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1. Fundamentals: one-simple harmonics  

We consider the partition function of a simple harmonics with the angular frequency  . In 

quantum mechanics, the system has discrete energy levels, 
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 is the zero-point energy. For simplicity, hereafter we neglect the zero-

point energy. The partition function (in the canonical ensemble) is 
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The average energy is 
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Note that the chemical potential of phonon is zero like that of photon.  

 

The heat capacity is given by 
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In the high temperature limit 1x , where ℏx ,  
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which is the same as that predicted from the energy partition law; Bk
2

1
 from the kinetic energy 

and Bk
2

1
 from the potential energy. Note that the Hamiltonian of the simple harmonics is 
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We make a plot of BkC /  as a function of ℏx . 

 

 
 

Fig. BkC /  vs ℏx . 
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We also make a plot of BkC /  as a function of 
ℏ

1
x  

 
 

Fig. BkC /  vs )/(1 ℏx . 

 
2. General case; many-mode system 

We now consider the system with many modes (denoted by k  with angular frequency 
k

 ). 

The partition function of this system is 
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and 
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We neglect the zero-point energy term in ln CZ . Thus we have 
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The Helmholtz free energy is 
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The internal energy is 
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Here we introduce the density of states )(D . The number of states is  dD )(  for   -  d . 

Then U can be expressed by 
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The heat capacity is obtained as 
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2. The lattice vibrations and normal modes 

We consider the system consisting of N unit cells. Suppose that there is one atom per unit cell, 

There are 3N modes, since there are three polarizations (one longitudinal and two transverse 

modes). The density of states is defined by )(D .  dD )(  is the number of normal modes with 

the angular frequency between   and  d . The total number of modes is N for each 

polarization 
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So we get the expression of the partition function as 
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The mean energy is 
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The heat capacity at constant volume 
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The Helmholtz free energy F is 
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The entropy S is 
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3. Debye model 

The density of state is expressed by 
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for each polarization (one longitudinal mode and two transverse modes). We assume that 
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Then we have 

 

2 2

3 3 2 3
( ) 4

(2 ) 2

V V
D d d d

v v
     

 
   

 

 
 

x ka

k

k 0

2 L

0.2

0.4

0.6

0.8

1.



Fig. Quantized energy level for the phonon. The phonon dispersion relation. 

 

The total number of states are N, where N is the number of unit cell. We introduce a Debye 

angular frequency (cut-off) D .  
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The Debye temperature is defined by 

 

DBD k ℏ . 
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Then we have the final result for the heat capacity with 3 polarization (1 longitudinal and 2 

transverse modes), 
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Here we introduce the Debye function as 
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The integrand 
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in the vicinity of 0x  (in the limit of high temperature). We note that 
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leading to the heat capacity at high temperature limit ( 0y ) 
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This means that the heat capacity for ANN   is 3R, which is so-called Dulong-Petit law. 

 

At low temperatures ( y ) 
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leading to 
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This is known as the Debye 3T  law. 
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Fig.  Plot of )3/( RC  vs /T . The low temperature behavior [ 3)/()3/(  TRC )] is denoted 

by the blue line. 

 

Table of the Debye temperature 

 

 
 

4. Approach for the evaluation of U 

We calculate the internal energy using the formula as 
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We note that 
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For the low temperature limit )( T  
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and the corresponding heat capacity is 
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For the low temperature limit )( T  
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and the corresponding heat capacity is 
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Fig. Scaling plot of C/3R as a function of /T  for Al, Cu, Ag, and Pb. 
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5. Einstein model 

We start with 
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Suppose that  r , which is independent of r. This mode is called an optical mode. 
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Then we have 
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Now we neglect the contribution of the zero point energy. Then we have 
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The Helmholtz free energy: 
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The average energy: 

 


























 



1
3

1
3

ln


 
 ℏℏ

ℏ
ℏℏ

e
N

e

e
N

Z
U C  

 

The heat capacity: 
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We define the Einstein temperature as 
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In the limit of low temperatures, we have 
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In the limit of high temperature limit 
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APPENDIX-I  Acoustic and optical branches 

We assume that N is the number of unit cells in the system. Each mode has 3 degrees of 

freedom (1 longitudinal mode and 2 transverse modes). Then the total number of modes is 3  N 

= 3N. 

