) The extent of the first Brillouin zone is 
a

k
a


 . 

 

(ii) ka = ±
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21  CMMCMM   

   022 2

2

2

1  CMCM   (7.16) 

 

or 
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M

C
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2
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M
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
optical

phonon

branch

acoustic

phonon 

branch

 
 

for M1 > M2 

 

Fig.21 The dispersion curve ( vs k) for a diatomic linear chain with nearest 

neighbor atoms interacting with interaction C only. The masses of the 

atoms are M1 and M2; The first Brillouin zone is the segment between –/a 

and /a. There is an acoustic mode (lower branch) and an optical mode 

(upper branch). 

 

We consider the particle displacement in TA and TO branches. For the optical branch at k 

= 0, we have 

 

CuCvuM 221

2   

 

or 

 

1

2

21

1

2

1 11
22

2
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2

M

M

MM
CMC

C

MC

C

v

u


















 : out-of-phase (7.18a) 

 

We also note that the velocity of the center of mass defined by 

 

21

21

MM

vMuM
vCM 


 . (7.18b) 

 

is equal to zero. 

For the acoustical branch at k = 0, we have 

 

CuCvuM 221

2  . (7.19) 
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Since 02  , then we have 

 

vu  .  : in-phase 

 

 
 

Fig.22 Nature of the vibration in the acoustical and optical branch of a vibrational 

spectrum.  

 
)( tskai

s ueu  , )( tskai

s vev  . (7.20) 

 

Acoustical waves in a diatomic linear lattice (
a

k
2


 ) 

 

 
 

Fig.23 Transverse acoustic waves in a diatomic linear lattice. 

 

)cos()cos( skavskau  . (7.21) 

Optical waves in a diatomic linear lattice (
a

k
2


 ) 
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Fig.24 Transverse optical waves in a diatomic linear lattice. Figure represents a 

snapshot of the wave motion. 

 

0
21

21 





MM

vMuM
vc   The velocity of center of mass does not move. 

 

The atoms vibrate against each other, but their center of mass is fixed. If the two atoms 

carry opposite charges, we may excite a motion of this type with the electric field of a 

light wave. 

 

 
Fig.25 Origin of the name of optical mode 

 

So that the branch is called the optical branch. The atoms (and their center of mass) move 

together, as in long wavelength acoustical vibrations, whence the term acoustical branch. 

 

 
 

Fig.26 Origin of the name of acoustic mode 

This is a frequency gap at 
a

k


max  of the first Brillouin zone. 

((Note)) 

If we look for solutions in the gap with  real, then k will be complex, so that the 

wave is damped in space.  

((Mathematica)) phonon dispersion for the system with two atoms in unit cell 

 



  41

-2 -1 1 2
kaêp

0.5

1.0

1.5

wêw0

 

 

Fig.27(a) The dispersion curve of the diatomic linear chain with two atoms in a unit 

cell. The ratio M2/M1 is varied as a parameter between 2, 3, 4, … and 10. 

 

((Note-2)) Link 

Phonon dispersion relation in the Brillouin zone (Wolfram Demonstrations Project) 

Phonon modes in one dimensional crystal with two atoms. 

 

http://demonstrations.wolfram.com/PhononDispersionRelationInBrillouinZone/ 

 

((Example)) Change of the unit cell size from 2a to a when M2 become equal to M1. 

 

E. Hanamura (Problems in Solid State Physics, in Japanese) Problem 3-1.  

We consider a one-dimensional chain, where two kinds of atoms with different masses 

M1 and M2 are alternatively arranged. The size of unit cell is 2a, where a is the nearest 

neighbor distance between two different atoms. There are 2N atoms. N atoms of the mass 

M1, and N atoms of the mass M2. There is only the nearest neighbor interaction between 

these two atoms. We consider the limit that that M1 becomes equal to M2 (M1 = M2 = M). 

In this case, there are 2N atoms of the mass M. The nearest neighbor distance is a.  

Discuss the dispersion relation of these systems. 

