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Peter Joseph William Debye FRS (March 24, 1884 – November 2, 1966) was a Dutch 

physicist and physical chemist, and Nobel laureate in Chemistry. 
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1. Heat capacity 

 

CV = heat capacity at constant volume 

Cp = heat capacity at constant pressure. 
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Where U is the energy and T is the temperature. The contribution of the phonons to the heat 

capacity of a crystal is called the lattice heat capacity. 

 

((Note)) 

Gitter: lattice (in German) 

 

The total energy of the phonons at T in a crystal may be written as 
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where ,kn  is the thermal equilibrium occupancy of phonons of wavevector k and 

polarization . ,kn  is the Planck distribution function given by 
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with 
TkB

1
 , and kB is the Boltzmann constant. 

 

2. Planck's distribution 

We consider a set of identical harmonic oscillators 
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Fig. States of an oscillator that represents a mode of angular frequency . When the 

oscillator is in the state of energy nℏ, the state is equivalent to n photons in the 

mode. The zero point energy (ℏ/2) is omitted for simplicity. 

 

The ratio of the number of states 1n  (n+1 photons in the mode) to the number of states 

in n  (n photons in the mode) is 
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by the use of the Boltzmann factorm. Note that 
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We see that 
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where p = 0, 1, 2, .... (integer). For p = 1, we have 
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ℏ ex . 

 

We also have 
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Using the Mathematica, we get the table of p
n  vs p 

 

Table   p
n  vs p, (p = 1, 2, 3, 4, and 5), where ℏ ex . 

 

 
_______________________________________________________________________ 

3. Normal mode enumeration 

The total energy U is given by 
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Suppose that the crystal has  dD )(  modes of a given polarization  in the frequency 

range  - d 
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The lattice heat capacity is 
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Then we have 
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4. Density of states in one dimension 

We consider the boundary value problem for vibrations of a 1D line of length L 
carrying (N+1) particles at separation a.  

 

 
 

Suppose that the particles s = 0 and s = N at the end of lines are held fixed. Each normal 
mode of the polarization l has the form of a standing wave, 
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where us is the displacement of the particle s;  ,k  (dispersion relation). 

Since us = 0 at s = 0 and s = N. 
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Nka , 2,      , (N-1). 

s=0 s=N
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5. The method of periodic boundary conditions 
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From the periodic boundary condition, we have 
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where L = Na. The allowed values of k are 
 

s=0, s=N
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 , (first Brillouin zone) 

 

where n is integers, n = -N/2, ..-1, 0, 1, 2,   , N/2, ...... 

 

 
 

Fig. First Brillouin zone. There are N state for |k|≤/a. 

 

6. Density of states for 1D system 

 

 
 

Fig. Density of states for the 1D k-space. The factor 2 arises from the even function of 

the dispersion relation ( vs k) in the expression of the density of states (1D case). 

 

There is one allowed state per (2/L) in k-space.  Or  
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for each polarization and for each branch. The density of states ( -  + d), 
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where the factor 2 comes from the even function of the dispersion relation ( vs k). Then 

we have 
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When vk , we get 
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Note that this is independent of . 

________________________________________________________________________ 
7. Density of states for 2D system 

There is one allowed states per (2/L)2 in 2D k-space. In other words, there are  
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states per unit area of 2D k space, for each polarization and for each branch 
 
The density of states is defined by 
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using the linear dispersion relation, vk , 
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which is proportional to . 
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Fig. Density of states for the 2D k-space. There is one state per area 
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of the 

reciprocal lattice plane. 
 

8. Density of states for the 3D system 

The total number of modes with wave number less than k, 
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for each polarization type (L or T). 
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Fig. Density of states in the 3D k-space.  

 

For k - k + dk (corresponding to  -  + d) 
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Then the density of states for each polarization (L or T) is 
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When vk , we have 
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for the density of states for the 3D system. 
 

 
 
Fig. Density of states in the Debye model. 
________________________________________________________________________ 
9. Heat capacity of 1D system 
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where only a longitudinal polarization is allowed. Because of the 1D system, no transverse 

polarization is allowed. We introduce a new variable x as 
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At low temperatures where T<<,  

 

611

2

0

/

0














 



x

T

x e

x
dx

e

x
dx , 

 

using the Mathematica. Then we have 
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The heat capacity is 

 
2

3 B

U T
C Nk

T


 
 

  

 

which is proportional to T. 