(a) 

In the case of one atom per unit cell, we have 3N degree of freedom, with N longitudinal 

acoustic mode and transverse acoustic mode 2N 

(b) 

We consider the number of degrees of freedom of the atoms. With p atoms in the primitive 

cell and N primitive cells, there are pN atoms. Each atom has three degrees of freedom, one for 

each of the x, y, z directions, making a total of 3pN degrees of freedom for the crystal. The 

number of allowed k values in a single branch is just N for one Brillouin zone. Thus, the one LA 

and two TA branches have a total of 3N modes. The remaining (3p - 3) x N degrees of freedom 

are accommodated by the optical branches.  

 

3 acoustical branches 

1 longitudinal acoustical (LA) mode 

2 transverse acoustical (TA) mode 

 

3p - 3 optical branches 

(p - 1) longitudinal optical (LO) mode 

2(p - 1) transverse optical (TO) mode 

 

For p = 2, for example, we have 1 LA, 1 LO modes, and 2 TA and 2 TO modes. 

 

APPENDIX-II Dulong-Petit law 

https://en.wikipedia.org/wiki/Dulong%E2%80%93Petit_law 
 

The Dulong–Petit law, a thermodynamic proposed in 1819 by French physicists Pierre Louis 

Dulong and Alexis Thérèse Petit, states the classical expression for the molar specific [heat 

capacity] of certain chemical elements. Experimentally the two scientists had found that the heat 

capacity per weight (the mass-specific heat capacity) for a number of elements was close to a 



constant value, after it had been multiplied by a number representing the presumed relative 

atomic weight of the element. These atomic weights had shortly before been suggested by Dalton. 

The molar heat capacity of most elements at 25°C is in the range between 2.8 R and 3.4 R. In 

modern terms, Dulong and Petit found that the heat capacity of a mole of many solid elements is 

about 3R, where R is the modern constant called the universal gas constant. Dulong and Petit 

were unaware of the relationship with R, since this constant had not yet been defined from the 

later kinetic theory of gases. The value of 3R is about 25 joules per kelvin, and Dulong and Petit 

essentially found that this was the heat capacity of certain solid elements per mole of atoms they 

contained. 

The modern theory of the heat capacity of solids states that it is due to lattice vibrations in the 

solid and was first derived in crude form from this assumption by Albert Einstein in 1907. The 

Einstein solid model thus gave for the first time a reason why the Dulong–Petit law should be 

stated in terms of the classical heat capacities for gases. 

 

APPENDIX-III Evaluation of Debye temperature for Cu 
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Copper has a fcc structure with the lattice constant a = 3.61Å (conventional cell). The number 

density is 
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When v = 2.6117 km/s, we have 341.9   K, which in good agreement  ISSP)with the one 

reported; 

  343 K (Kittel). 

 

APPENDIX Prof. Debye in Cornell University 

https://en.wikipedia.org/wiki/Peter_Debye 

 

In 1939 Debye traveled to the United States to deliver the Baker Lectures at Cornell 

University in Ithaca, New York. After leaving Germany in early 1940, Debye became a 

professor at Cornell, chaired the chemistry department for 10 years, and became a member of 

Alpha Chi Sigma. In 1946 he became an American citizen. Unlike the European phase of his life, 

where he moved from city to city every few years, in the United States Debye remained at 

Cornell for the remainder of his career. He retired in 1952, but continued research until his death.  

Much of Debye's work at Cornell concerned the use of light-scattering techniques (derived from 

his X-ray scattering work of years earlier) to determine the size and molecular weight of polymer 



molecules. This started as a result of his research during World War II on synthetic rubber, but 

was extended to proteins and other macromolecules. In April 1966, Debye suffered a heart attack, 

and in November of that year a second one proved fatal. He is buried in the Pleasant Grove 

Cemetery (Ithaca, New York, USA). 

 