 

M1

a a

M2

 
 

Fig. M2 ≠ M1. The size of unit cell is 2a. There are N unit cells in the system. L 

= 2aN. 
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First we consider the case (only the longitudinal wave) where M1 is not equal to M2. The 

size of unit cell is 2a. The Brillouin zone is in the range 
a

k
2


 . The total number of 

atoms are 2N, leading to the 2N modes; 1 acoustic branch (N modes) and 1 optical branch 

(N mode). The size of the system is L = 2Na. 

 

}])12({exp[

}]2(exp[

tkasivv

taksiuu

s

s








 

 

We use the periodic boundary condition; 

 

ssN uu  , ssN vv   

 

or 

 

1)]2(exp[ Naki . 

 

or 

 

nNak 22  ,  or 
N

n

aNa

n
k




2

2
, 

 

There are N modes for each branch (1 optical and 1 acoustic branches). We choose  

 

a
k

2


 . 

 

where k = 0, ±/(aN), ±2/(aN). The dispersion relation is given by 

 

0)(sin4)(2 222

21

4

21  kaCMMCMM   

 

For k = ±
a2


,  

 

04)(2 22

21

4

21  CMMCMM  . 

 

or 

 

0)2)((2( 2

2

2

1  CMCM   

 

or 
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1

2

M

C
   

2

2

M

C
 . 

 

In the limit of M1 = M2 = M, these are equal (
M

C2
 ). 

 

For k = 0,  

 

0)(2 2

21

4

21   MMCMM  

 

or 

 

 = 0,  
21

21 )(2

MM

MMC 
  

 

In the limit of M1 = M2 = M, the latter is equal to (
M

C4
 ). 

_________________________________________________________________ 

M

a a

M

 
 

Fig. M1 = M2. The size of unit cell is a. There are 2N cells in the system. L = 2Na. 

 

Now we consider the case (only the longitudinal wave) where M1 = M2 = M. The size of 

unit cell is a. The Brillouin zone is in the range |k|</a. The total number of atoms are 2N, 

leading to the 2N modes; 1 acoustic branch (2N modes). No optical mode exists. The size 

of the system is L = 2Na. 

 

}](exp[ tsakiuus   

 

We use the periodic boundary condition; 

 

ssN uu 2 , 

 

or 

 

1)]2(exp[ Naki . 

 



  44

or 

 

nNak 22  ,  or 
N

n

aNa

n
k

2

2

2

2 
 , 

 

where n = -N, -N+1,......., N-1, N. There are 2N modes for 1 acoustic branch,  

 

a
k


 . 

 

The dispersion relation is given by 

 

)
2

sin(2
ak

M

C
 . 

 

In the zone boundary, 
a

k


  

 

M

C
2  

 

-p -
p

2

p

2
p

ka

0.5

1.0

1.5

2.0

wê C ê M

 
 

Fig. The dispersion relation for M1 = M2. When M2 is slightly larger than M1, 

the dispersion relation consists of the optical branch (N modes) and the 

acoustic branch (N modes) for the first Brillouin zone (
a

k
2


 ). The 
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extended zone scheme for the optical branch and acoustic brance (for M2 ≈ 

M1) is shown in this Fig.. When M1 = M2,  at 
a

k
2


 for the optical 

branch becomes equal to that for the acoustic branch. The size of the 

Brillouin zone becomes twice larger. Correspondingly, a part of the optical 

branch (denoted by green line) shifts to the acoustic branch by -/a, while 

a part of the optical branch (denoted by blue line) shifts to the acoustic 

branch by /a. 

 

F. The folding effect 

We use the above examples to explain the folding effect of the first Brillouin zone.  

 

(i) Suppose that there are one kinds of mass (the mass M1 denoted by red circles). 

Here we have a chain with the total size L = 2Na, where 2N is the number of unit cell and 

a is the lattice constant. When we consider the lattice vibration in this system (only in the 

case of longitudinal waves).  