At low temperatures where T>>,  

 

( )B B

T
U Nk T Nk T

T

     
 

 

and 

 

B

U
C Nk

T


 


 

 

10. Heat capacity of 2D system 

(a) 

Density of states: 

There is one allowed states per (2/L)2 in 2D k-space. In other words, there are  
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states per unit area of 2D k space, for each polarization and for each branch. The density of 

states is defined by 
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which is proportional to . 

(a)  
 

Fig. Density of states for the 2D k-space. There is one state per area 
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of the 

reciprocal lattice plane. 

 

Internal energy 

We calculate the heat capacity of 2D systems in the Debye approximation. The thermal 

energy is given by 
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for each polarization type (1 TA, 1 LA). For simplicity, we assume that the phonon velocity 

is independent of the polarization (vt = vl = v). Then we get 
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In the low temperature limit, we have 
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since 
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The heat capacity 

The heat capacity is 
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The entropy is calculated as 
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11. Heat capacity of 3D system 

In the Debye model approximation, the velocity of sound is taken constant  

 

vk , 

 

where v is the constant velocity of sound. The density of states becomes 
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DL vk  (kD: cut-off wave vector), 
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In the Debye model, we do not allowed modes of wavenumber larger than kD. 
 
((Note)) 
 

3NaV   for sc crystal. 
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We introduce a new variable x defined by 
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We now consider the contribution of one longitudinal acoustic (LA) mode and the two 
transvese acoustic (TA) mode. Here for simplicity, we assume that 
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where vL and vT are the velocities for the LA and TA modes. Note that we use  
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The heat capacity is evaluated from the direct derivative of U given by Eq.(1), 
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It is clear that C is derived by a scaling function of a reduced temperature T/. In other 

words, C depends only on the variable T/. 

______________________________________________________________________ 

(a) For 1
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  (the high temperature limit) 
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The heat capacity is independent of T as 

 

BNkC 3 .  (Dulong-Petit law). 

 

(a) For 1
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  (the low temperature limit) 

The upper limit of the integral may be taken to be infinite for all practical purposes. The 

integral then tends to be a constant. The total energy is evaluated as 
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which is well-known T3 law of specific heat, valid at low temperatures. The heat capacity 

can be evaluated directly as 
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12. Physical meaning of 3TCV  at low temperatures. 
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Only those lattice modes having TkBℏ  will be excited to any appreciable extent at T, 
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The fraction occupied by the excited modes is 
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The total number of states is 3N for 1 TA and 2 LA modes (N for each branch). Then there 

are of the order of  
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excited modes, each having kBT. The energy is 
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and the heat capacity is 
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Fig. Definition of kT and kD (the Debye model) for the 3D spherical k-space. 

 

13. Numerical calculation of the heat capacity 
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where NA is the Avogadro number, and R is the gas constant and R = NAkB. 

 

R = 8.3144621 J/(mol K), 
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R = 1.9858775 cal/(mol K). 
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At low temperature (T<<),  
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At low temperature (T>>),  
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Fig. Scaling relation of CM/3R vs T/, which is predicted from the Debye model. 

CM is the molar specific heat. R is the gas constant. The blue line denotes the 

approximation valid for low temperatures (T/<<1). The green line denotes 

the Dulong Petit law at high temperatures (T/>>1) 
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Fig. Specific heat CM/3R as s function of T, where  is changed as a parameter. 

 

 
 

Fig. Specific heat CM/3R as s function of T (a logarithmic scale of the T axis). 

 

14. Einstein model of the heat capacity 

In the Einstein model, only the optical mode contributes to the specific heat. In this case, 

there exists only the optical phone: N states at . 
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Fig. Density of states in the Einstein model. 
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The heat capacity of the oscillators is 
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Fig. Heat capacity for the Einstein model. 

 

((Note)) Specific heat in the Debye model 

 

Table: Calculation of CM/3R vs T/. 
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15. General result for D() 

In general, the density of states can be expressed as 
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Fig. The volume element in the k space. dkn = dk.  dkdSdkdSkd n 
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The group velocity is defined by 
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which is normal to the surface of  = constant. We note that from the definition, we have 
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When d = 0 ( = constant surface), k  is perpendicular to any vector on the surface ( 

= constant). In other words, the group velocity kk v  is normal to the surface with  = 

constant.  

Since the magnitude of the group velocity is given by 
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we have the k-space volume element as 
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The integral is taken over the area of the surface with constant , in the k space. 

 

 
 

Fig. Actual lattice spectrum. 
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The spectrum for the crystal starts as 2 for small , but discontinuities develop at singular 

points. 

 

______________________________________________________________________ 

16. Melting criterion  for the 3D case 

((Lindeman criterion)) 

Solid melts because the vibrations of the atoms about their equilibrium positions 

becomes too large. 
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The solid melts where 2

iR  becomes comparable to a2, where a is the lattice constant. 

Here we use the Debye model; 
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where )(3 D  is the density of states for the 3D system, 
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which is proportional to T. 

 
((Melting criterion)) Lindemann criterion 
We define the parameter f 
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When f = fc, the melting occurs at T = Tm; 
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where fc = 0.2 - 0.3 (typically). 

 

((Example)) 

Al (aluminium) 

 = 428 K. a = 4.05 Å (fcc). Density  = 2.375 g/cm3. 

Tm = 933.47 K. Molar mass = 26.9815386 g. 

 

Then we have 

 
2

185696 cm fT   

 

leading to 

 

fc = 0.07. 

 

Rb (rubidium) 

 = 56 K. a = 5.585 Å, (bcc). Density  = 1.532 g/cm3. 

Tm = 312.46 K. Molar mass = 85.4678 g. 

 
2

7.19149 cm fT  , 

 

leading to  

 

fc = 0.128. 

 

17. Stability of the 2D system: Lindemann criterion  

Let us calculate  
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Note that  is defined as follows. 
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Then we get 
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The integral does not converge 

 


 1

1
lim

0 xx e
. 

 

The calculation of the mean quadratic displacement in the plane (or in the chain) leads to a 

divergent value at any temperature. Thus 2D crystals are unstable in the harmonic 

approximation. Some 3D interaction (whatever small with respect to intralayer or interchain 

interaction is necessary to stabilize the low dimensional system. 
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18. Summary 

((Density of states)) 

In d-dimensional harmonic crystal, the low frequency density of states varies as 1d . 

 

For the 1D system 
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For the 2D system 

 

22
)(

v

A
D




  . 

 

For the 3D system 
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where A is the area for the 2D system and V is the volume of the 3D system. 

 

((Heat capacity)) 

 

For the 1D system 
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For the 2D system 
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For the 3D system 
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19. Debye-Waller factor in the x-ray scattered intensity 

As the temperature of the crystal is increases, the intensity of Bragg reflection decreases. 

This result can be explained as follows. Suppose that the position of atom depends on time t 

as 

 

)()( tt jj uRR  . 

 

Then the structure factor is given by 
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where <..> denotes thermal average, jR  is the position vector of j-th atom in the unit cell in 

thermal equilibrium, and fj is the atomic form factor. Using the series expansion, we get 
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where  is the angle between G and u. Note that u is a random thermal displacement 

uncorrelated with the direction of G. Then we have 
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for the isotropic system; 
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Then  
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The scattered intensity is 
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where I0 is the scattered intensity from the rigid lattice. The exponential factor W is the 

Debye-Waller factor. Here 2
u  is the mean square displacement of an atom. The thermal 

average potential energy of a simple harmonics in the 3D system is 

 

TkKUuM B
2

3

2

1 22  , 

 

where U  and K  are the average of the potential energy and the average of the kinetic 

energy. Then we have  

 

2
2 3

M

Tk
u B . 

 

Then the intensity is evaluated as 
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 .

 
 

The intensity exponentially decreases with increasing temperature. 
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Fig. The dependence of intensity on temperature for the (h00) x-ray reflections of Al. 

Reflections (h00) with h odd are forbidden for a fcc structure (R.M. Nicklow and 

R.A. Young, Phys. Rev. 152, 591 (1966). ). [This figure is obtained from the book 

of “Introduction to Solid State Physics, by C. Kittel 8-th edition]. 

 

 

20. Debye-Waller factor (quantum mechanical treatment) 

Here we calculate the Debye-Waller factor calculation based on the quantum 

mechanical treatment. First we define the Debye temperature . 
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The Debye-Waller factor is given by 
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We assume that vq . Then we get 
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When 1/  T  (high temperatures), we get 
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where we use the approximation 
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21. Neutron inelastic scattering 

Thermal neutrons interact with matter through the interaction with nucleus via the so-

called strong force. The interaction is strong, but extends only over a distance of the order 

of 10 fm (femtometers), the size of the atomic nucleus. 