 

a
L=2Na

2N cells

 
 

Then we have one longitudinal acoustic branch with 2N modes in the first Brillouin zone 

(|k(a)|<), since the lattice constant is a. The total number of modes is 2N.  

 

 
 

(ii) Suppose that there are two kinds of masses (the mass M1 (= M) denoted by red 

circles and M2 (M2 ≠M1) denoted by blue circles). Here we have a chain with the total 

size L = 2Na, where 2N is the number of unit cell and 2a is the lattice constant. When we 

consider the lattice vibration in this system (only in the case of longitudinal waves).  
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2a
L=2Na

N cells

 
 

Then we have one longitudinal acoustic branch with N modes, and one optical branch 

with N modes. in the first Brillouin zone (|k(2a)|<, or , |ka|</2), since the lattice 

constant is 2a. The total number of modes is 2N. When M1 becomes different from M2, 

the lattice constant changes from a to 2a. Correspondingly, the size of the Brillouin zone 

suddenly reduces from the region of |ka|< to the region of |ka|</2. As a result, at the 

zone boundary (|ka|=/2), there occurs the folding effect of the acoustic branch. A part of 

the acoustic branch (|ka|>/2) becomes the optical branches in the new first Brillouin 

zone (|ka|</2). 

 

 
 

8. The number of modes; degree of freedom 

8.1 One-dimensional case 

We consider the degree of freedom for N atoms in the linear lattice chain. There are N 

atoms (each unit cell has one atom). Each atom has three degrees of freedom. One for 

each of the x, y, z directions. Then we have 3N degree of freedoms. This indicates that 

there are 3N modes in the system. This implies that the number of allowed k values in a 

single branch is just N for each Brillouin zone; 2N transverse acoustic (TA) modes and N 

longitudinal acoustic (LA) mode. 

 

2 TA mode (2N states) 

1 LA mode (N states) 
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Fig.27(b) Longitudinal and transverse acoustic modes. The transverse modes may be 

degenerate as in the cubic structures 

 

8.2 Three-dimensional case 

We consider the lattice waves in the 3D system. The displacement vector us is given 

by 

 
ni

s e
Rk

u


~ , (7.1) 

 

where Rn is the position vector of the atom located in the equilibrium positions of the 

lattice. 

 

332211 aaaR nnnn  , (7.2) 

 

a1, a2, and a3 are the primitive lattice vectors along the x, y, and z directions. From the 

boundary condition, we have 

 
nn iNi

ee
RkaRk  )( 11 , or 111 aNik xe , (7.3) 

 

leading to the selected values of wavenumber kx 

 

1

1

1

11

22
l

aN
l

aN
kx


  for a1 = a2 = a3 = a. (7.4) 

 

Similarly, we have 
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3

3
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Here l1, l2, and l3 are integers given by 
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This means that there are N (=N1N2N3 ) modes, where N is the number of unit cells in the 

system.  

Each mode has 3 degrees of freedom (1 longitudinal mode and 2 transverse modes). 

Then the total number of modes is 3  N = 3N. 

(a)  

In the case of one atom per unit cell, we have 3N degree of freedom, with N 

longitudinal acoustic mode and transverse acoustic mode 2N 

(b) 

We consider the number of degrees of freedom of the atoms. With p atoms in the 

primitive cell and N primitive cells, there are pN atoms. Each atom has three degrees of 

freedom, one for each of the x, y, z directions, making a total of 3pN degrees of freedom 

for the crystal. The number of allowed k values in a single branch is just N for one 

Brillouin zone. Thus, the one LA and two TA branches have a total of 3N modes. The 

remaining (3p - 3) x N degrees of freedom are accommodated by the optical branches.  

 

3 acoustical branches 

1 longitudinal acoustical (LA) mode 

2 transverse acoustical (TA) mode 

 

3p - 3 optical branches 

(p - 1) longitudinal optical (LO) mode 

2(p - 1) transverse optical (TO) mode 

 

For p = 2, for example, we have 1 LA, 1 LO modes, and 2 TA and 2 TO modes. 