 

1 fm = 10-15m = 10-13 cm. 

 

It can have the effect of the neutron being scattered by the nucleus. In this sense, the form 

factor bj is independent of the related wavevectors, unlike the case of x-ray scattering. 

Now we consider the case when the incoming neutron (wavevector ki = k, energy Ek) is 

scattered by a system. In this process, a phonon (wavevector q, energy qℏ ) are absorbed 

or emitted. After that, the outgoing neutron has a wavevector kf = k', energy Ek'. where k is 

the wavevector of the incoming neutron, 

 

n

k
M

k

2

22
ℏ

ℏ  ,  (the energy of incoming neutron with mass Mn) 

 

n

k
M

k

2

'22

'

ℏ
ℏ  .  (the energy of outgoing neutron) 
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Fig. Schematic diagram of the inelastic neutron scattering. ki = k. kf = k'. 

 

We consider the scattering amplitude defined by 
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where 
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is the interaction potential [for simplicity we neglect the term) )/2( 2 mℏ and bj is the 

scattering length for atoms for neutron scattering. We note that the potential  
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satisfies the periodic condition such that 
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The Fourier component VG is calculated as 
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which is similar to the structure factor when bj is equal to the atomic form factor fj for the x- 

ray diffraction.  

Thus we get 
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where Q is the scattering vector and is defined by 

 

kkQ  ' , 

 

and 

 

kk   '0 . 

 

 

_______________________________________________________________________ 

((Note)) In typical textbooks of neutron scattering, Q and 0 are defined as 

 

'kkQ  , 

 

and 
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'0 kk   . 

 

______________________________________________________________________ 

Using the Taylor expansion, we get 
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Here we note that 
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where eq is the polarization vector of phonon (LA, TA, LO, TO branches of phonon), and u 

is the amplitude of oscillation in the displacement. So we have 

 












j

tii

qj

j

i

j

ti

j

ti

q

i

j

ti

qjj

qjj

euebebe

ueebetS

)()(

)(

00

0

)(

})(1{)(





RqQRQ

RqRQ

eQ

eQ

 

 

The first term is the elastic scattering (time-independent term except for ti
e 0 ). We use 
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where the Bragg condition  

 

k' = kBragg,  Q = kBragg - k = G. 

 

is satisfied and 

 

kBragg = k + G 

 

which lies on the Ewald sphere; 
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 kBragg kk . 

 

The second term is the inelastic scattering (time-dependent term), 
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where 

 

GqQ  , 

 

with 

 

kkQ  ' . 

 

Note that k' is no longer equal to kBragg on the Ewald sphere, 

 

qkk  Bragg' .  

 

Using these relations, we get the momentum conservation, 

 

qGqkkkqkkkQ  )()(' BraggBragg , 

 

We note that the wavevector q of the phonon is in the first Brillouin zone centered around 

G in the reciprocal lattice space. 

From the integral over time t, we get 
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leading to the energy conservation law 

 

qkk   '0 . 

 

where q  is the angular frequency of the phonon with the wavevector q. 
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22. The absoption and emission of phonon 

We assume that the displacement vector uj is given by 
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where q is the wavevector of phonon, qe  is the polarization vector, and uq is the 

displacement amplitude (in general, a complex number). Then the inelastic scattering term 

is rewritten as 

 

  
j

iti

q

iti

qjqinelastic
jqjq eeueeubitS }{)()(

)()()()( 00 RqQRqQ
eQ


. 

 

Taking the integral over time t, we have 
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The first term corresponds to the absorption of phonon and the second term corresponds to 

the emission of phonon. For simplicity, bj is independent of j. Then we get 
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Here we use the notation 
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from the previous chapter and the consideration from the quantum mechanics of the simple 

harmonics,  

 

11ˆ 
qqqq nnna , for the creation of phonon, 

 

1ˆ  qqqq nnna . for the destruction of phonon. 
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Finally we get the scattering intensity which is proportional to 
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Using the factor 2)( qeQ  , we can select the branch. if qeQ  , the branch does not 

contribute to the inelastic neutron scattering. 
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Fig. Selection rule. The transverse phone mode (eq//q). The longitudinal mode (eqq). 