 

9. Classical Model 

9.1 Theory of the transverse wave in a string 
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Fig.28 Oscillation of one-dimensional continuum 

 

Suppose that a traveling wave is propagating along a string that is under a tension Ts. 

Let us consider one small element of length x. The ends of the element make small 

angle A and B with the x axis. The net force acting on the element along the y-axis is 
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or 

 

][
AB

y
x

y

x

y
TF 






















 . (9.2) 

 

We now apply the Newton’s second law to the element, with the mass of the element 

given by xm   , 
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Then we have 
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which leads to a wave equation given by 
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where v is the velocity of the sound, 

 


sT

v  . (9.6) 

 

Here we use the Taylor expansion, 
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9.2 Energy density of the elastic wave 

When the length of element changes to x to 
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x , the work done in the 

system (= Wc) of the conserved system is given by 
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Since the potential energy U is related to Wc by cWU  , the potential energy U is 

given by 
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The kinetic energy contribution K is given by 
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Then the energy density is given by 
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10. Quantum mechanical approach: phonon 

10.1 Annihilation and creation operators1,3 
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We assume U = (u1, u2,       ,uN) for the eigenvalue  = k. The displacement u(x) is 

expresses using a Dirac delta function, 

 

)()( saxuxu
s

s   , (10.1) 

 

with NaL  . The Fourier transform of u(x) is given by 
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The inverse Fourier transform of Uk is 
 

s

s

sss

s k

ssaik

s

k

iksaaiks

s

s

k

k

iksa

u

u
N

N

eu
N

eeu
NN

Ue
N











 

 





',

' '

)'('

'

'

'

'

1

111



 (10.3) 

 
or 
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The Lagrangian of the system is given by 
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We use the notation 
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Since us is real, it is required that 

 
*
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Using these relations, we have 
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Here we use 
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Similarly 
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Then L can be rewritten as 
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The linear momentum Pk conjugate to Uk is defined by 
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Then Hamiltonian H is obtained as 
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Note that we define the Fourier transform of the linear momentum by 
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with 
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

  kk PP . (10.16) 

 

Let us work it out by the operator technique, starting from the commutation relations, 
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Then the commutation relation is preserved in ','],[ kkkk iPU ℏ , since 
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Thus our new displacements and momenta are canonically conjugate, and non-

commuting, if they are of the same wavenumber; otherwise they are dynamically 

independent operators. The Hamiltonian is rewritten as 
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The final step is the introduction of annihilation and creation operators defined by 

 

)
1

(
2

1

)
1

(
2

1









k

k

k
k

k

k

k

k
k

k

iP
M

U
M

a

iP
M

U
M

a







ℏℏ

ℏℏ
, (10.20) 

 

where ak and ak
+ act to destroy, and create a phonon of waveuumber, k and energy kℏ , 

respectively. One can get the expressions for Pk and Uk from the above equations for ka  

and 


ka  
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The annihilation and creation operators satisfy the commutation  
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The transformed Hamiltonian is 
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where kkk aaN  . So that each phonon may be regarded as possessing an energy kℏ . 

The total Hamiltonian is the sum of the Hamiltonian of independent linear oscillators of 

angular frequency k. The various properties of the operators and eigenstates of the 

Hamiltonian are seen in the Appendix A. 

 

10.2 Symmetry of lattice and translation operator13,15 

We now consider the displacement defined by 

 

sxuuxxu
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s)( . (10.26) 

 

When we use the Dirac notation )( saxsx   , the ket vector is described by 

 

suu
s

s . (10.27) 

 

We introduce the translation operator given by T(a). The Hamiltonian H is invariant 

under the translation of the system by the lattice constant a. In other words, 

)(aT commutes with the Hamiltonian H. The eigenstate of H should be simultaneously 

the eigenstate of )(aT . T(a) is a unitary operator, but not a Hermite operator. Then the 

eigenvalue of T(a) is a complex number (see the Appendix B for more detail). 