In this configuration, the scattering vector Q is nearly perpendicular to the vector q. 

Thus the transverse phonon mode can be observed mainly. The first Brillouin zone 

is the smallest square region surrounding around the point (q = 0). 

 

23. Ewald sphere for the inelastic neutron scattering  

We rewrite the energy and momentum conservation laws for neutrons 

 

qkk EEE  ℏℏ  0' , 

 

qGQkkk  ' , 

 

where qℏ  and q are the energy and momentum, lost (or gained) by a lattice vibration 

(phonon). q is the wavevector of phonon and is in the first Brillouin zone centered at the 

reciprocal lattice vector G in the reciprocal lattice. If we know Ek and k and measure Ek' 

and k', we can obtain qℏ  and q, which give us a point on the dispersion curve of the 

phonon.  

The modified Ewald sphere is given below. We note that kBragg and k lie on the Ewald 

sphere and 

 


2

 kBragg kk . 
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Fig. Modified Ewald construction for inelastic neutron scattering measurement. k 

and Gkk Bragg  lie on the Ewald sphere. The angle between kBragg and k, 

is the angle 2Bragg. The Bragg reflection occurs at kBragg on the Ewald 

sphere. qkGkk  'Bragg . qkk EEE  ℏℏℏ  '' . Q = k' - k 

(the scattering vector). The phonon dispersion curve can be obtained from 

the relation between qℏ  and q in the first Brillouin zone around the 

reciprocal lattice vector G (the q = 0 point). O is the origin of the reciprocal 

lattice space. 

 

 

((Scattering diagrams)) 
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Energy gain Energy gain 

 

Fig. Gkk  iBragg . Qkk  if . qGQ  . ki>kf (energy loss). ki<kf (energy gain). In the 

configuration (the right side), q is perpendicular to Q. No longitudinal mode can be 

measured. 
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Energy gain Energy gain 

 

  
 

Energy gain Energy gain 

 

Fig. q//Q. No transverse mode can be observed.  
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Energy is conserved Energy loss 
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Energy loss Energy loss 
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24. Triple axis spectrometer for the inelastic neutron scattering. 
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Fig. Schematic diagram for the triple-axis spectrometer for the measurement of 

inelastic neutron scattering. 
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Fig. Triple-Axis Spectrometer (HB-3). Oak Ridge National Laboratory. The 
triple-axis spectrometer is one of the most versatile instruments for 
measuring excitations in solids via neutron scattering. HB-3 is a colossal 
flux thermal neutron three-axis spectrometer designed for inelastic 
measurements on single crystals over a wide range of energy and 
momentum transfers. While the energy and momentum range for 
measurements is quite large at HB-3, the instrument is the ideal location to 
perform experiments at high energy transfers. This is due to a combination 
of its location directly at the end of the beam tube and the availability of a 
beryllium monochromator.  
http://neutrons.ornl.gov/instruments/HFIR/HB3/ 

 

((Example))  

Phonon dispersion determined from the inelastic neutron scattering experiment. 
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Fig. Phonon dispersion curve of NaI. Wood, Cochran and Brookhause, Phys. Rev. 119, 

980 (1960). 

 

((Experimental data))  

Inelastic neutron scattering of phonon in Cu 

 

G. Shirane, S.M. Shapiro, and J.M. Tranquanda, Neutron Scattering with a Triple-Axis 

Spectrometer (Cambridge, 2004). 
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1 THz = 4.13567 meV. 
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Fig. Brillouin zone of fcc Cu 

 

 

25. Raman scattering and Brillouin scattering 

We consider the acoustic phonon. The velocity of acoustic phonon v is on the order of 

105 cm/s. The wavenumber k is on the order of 108/cm. Then the angular frequency  is  

 

1
2

1010

22

58

 Hz
vk

f



THz. 

 

When k = 0,  is equal to zero. Therefore  changes from 0 to 10 THz as the wavenumber 

changes. The wavelength of the laser is 

 

nm633 . 

 
for typical He-Ne laser. If the excitation is an acoustic phonon, the inelastic light scattering process 
is called Brillouin scattering, while light scattering by optical phonons is called Raman scattering.  
 

26. Brillouin scattering 

We can determine the dispersion relation of the acoustic phonon by using the Brillouin 

scattering. 
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The measurement of   vs the angle  yields the value of the velocity v. Note that 
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Therefore the measurement of f  can be measured using the Brillouin Scattering ca 

 

27. Raman scattering 

Optical phonon at q = 0 can be measured using the Raman scattering, where 

 

qif    

 

and 

 

0 qkk if  

 

From the measurement of  , we can determine the frequency of the optical phonon. 

 

qif    

 

The stokes component and the anti-Stokes component are defined as 

 

qff   ,  qff    

 

respectively. 
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Fig. Schematic diagram of Raman scattering. Unshifted Rayleigh line (0). 

Stokes line (emission, 0 - q) and anti-Stokes line (absorption, 0 - q). 

The ratio of the Stokes to ant-Stokes can be used to estimate the temperature 

of the phonon system 
 

 
 

Fig. Raman spectra of three zinc-blende-type semiconductors showing the TO and LO 

phonons in both Stokes and ant-Stokes scattering. (M.S. Dresselhaus, Solid State 
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Physics, Part II, Optical Properties of Solids). Note that  = 10 THz corresponds to 
333.565 cm-1. 

 

_______________________________________________________________________ 

APPENDIX 

A.1 Nature of neutron 

 (meV): neutron energy in meV 

 (THz): neutron energy in THz 

k (Å-1): wavenumber in Å-1 

 (Å): wavelength in Å 

v (km/s): neutron velocity in km/s 

 

The energy of neutron is given by 

 

2

2

1
vM n  ℏ , 

nM
v

2
 . 

 

The momentum p is 

 

vMk
h

p n ℏ


.  (de Broglie relation). 

 

The wavelength  is 
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)(6947.0
072.2
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meV
k 


  [Å-1].  

 

((Example)) 

When  = 1 Å,  
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7.81)( meV  meV. 

 

v (km/s) = 0.4374 )(meV  = 0.4374 7.81  = 3.95 km/s. 

 

It takes t = 1000/3.95 s = 253 s for neutron to travel in the distance of 1 m. 

 

((Note)) 

The energy of the x-ray is much larger than that of the lattice vibrations ( ℏ  = 105 eV 

for x-ray, ℏ  = 0.1 eV). The energy of the lattice vibration is on the same order as that of 

neutrons. Ony the elastic scattering can be observed in the x-ray scattering, while the 

inelastic scattering as well as the elastic scattering can be observed in the neutron scattering. 

 

A wavelength at the Brillouin zone edge of  

 

 = 2/k = 2a ≈ 10 Å = 10-7 cm = 1 nm. 

 

for a = 5 Å. The velocity of phonon would be 105 cm/s. Then the frequency is on the order 

of 
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7
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10



v

f Hz = 1 THz. 

 

The corresponding energy is 

 

13567.4)2(   ℏℏE  meV for f = 1 THz. 
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Fig. The neutron scattering by phonons in the system. ki (= k) is the wavevector 

of the incident neutron and kf (= k') is the wavevector of the outgoing 

neutron. Q is the scattering vector. Q = kf – ki. |ki| = 2/,  is the 

wavelength of the incoming neutron. 

 

A.2 

_________________________________________________________________________

A.2 Unit [Kayer] in spectroscopy 

 

The energy of light E is given by 
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Then we have 
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695037.0
2
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c

TkB

ℏ
 ][KT     [cm-1] 

 

The unit [cm-1] is called as Kayser. 

 

A3. Bulk modulus: Hint of Kittel Problem 5-2 

Chales Kittel Introduction to Solid State Physics 8-th edition 

 

 
 

 

We start from the equation 
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where B is the bulk modulus and U is the total internal energy.  
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We introduce a new variable x for the volume V; 
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where x is very small compared to unity. Thus we get 
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This leads to 
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In the limit of 0x , 
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Using this approximation,  we have 
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Noting that x can be expressed as 
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we get the final form of U as 
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The total volume is given by 
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where Ncell is the number of unit cell and a is the conventional lattice constant. So 

we get the thermal energy per unit cell as 
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Suppose that the distortion of the lattice occurs along the x direction. 
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For bcc and fcc crystals, that there are p atoms per conventional unit cell; p = 2 for 

bcc and p = 4 for fcc. Each atom has a thermal energy kBT/2 for the thermal motion 

along the x-axis direction. Then 
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Use the values of p = 2, a = 4.2906 Å for Na. 