Since 1)(  ssaT , the ket s  is not an eigenstate of T(a). Suppose that us has the 

form of exp(isak), where k is a real parameter. u  is a linear combinationof s with s = 0, 

1, …, N-1. 
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s

isak . (10.28) 

 

When T(a) is applied to the eigen ket u , we get 
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which means that u  is the eigenket of T(a). Similarly, we repeat this process N times, 

 

uueuaT ikNaN  )]([ , (10.30) 

 

since NaT )]([ =1 (we use the periodic boundary condition). Then we have iNkae =1, or 

n
Na

k
2

  where n =0, 1, 2,…, N-1 (
a

k
2

0  ). Alternatively we chose the value of k 

as the N states for 
a

k
a


  (the first Brillouin zone). 

It follows from this discussion that when kuu  are introduced, the N harmonic 

oscillators (N being the number of atoms in the crystal) becomes uncoupled and that to 

each ku  corresponds to one separate oscillator with the angular frequency k. This 

motion is called a normal mode of vibration or a normal mode. This motion does not 

describe the motion of a single atom in the crystal but, rather, of all atoms in it. 

A few examples will show how this works. We take a normal mode for which k 

equals the reciprocal lattice G (=2/a). In this case, the coefficient us equals unity. This 

motion is a translation of the crystal as a whole and it is therefore not property a vibration. 

The case just considered corresponds of course to the center (k = 0) of the Brillouin zone.  

In order to have another example, we consider the case where k equal to a point at the 

zone boundary of the Brillouin zone. The displacement vector is out of phase in going 

from one cell to the next, whether the successive lines show the evolution of the motion 

in time, the harmonic function depicted corresponding to the particular frequency of this 

normal mode. 

 

11. Crystal momentum 

A phonon of k will interact with particles such as photons, neutrons, and electrons as 

if it had a momentum kℏ . However, a phonon does not carry physical momentum. The 

physical momentum of a crystal is given by 
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where 
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We assume that suɺ is independent of s; uus
ɺɺ  . Then the momentum Pk is evaluated as 
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where 
Na

r
k

2
  (r = 0, ±1, ±2,…, ±N/2). The mode k = 0 represents a uniform translation 

of the crystal as a whole. Such a translation does carry momentum. For most practical 

purpose, a phonon acts as if its momentum were ħk, sometimes called the crystal 

momentum. 

 

12 Semiclassical approach 

12.1 Simple case 

The energy of a lattice vibration is quantized. The quantum of energy is called a 

phonon. Elastic waves in crystals are made up of phonons. Thermal vibrations in crystals 

are thermally excited phonons. The energy of an elastic mode of angular frequency k is 
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when the mode is excited to quantum number kn , where the mode is occupied by n 

photons. The term ℏ
2

1
 is the zero pint energy of the mode. We consider the wave of the 

mode k with the amplitude. 

 

)cos( kxtuu kk   , (12.2) 

 

where u is the displacement of a volume element from its equilibrium positions at x in the 

crystal.  

 

)sinsincos(cos)cos( 00 kxtkxtukxtuuk   . (12.3) 

 

The energy in the mode is 

 

KPKk 2][   (∵ PK  ) (12.4) 
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when it is averaged over time. 
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where  is the mass density.  
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Note that 
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where A is the total area in the y-z plane (the x axis is normal to this plane), and the total 

volume V is given by V = AL = ANa. Here we have 
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from the boundary condition: cos(kNA) = 1  kNa = 2ℓ). Then we obtain 
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Similarly, we have 
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Then we have 
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The time average kinetic energy is 
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Since 
2

1
K , we have 

 

kkk nu
V

 ℏ






 
2

1

2

1

2

1

4

22

0 , (12.13) 

 

or 
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Since NMV  , 
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This relates the displacement in a given mode to the phonon occupancy n of the mode. 

An optical mode with  close to zero is called a soft mode.  

 

12.2 General case 

The Lagrangian L is given by 
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The linear momentum conjugate to us, is given by 
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Then the Hamiltonian H can be derived as  
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Now we calculate the total energy for the case of )cos( tskauus  . 
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with 
V

NM
  (mass density), V = Na. The dispersion relation is given by 
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Then the total energy is 
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The time-average is 
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where 
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In general, we use 
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Then we have 
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This energy is compared with the result derived from the quantum mechanics. 
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where NMV  . Here we define the effective amplitude as 
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Conclusion 

We have shown that the well-defined lattice waves propagate over the crystal, 

forming a so-called phonon as a quantization of the lattice waves. Phonon has the dual 

characters of wave and particle, which is essential to the quantum mechanics. Phonon is 

one of bosons, obeying the Bose-Einstein statistics. Phonons will be seen to play an 

important role in any phenomena for which the energy of importance is comparable to 

ℏ , the energy of the phonon in question. In the BCS (Bardeen-Cooper-Schrieffer) 

model for the superconductivity, a specific interaction between electrons can lead to an 
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energy gap separated from excited states by a energy gap. The formation of Cooper pairs 

is due to the electron-phonon interaction. The first electron interacts with the lattice and 

deforms it; the second electron sees the deformed lattice. Thus the second electron 

interacts with the first electron through the lattice deformation.  
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APPENDIX 

A Simple harmonics (1D) in quantum mechanics15 

(a) Annihilation and creation operator 

The commutation relation 

  ℏipx ˆ,ˆ . (A.1) 

The Hamiltonian of the simple harmonics is 

2
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ˆ
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1ˆ x
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H
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 . (A.2) 

The eigenvalue-problem of the simple harmonics 

nnH nˆ , (A.3) 

with 
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where n = 0, 1, 2, 3,.... 

In the x  representation, the wave function of the simple harmonics can be described as 
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Here we introduce the creation operator and annihilation operators given by 
 






















0

0

0

ˆ
ˆ

2

1ˆ
ˆ

2
ˆ







ℏℏ m

pi
x

m

m

pi
xa , (A.6) 






















0

0

0

ˆ
ˆ

2

1ˆ
ˆ

2
ˆ







ℏℏ m

pi
x

m

m

pi
xa , (A.7) 

with 

ℏ
0


m

  (A.8) 

 

     aa
m

aax ˆˆ
2

ˆˆ
2

1
ˆ

0
ℏ

, (A.9) 

     aa
m

i
aa

i

m
p ˆˆ

2

1
ˆˆ

2

1
ˆ 00 


ℏ

, (A.10) 

 
 

     aa
i

aaaa
i

m
px ˆ,ˆˆˆ,ˆˆ

2

1
ˆ,ˆ 0

2

ℏ


, (A.11) 

or 

  1̂ˆ,ˆ aa  (A.12) 

 
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
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




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m

i
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p
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m
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m

pi
xaa ˆ,ˆ

1ˆ
ˆ
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ˆ
ˆ

ˆ
ˆ

2
ˆˆ

0

2

0

2

2
2

2

00

2







 (A.13) 

or  








 
0

0 2

1ˆ1
ˆˆ 


ℏ

ℏ
Haa  (A.14) 

or 








 
2

1ˆˆ
0 NH ℏ , (A.15) 

where 

aaN ˆˆˆ  . (A.16) 

The operator N̂  is Hermitian since 

 

  NaaaaN ˆˆˆˆˆˆ   . (A.17) 
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The eigenvectors of Ĥ  are those of  N̂ , and vice versa since 0]ˆ,ˆ[ NH , 

    aaaaaaaaaaaaaaN ˆˆˆ,ˆˆˆˆˆˆˆˆ,ˆˆ]ˆ,ˆ[   , (A.18) 

      aaaaaaaaaaaaaaN ˆˆ,ˆˆˆˆˆˆˆˆˆ,ˆˆ]ˆ,ˆ[ . (A.19) 

Thus we have the relations 

aaN ˆ]ˆ,ˆ[  , (A20) 

and 
  aaN ˆ]ˆ,ˆ[ , (A.21) 

nnnN 






 
2

1ˆ
0ℏ . (A.22) 

From the relation nanaN ˆ]ˆ,ˆ[  , 

nanNaaN ˆ)ˆˆˆˆ(  , (A.23) 

or 

nannaN ˆ)1()ˆ(ˆ  . (A.24) 

nâ  is the eigenket of N̂  with the eigenvalue (n-1). 

1ˆ  nna . (A.25) 

From the relation 

nanaN
  ˆ]ˆ,ˆ[ , (A.26) 

nanNaaN ˆ)ˆˆˆˆ(  , (A.27) 

or 

nannaN
  ˆ)1()ˆ(ˆ . (A.28) 

naˆ  is the eigenket of N̂  with the eigenvalue (n+1). 

1ˆ  nna  (A.29) 

Now we need to show that n should be either zero or positive integers: n = 0, 1, 2, 3,…. 

We note that 

0ˆˆ  nnnnaan , (A.30) 

0)1(1ˆˆˆˆ   nnnnaannaan . (A.31) 

The norm of a ket vector is non-negative and the vanishing of the norm is a necessary and 

sufficient condition for the vanishing of the ket vector. In other words, .0n  If n = 0, 

.0ˆ na  If ,0n nâ  is a nonzero ket vector of norm nnn .  

If n>0, one successively forms the set of eigenkets, 

,ˆ,ˆ,ˆ 32 nanana …. ,ˆ na p , belonging to the eigenvalues, n-1, n-2, n-3,….., n-p, 

This set is certainly limited since the eigenvalues of N̂  have a lower limit of zero. In 

other words, the eigenket pnna p ˆ , or n-p = 0. Thus n should be a positive integer. 

Similarly, one successively forms the set of eigenkets, 

,ˆ,ˆ,ˆ
32

nanana


…. ,ˆ na
p

belonging to the eigenvalues, n+1, n+2, n+3,….., n+p, 

Thus the eigenvalues are either zero or positive integers: n = 0, 1, 2, 3, 4,       . 
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The properties of â  and â  

1. 00ˆ a , (A.32) 

since 00ˆˆ0 aa . 

2. 11ˆ 
nnna , (A.33) 

nanaN
  ˆ]ˆ,ˆ[ , (A.34) 

  nannanNanaN
  ˆ1ˆˆˆˆˆ . (A.35) 

naˆ  is an eigenket of N̂  with the eigenvalue (n + 1). 

Then 

1ˆ  ncna . (A.36) 

Since 
22

11ˆˆ cnncnaan 
, (A.37) 

or 

 
2

11ˆˆ cnnaan 
, (A.39) 

we obtain 

1 nc . (A.40) 

3. 

1ˆ  nnna , (A.41) 

nanaN ˆ]ˆ,ˆ[  , (A.42) 

  nannanNanaN ˆ1ˆˆˆˆˆ  , (A.43) 

nâ  is an eigenket of N̂  with the eigenvalue (n - 1) 

Then 

1ˆ  ncna . (A.44) 

Since 

ncnncnaan  22
11ˆˆ , (A.45) 

nc   (A.46) 

(b) Basis vectors in terms of 0  

We use the relation 

0ˆ1  a , 

  0ˆ
!2

1
1ˆ

2

1
2

2  aa , 

  0ˆ
!3

1
2ˆ

3

1
3

3  aa , 

----------------------------------------------------- 
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  0ˆ
!

1
1ˆ

1 n
a

n
na

n
n   , (A.48) 

The expression for nx̂  and np̂  

   111
2

ˆˆ
2

ˆ
00

 
nnnn

m
naa

m
nx


ℏℏ

, (A.49) 

   111
2

ˆˆ
2

ˆ 00  
nnnni

m
naai

m
np

 ℏℏ
. (A.50) 

Therefore the matrix elements of â , â , x̂ , and p̂  operators in the  n  representation 

are as follows. 

1,'
ˆ'  nnnnan  , (A.51) 

1,'1ˆ' 
  nnnnan  , (A.52) 

 1,'1,'

0

1
2

ˆ'   nnnn nn
m

nxn 

ℏ

, (A.53) 

 1,'1,'
0 1

2
ˆ'   nnnn nn

m
inpn 

ℏ
. (A.54) 

Mean values and root-mean-square deviations of x̂  and p̂  in the state n . 

0ˆ nxn , (A.55) 

0ˆ npn , (A.56) 

 
0

22

2

1
ˆ

m
nnxnx

ℏ







  , (A.57) 

  0

22

2

1
ˆ ℏmnnpnp 







  . (A.58) 

The product xp is 

ℏℏ
2

1

2

1








  npx  (Heisenberg’s principle of uncertainty), (A.59) 

Note that 

      aaaaaaaa
m

aaaa
m

x ˆˆˆˆˆˆˆˆ
2

ˆˆˆˆ
2

ˆ
00

2


ℏℏ

, (A.60) 

      aaaaaaaa
m

aaaa
m

p ˆˆˆˆˆˆˆˆ
2

ˆˆˆˆ
2

ˆ 002  ℏℏ
, (A.61) 

and 

  0ˆ
2


nan , (A.62) 

0ˆ2 nan , (A.63) 

121ˆˆ2ˆˆˆˆ   nnaannaaaan , (A.64) 

Mean potential energy 
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  nxmnxnmV 
2

1

2

1
ˆ

2

1 2222  . (A.65) 

Mean kinetic energy 

  np
m

npn
m

K 
2

1

2

1
ˆ

2

1 22  . (A.66) 

Thus we have 

KV  . (A.67) 

(Virial theorem) 
 

B. Translation operator in quantum mechanics15 

Here we discuss the translation operator )(ˆ aT  in quantum mechanics, 

 )(ˆ' aT , (B.1) 

or 

)(ˆ'' aT
  . (B.2) 

In an analogy from the classical mechanics, it is predicted that the average value of x̂  

in the new state '  is equal to that of x̂  in the old state   plus the x-displacement a 

under the translation of the system 

 axx  ˆ'ˆ' , 

or 

 axaTxaT  ˆ)(ˆˆ)(ˆ , 

or 

1̂ˆ)(ˆˆ)(ˆ axaTxaT  . (B.3) 

Normalization condition: 

  
)(ˆ)(ˆ'' aTaT , 

or 

1)(ˆ)(ˆ
⌢

 aTaT . (B.4) 

[ )(ˆ aT  is an unitary operator]. 

From Eqs.(B3) and (B4), we have 

)(ˆˆ)(ˆ)ˆ)((ˆ)(ˆˆ aTaxaTaxaTaTx  , 

or the commutation relation: 

)(ˆ)](ˆ,ˆ[ aTaaTx  . (B.5) 

From this, we have 

xaTaxxaTaxxaTxaTx )(ˆ)()(ˆˆ)(ˆ)(ˆˆ  . 

Thus, xaT )(ˆ  is the eigenket of x̂  with the eigenvalue (x+a). 

or 

axxaT )(ˆ , (B.6) 

or 

xaxaTxaTaT  
)(ˆ)(ˆ)(ˆ . (B.7) 
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When x is replaced by x-a in Eq.(B7), we get 

xaTax )(ˆ  , (B.8) 

or 

)(ˆ aTxax  . (B.9) 

Note that  

)()(ˆ' axaxaTxx   . (B.10) 

The average value of p̂  in the new state '  is equal to the average value of p̂  in 

the old state   under the translation of the system  

 pp ˆ'ˆ'  , (B.11) 

or 

 paTpaT ˆ)(ˆˆ)(ˆ 
, 

or 

paTpaT ˆ)(ˆˆ)(ˆ  . (B.12) 

So we have the commutation relation 

0̂]ˆ),(ˆ[ paT . 

From this commutation relation, we have 

paTpppaTpaTp )(ˆˆ)(ˆ)(ˆˆ  . 

Thus, paT )(ˆ  is the eigenket of p̂  associated with the eigenvalue p. 
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